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Strong mean meson fields, which are known to exist in normal nuclei, experience a violent deformation in

the course of a heavy-ion collision at relativistic energies. This may give rise to a new collective mechanism
of the particle production, not reducible to the superposition of elementary nucleon-nucleon collisions. We

study the baryon-antibaryon (NN, AA, . . . ) pair production under some simplifying assumptions about the

space and time variation of meson fields in the nuclear collision process. The mutual deceleration of nuclei is
described schematically by introducing the time-dependent relative velocity. For comparison the yield of
NN pairs is also calculated within a convolution model assuming the same deceleration scenario. Due to the

specific Lorentz structure, the vector meson field turns out to be more efficient for producing pairs than the

scalar field. Within the perturbative approach we study two processes: the bremsstrahlung of a virtual meson
and the fusion of two virtual mesons, both leading to the baryon-antibaryon final states. The calculated
multiplicities of NN and AA pairs grow fast with the bombarding energy, reaching a saturation above the

RHIC energy ( v s = 200A GeV). At lower energies the coherent production mechanism gives higher pair yields
than predicted by microscopic cascade-like models. The rapidity spectra of antibaryons exhibit a characteristic
two-hump structure which may serve as an observable signature of the bremsstrahlung mechanism. A strong

sensitivity of the predicted yield to the baryon effective mass and the parameters characterizing the stopping
power of nuclear matter is demonstrated.

PACS number(s): 25.75.+r, 13.75.Cs, 13.85.Ni, 21.65.+f

I. INTRODUCTION

In relativistic heavy-ion collisions the hadronic matter is
produced in states which are very far from the nuclear
ground state. If thermal equilibrium is established at some
stages of the collision process, one can characterize the mat-
ter by the equation of state. Despite much efforts made to
extract the information about the equation of state, the con-
clusions still remain uncertain, especially at high bombard-
ing energies. One cannot even say what degrees of freedom,
hadrons or quarks and gluons, are more suitable for describ-
ing these collisions. Fast dynamics, relativistic effects in par-
ticle interactions, and a finite formation time for hadrons
make the picture less trivial but not necessarily more com-
plicated. At ultrarelativistic energies, due to the limited stop-
ping power of nuclear matter, the two colliding nuclei do not
stop in the center-of-mass frame, but rather interpenetrate
through each other losing a fraction of the initial kinetic
energy for producing new particles and exciting the matter

In this paper we consider a purely dynamical, collective
mechanism of particle production based on the relativistic
picture of a nucleus as composed of nucleons interacting
with meson fields. According to the relativistic mean-field
model t 2], strong scalar and vector mean fields are generated
in the nuclear interior. In some aspects the collision of rela-
tivistic nuclei can be viewed as the interaction of these me-
son fields, Lorentz boosted to a proper reference frame. In
the course of interpenetration two bumps of meson fields are
slowing down and acquire deformation. Moreover, they can
be partially or totally destroyed if the coherence does not
persist at the violent stage of the reaction. In any case, one is

dealing here with time-dependent "external" fields which
can produce particles via the Schwinger mechanism [3).Be-
low we show that in some cases this coherent mechanism of
particle production may be more efficient than the incoherent
superposition of nucleon-nucleon collisions.

As shown in Refs. [4,5) strong meson fields generated in
relativistic nuclear collisions may also give rise to the "spon-
taneous" baryon-antibaryon pair production, through the de-
cay of "negative" energy Dirac sea inside the compressed
nuclear matter. To study the observable signals of this phe-
nomenon one should also know the contribution of the in-
duced processes associated with high Fourier frequencies of
meson fields generated in the course of a nuclear collision. A
strong enhancement of antibaryon yields associated with the
reduction of their effective mass in thermally equilibrated
system was demonstrated in Ref. [6).

Unfortunately, the space-time structure of meson fields is
rather complicated and there is no hope to find the exact
solution of the particle production problem. Therefore, our
calculations will be performed mostly within the perturbative
approach. In many respects the formalism is similar to that
used for the particle production by electromagnetic fields
induced in relativistic heavy-ion collisions [7—12). Two col-
lective processes are considered below: the bremsstrahlung
of virtual mesons with their subsequent decay into the
baryon-antibaryon (BB) pairs and the pair production by the
collision (fusion) of two virtual to-mesons. In the latter case,
in close analogy to the equivalent photon picture [13]for the
Lorentz-boosted Coulomb field, one can represent mean me-
son fields in a fast moving frame as beams of virtual mesons
characterized by certain spatial and spectral distributions.
Then the cross section of any process induced by time-
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dependent "classical" fields may be expressed through the
cross section of the elementary process involving two virtual
quanta of these fields.

%e would like to note that the collective mechanism of
pion production by nuclear fields generated in heavy-ion col-
lisions ("pion bremsstrahlung") was studied earlier in Refs.
[14,15].The dynamics of the meson fields in the course of a
nuclear collision was considered in Refs. [16—19] by the
direct solving the time-dependent Dirac equation. The clas-
sical radiation of real ~ mesons caused by transverse fluc-
tuations of the vector field in nuclear collisions was consid-
ered in Ref. [20].

In this paper we focus mainly on the BB pair production
by strong meson fields associated with relativistic nuclear
collisions. In Sec. II the general formalism is presented. In
Secs. III and IV it is applied for calculating the BB pair
production by the bremsstrahlung and meson-meson fusion.
The incoherent (direct) production of pairs in binary
nucleon-nucleon collisions is considered in Sec. V. The nu-
merical results are given in Sec. VI. The discussion and con-
clusions are presented in Sec. VII.

II. GENERAL FORMALISM

As before, a, (b;) and a,+(b,+) denote the annihilation and
creation operators of a baryon (antibaryon) in the state i
They obey the fermion anticommutation relations

fa, , b,}=0, (a;,a+. )=(b;,b+) = a; .

The general Lorentz structure of the external field associ-
ated with nuclear mean meson fields can be expressed as

M(x) =S(x)—y V~(x),

where S(x) and V~(x) are, respectively, the scalar and four-
vector parts of the fields. In the mean-field approximation
they are treated as c numbers:

S(x) =gso(x), V (x) =gi co (x),

where o.(x) and co (x) are the usual nuclear o. and co fields
coupled to nucleons with coupling constants gz and g~.
These fields are determined self-consistently by the nuclear
sources:

The probability W;; to produce a baryon(B)-anti-

baryon(B) pair in the quantum state i+(B)i (B) can be
written as

( + m ) o.(x) =gsps(x)

(H+m ) su~(x) =g~J~(x).

(9)

(10)

Here i = p, tr, ~ denote briefly the momenta (p ),
spins (o.~), and isospins (~ ) of the particles, M;; is the

transition amplitude of the process: "external" meson field
~ B; B; +X. It can be expressed in terms of the 5 matrix

(2)

where ~0) is the "vacuum" state containing external meson
fields and no pairs, a; (b; ) is the annihilation operator for a

baryon (antibaryon) in the state i+(i ).
Quite generally one can write'

S= T exp i d xZ;„,(x)

l +~ (1)+~ (2)+

where g '),g, . . . , are the contributions of the first, sec-
ond, . . . , order in the external field. Denoting by M(x) the
amplitude of this field in a space-time point x one can rep-
resent the interaction Lagrangian density as

Q„,=:Ws(x) M(x) Il's(x):,

where the notation: ~: is used for the normal product of
operators. The baryon field operator Ws(x) is represented in
a standard second quantization form [21]

Here =—8, —5, the scalar density pz and the four-current
J of nucleons are, respectively,

(12)

Averaging over the microscopic states of the system is im-
plied in Eqs. (11) and (12).

At high energies when nuclei are partially transparent to
each other, one can treat a heavy-ion collision as an interac-
tion of two interpenetrating baryonic flows originating from
the projectile and target nuclei. The four-current can be ex-
pressed as

J„(x)= g pal(x) U~ l(x),
u=p, t

where pt„~(x) and Ut ~(x) are, respectively, the rest-frame
vector density and the four-velocity of the projectile
(u= p) and target (u= t) fiow. Due to the local conservation
of the baryon current [8 J"(x)= 0] the vector field satisfies
an additional constraint

8„V~(x)=0 .

Below we use the momentum representation of the fields.
The Fourier transformed meson field is defined as

'Units with 6 =c = 1 are used throughout the paper.

f
M(p) = d4xe'"'M(x) = S(p) —y~V~(p), (15)
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s(p) = Ds(p) ps(p)

V'(p) = —Dv(p) J'(p)

(16)

(17)

Here

where px= p t —pr. The corresponding transformations are
also introduced for ps(x) and J"(x). Using this representa-
tion one can solve Eqs. (9) and (10) (for p 4 m, m„), and

get

T
I p
I

I

I

j.

p+

(a)

(b)

T
I

I

P
I

1
P-

2
gs

Ds(p) =
2 2fs(p)

p m
(18)

P+ P+

2
gy

Dv(p)= 2 2fv(p).
p —m

(19)

are the corresponding Green functions. Formally the solu-
tions of Eqs. (9) and (10) correspond to f; = 1 (i =S,V). By
inserting additional form factors f,(p) we introduce the cor-
rections to the SNN and VNN vertices due to the composite
structure of nucleons.

We choose the monopole type parametrization of f;

A l

f(p)=Ac+ gA, +p (20)

where the cutoff masses A;-2 GeV [22]. These intrinsic
form factors of nucleons suppress the emission of mesons at
large p . The experimental information concerning the form
factors f;(p) is rather controversial [23]. In particular, the
characteristics of fv(p) may be indirectly extracted from the
data on the electromagnetic nucleon form factors within the
vector meson dominance model [24].

In the momentum representation the condition (14) has
the form

K2 P- P

Q;Lf;= U;U;= 1

A straightforward calculation based on Eqs. (2)—(6) and
(22) yields the following expressions for the pair production
amplitudes in the first two orders in X.,„,:

MI'I = — u; M(p +p )v;0 E~E
(24)

(2) i mN l d'q
M, ,

= — u;, ,„.M(p+ —q) G(q)

XM(q+p )v;, (25)

FIG. 1. Lowest order Feynman diagrams for the production of
NN pair in nuclear collisions. Parts (a) and (b) correspond, respec-
tively, to bremsstrahlung and second order (fusion) processes. Wavy
lines denote mean-field interaction. Thin solid lines denote propa-
gation of fermions. Upper and lower thick lines correspond to pro-
jectile and target nuclei, respectively. Dashed line shows an arbi-

trary interaction which causes mutual deceleration of nuclei.

[p V(p)] = 0 . (21)
where

~(+) '
l

qp(
—)

l

lP lX
l

+ lP X
l

(22)

Here p; = (E, , p, ) is the four-momentum of the

(anti)nucleon, E;= pm~+ p, is its energy, mz and A are,
respectively, the nucleon mass and the normalization vol-
ume. The bispinors u;, v; are normalized according to the
relation

According to Eqs. (13) and (17) the vector field is the sum of
the projectile and target vector fields. This is not the case for
the scalar field. Due to the nonlinear terms the latter is
smaller [5] than the simple sum of the scalar fields from the
projectile and target nuclei in the region of their geometric
overlap.

Below the explicit formulas are given for the case of the

NN pairs. The analogous expressions for other (e.g. , AA)
pairs can be obtained by replacing the corresponding baryon
masses and coupling constants. We use the standard repre-
sentation of the (anti)nucleon wave functions [21], intro-
duced in Eq. (5):

+m~
G(q)= q z

q
—m~+i 6

I
v*(p) v~(p) I) Is( (27)

usually holds at high bombarding energies. Let ~ denote a
characteristic time of the nuclear density variation in the rest
frame of the corresponding nucleus. In the region

IpoI ~& r ' the vector field V~(p) is exponentially small and
condition (27) may be violated. For example, in the free-
streaming approximation (r=~) both nuclei interpenetrate
without mutual deceleration. As will be shown in Sec. III, in
this case V (p) 40 only in the spacelike region p (0 and,

is the vacuum Green function of nucleons. The Feynman
diagrams corresponding to the amplitudes (24) and (25) are
shown in Figs. 1(a) and 1(b), respectively.

It is easy to see that the first order contribution (24) is
nonzero only if .M~(p) 4 0 for p )4m~. Since V~(p)
~J~(p) contain a large y factor of the projectile-target rela-
tive motion, the relation
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Vpt
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2R/yo o

FIG. 2. Scalar (dashed line) and vector (solid line) meson po-
tentials before a central collision of identical nuclei shown as a
function of longitudinal coordinate z in the equal velocity frame
(schematic view). Only time-like component of vector potential is

shown (Vo is the corresponding potential in the nucleus rest frame).

therefore, the first order contribution of the vector field van-
ishes. In this case the pair production is possible only in the
second and higher order processes. In a more realistic sce-
nario, the collisional and mean-field interaction of nuclei
lead to their mutual deceleration. As a consequence, the
NN pairs may be produced already in the first order process,
since nonzero Fourier components of the meson field appear
in the timelike region p ~4m~. By analogy to the
e+e -pair production by an accelerating charged particle,
we refer the first order processes [Fig. 2(a)] as the pair pro-
duction due to the bremsstrahlung of the o., co mesons. This
process is similar to the pion bremsstrahlung considered in
Refs. [14,15].

The momentum distribution of pairs is proportional to the
probability density (1)

Let us discuss briefly the geometrical picture of a heavy
ion collision. As in Refs. [10,14], we assume that at the stage
of the projectile-target interpenetration the two nuclei move
as a whole along the beam axis with a mutual deceleration.
We describe them as Lorentz-contracted ellipsoids whose
widths are determined by the instantaneous y factors. We
also assume that they have the rest-frame densities of initial
nuclei. Therefore, the compression and the transverse motion
of nuclear matter are disregarded by the model.

Below we consider the central collisions of identical nu-
clei (at zero impact parameter). The calculations are per-
formed in the equal velocity (e.v.) frame where the nuclei
move with velocities („=—g, =—( and have a Lorentz-factor
y= (1 —( ) . Choosing the z axis along the beam direc-
tion one can parametrize the four-velocities and the densities
of interpenetrating nuclei as follows (tx= p, t):

U„' '(x) = [Y(t), 0, 0, ~ Y(t)((t)]~,

p'v'(x) = pv[ 4ri+ 7'(t) [z ~ k(t)]']

(31)

(32)

pv(r) = poo"(R —r). (33)

Here the upper (lower) sign corresponds to the projectile
(target) nucleus, r~ = (x,y) stands for spatial coordinates in
the transverse directions. The function pv(r) in Eq. (32) is
the rest-frame vector density of the initial nucleus. According
to Eqs. (16) and (17) the meson fields are entirely determined
by the scalar density and four-vector current of nucleons. A
schematic picture of spatial distribution of meson fields at
the initial stage of nuclear reaction ((=vo) is shown in Fig.
2.

Two parametrizations of pv(r) are considered. First one is
the homogeneous sphere distribution

d N
W;;d p+dsp (2m) '+'-' (28)

where pp=0. 17 fm is the normal nuclear density, R is the
radius of initial nuclei, and O(x) =(1+signx)/2. The corre-
sponding density form factor in the momentum space is

Equations (24) and (25) yield the following expression for
the spectrum of the NN pairs: cosx

I 3 ~ sinx
F(q)=—— d rpv(r)e "=2—

X(p~ ™~)M(p~,p )), (29)

where d is the isospin degeneracy factor and

d N d,
E+E 3 3

=
~ ~6 Spf(p m~)M(p+, p )

(34)

Here A=4vrppR /3 is the mass number of a nucleus.
The calculations show that the neglect of density smooth-

ing at the nuclear boundary leads to a noticeable overestima-
tion of the pair yield as compared to the more realistic
Woods-Saxon distribution:

M(P, P ) =M(P +P )+ j 2 4M(P —q)G(q)
p (r)= Pi

~ r-R'I (35)

X,A(q+ p ). (30)
1+exp a

Here the first term is associated with the bremsstrahlung pro-
cess [Fig. 1(a)] and the second term describes the pair pro-
duction by the fusion of meson fields.

Due to the charge conservation only the pp and nn pairs
may be produced by the considered coherent mechanism.
One should substitute d = 1 or d = 2 to obtain the yield of
charged (pp) or all (pp+ nn) NN pairs.

The normalization constant p& is determined from the condi-
tion jd rpv=A. In our calculation we choose
R= 1.12A " fm, a=0.5 fm. The form factor corresponding
to the distribution (35) may be written in a semianalytic form
by using the representation of the Fermi-like integrals as a
series expansion over the parameter e ' [25].The calcula-
tion shows that at large q&) m/R the form factor F(q) corre-
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sponding to the Woods-Saxon density profile goes to zero
much faster than that for the homogeneous sphere distribu-
tion (33).

Yo

R' R' (41)

III. PAIR PRODUCTION BY BREMSSTRAHLUNG
OF NUCLEAR MESON FIELDS

Taking into account only the first term in Eq. (30) and
using Eqs. (15) and (21) one obtains the spectral distribution
of NN pairs in the lowest order in the mean field

E~E 3 3 6 ((P —4m+)lS(P) l'
d p+d p 2j2m'j

—P'v„*(P)v'(P) -41Q,v'(P) l'

—8m~ Re[S*(P)Q~V~(P)]). (36)

Here

P=p++p— (37)

Q= r (P+ —P-). (38)

gs~0 gv~ 44vr e mmmm, , m„~0, d,~ 1,
(39)

where m, and e are the mass and charge of the electron,
respectively. The obtained expression for e+e spectrum co-
incides with the corresponding formula of Ref. [10].

By using Eqs. (13), (31), and (32) one can write the fol-
lowing expressions for the Fourier transforms of 1":

It is worth noting that Eq. (36) may be applied also to the
lepton pair production by Coulomb fields of the colliding
nuclei. To get the spectrum of e+e pairs, it is sufficient to
replace the baryonic current (12) by the electromagnetic one
and make the substitutions

Pp = MT coshY, P~~
= MT sinhP, (42)

where MT ——gM + PT and I' is the rapidity of the BB pair
center of mass.

Due to the mass shell constraint p =m~ only two com-2 2

ponents of the four-vector Q, Eq. (38), are independent at
given P. After integrating both parts of Eq. (36) over Q one
obtains the result (see Appendix A)

d4W~'~

MdMd Yd2PT

d.
(2 vr)

4mN
2

1 —
2 0'(M —2m~)

where yo= (1 —Uo)
'~ is the initial Lorentz factor of nuclei.

On the other hand, according to Eq. (40) limt, oJI"(P)=0
at PpWO. This leads to the suppression of pair production at
small longitudinal total momenta in the e.v. frame. As we
shall see below, this results in the two-hump structure of the
bremsstrahlung component of the antibaryon rapidity distri-
butions with a minimum at zero c.m. rapidity. The central dip
appears as a result of destructive interference of the projec-
tile and target contributions. The suppression of secondary
particle yields at the emission angles 0, =90' is a charac-
teristic feature of the bremsstrahlung radiation in a symmet-
ric nuclear collision. The analogous suppression was pre-
dicted earlier for the pion [15] and photon [10,11]
bremsstrahlung.

Instead of the two-particle spectrum (36) let us consider
first the distribution of pairs in their total momentum (37).
Introducing the invariant mass M = gP of the BB pair, one
may represent the components of P as

J (P)= J (P)
Pp

I' co

=2A dte' o' cos[Plg(t)]J--

M —4m
x IS(P)

M +2m~
+

3 l
v„*(P)v'(P)

I

XF(/PT+P~~ '[1 j ( )]) (4o) From Eqs. (17), (19), (40), and (42), disregarding the trans-
verse components JT we get

where Pll and PT are, respectively, the longitudinal and trans-
verse components of the three-momentum P in the e.v.
frame. In the first equality we use the continuity equation for
the baryon current and disregard the transverse components

Iv,*(P)v~(P)l= M,

4
gv

(44)

T
Several conclusions may be drawn already from Eq. (40).

First, in the free-streaming limit ((= const) the bremsstrah-
lung radiation vanishes in the lowest order in the vector field.
Indeed, in this case ((t) is a linear function of t and accord-
ing to Eq. (40) J~(P) 40 only for Po= ~Pl/. This gives
P =P (g 1) PT(0 and, therefor—e, V~—(P) =0 in the re-
gion P )0. By using Eq. (40) one can estimate the region of
the total three-momentum, P, where J"(P) is essentially
nonzero. Due to the presence of the form factor the charac-
teristic momenta satisfy the relations

Note that this expression has no singularity at Y~O. Indeed,
it can be shown from Eq. (40) that in this limit the vector
density J (P) vanishes more rapidly than sinh1'. The pole at
M=m„corresponds to the emission of the on-mass-shell
cu mesons [20]. Since we are interested in the domain
M)2m&~m„, there is no need for any regularization pro-
cedure. Of course, some interesting phenomena may occur
when pairs are produced within dense baryonic matter. In
this case a reduction of the nucleon effective mass m~ is
predicted by the Walecka model [2], and therefore one may
expect a situation when the gap 2m& becomes less than
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m„ in the course of a nuclear collision. One can see that the
decay channel co~BB is opened under this condition. The
consistent treatment of this effect is not possible within a
simple perturbative scheme adopted here.

In the following we omit the contribution of the scalar
field having in mind sufficiently high bombarding energies
when the relation (27) holds. From Eqs. (43) and (44) we
obtain

d Nt') J (P)
dMdzd2Pr ~v( ) sinhV

(45)

where

d~g~ 2
M +2m

gy(M) — s/M —4m~ 2 ~ 28(M —2m~).
M —m„

(46)

Applying the same approximations to Eq. (36) one gets

d N(')dN()
&+~- 3 3

=
2 2d p d p dy d pT+dy d pT

2
', (m„'+Q', )Iv~(P) v (P)l,

(47)

Pz y++y-
pr== 2

Qr= Qr-—

where y
—=arctanh(p~~/E) are the longitudinal rapidities of

particles. The single particle spectra of the produced anti-
baryons are obtained from Eq. (47) by integrating over p+.
In the numerical calculation we use a smallness of the pa-
rameter Prim& [see Eq. (41)].This leads to the approximate
relations

(
r= R/ypv p

=R. I
—1

'2m~A)

—1/2

(52)

Of course, this ansatz is not correct at low energies when the
fu11 stopping of nuclei is reached in the collision. However,
this will not cause a serious error since, as will be shown
below, the bremsstrahlung mechanism gives a negligible pair
yield at such energies.

The energy dependence of the bremsstrahlung contribu-
tion may be easily understood in some limiting cases when
an analytic calculation of the Fourier transformed vector
density 1 (P) is possible. For example, this can be done in

the case of instantaneous deceleration [((t)~B(t)], when
r-0. According to Eq. (52) this corresponds to the high
energy limit Ps —+-. Substituting

collisions shows [1,26] that 8'y is approximately independent
of the bombarding energy and is determined mainly by the
projectile path length in the target nucleus. Extrapolating this
conclusion to the central collision of equal nuclei we may
roughly estimate By as a ratio of the nuclear radius R to the
mean free path kz of a nucleon in nuclear matter. In the case
of central Au+Au collisions at RHIC energy (Ps=200A
GeV) the hydrodynamic [1,27] and RQMD [28] models pre-
dict mean rapidity losses 8'y=2.4~0.2, which are close to
the estimate mentioned above. Having this in mind we
choose By=2.4 for the heaviest combinations at Ps&)10A
GeV. At lower energies (corresponding formally to
yo

—By~0) we assume that the mutual stopping takes place
at the final stage of the reaction, i.e., we put vf=0 in Eq.
(50).

According to Eq. (50) the nuclear deceleration, ((t), is
essentially nonzero within the time interval —~&t&7.. Be-
low it is assumed that 27 is equal to the passage time in the
e.v. frame, 2R/ypvp. This leads to the following relations for
the parameter 7. :

Mr -—M=2/m„'+Qr' cosh
2 (49)

(=voto( —t)+vfto(t)

into Eq. (40) we arrive at the expression

(53)

In this paper we adopt the Fermi-type parametrization of
i(t) [10,14]: Fp Ff1 (P) =2LAPO

II
'p

(54)

Vp Vf
vf 1+ tie &

~=V + (50) where (j=O,f)

Ps/2A =m~y~™~coshyo. (51)

Here yo=arctanhvo and Ps are, respectively, the initial ra-
pidity and total energy of nuclei in the e.v. frame. The deg-
radation of energy in a nuclear collision can be characterized
by the rapidity shift By =yp —yf, where yf = arctanhvf is the
final c.m. rapidity of the projectile. The study of rapidity
spectra of leading nucleons in ultrarelativistic proton-nucleus

where r is the effective deceleration time and vo(vf) is the
initial (final) velocity of nuclei in the e.v. frame. The decel-
eration law (50) describes the energy losses of the projectile
and target nuclei during their mutual interpenetration. It con-
tains two model parameters: 7. and vf. The total available
c.m. energy per baryon at t~ —~ can be written as 1 (P) A Fo (1+cosh2yo)

sinhE' MT tanh P cosh2Y+ cosh2yp

Ff (1+cosh2y f)
cosh2 Y+ cosh2yf

(56)

As one can see from Eqs. (54)—(56), the pair yield vanishes
at the c.m. pair rapidity Y~O and also in the free-streaming
case yo —yf~O. According to Eq. (56) the Y dependence of
spectra is determined mainly by the form factors Fpf.

F,=F(/Pr+P ~~/y,
—) =F(/Pr™rsinh 7/cosh y, ).

(55)

In the considered limit the pair spectra, Eqs. (45) and (47),
are proportional to the factor
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1 (P) =2rAF(Pr)ttB[i r(Po+ voP ~),
—i r(Po+ ufP~~)]

+B[ir(Po —
uoP~~),

—i r(PO —vfP~~)]), (57)

To analyze qualitatively the pair production at lower en-
ergies when the effective deceleration time is essentially
nonzero we disregard the time dependence of the form factor
in Eq. (40) replacing it by F(Pr). This approximation may
be justified for small enough values of ~Pl~ in the ultrarela-

tivistic case (=1.Determining ((t) from Eq. (50) and cal-
culating the integral in Eq. (40) one can easily get

, may contribute to the pair production. A rough estimate
may be obtained by replacing R in Eqs. (52) and (59) by a
characteristic width of the compression wave X. . Assuming
that X-X&- 1—2 fm one can expect that the adiabatic
boundary for the NN production may be shifted to the region
of CERN SPS energies (Ps/A = 19.4 GeV). The reduction of
the nucleon effective mass m~ in a dense matter [2] will also
lead to the enhancement of the pair yield at all energies (see
Sec. VI). As compared to Eq. (59) the adiabatic threshold
will be lowered in accordance with the factor (m~/m~) ' .

1 (P) 87rr 1
[AF(PT)]' tanh(yo —yf)sinhY MT &=pf slnhy&

X exp—
2vr&MT

cosh(~Y'~ —
y, ) .

coshy
(58)

In deriving this expression we neglected the interference be-
tween two terms in Eq. (57) and assumed that y, ~ 1. From
Eq. (58) one can see that the pair production by bremsstrah-
lung is exponentially small in the adiabatic region
Por'&) 1, where Po =Mr cosh(Y~yo) and r' = r/coshyo are,
respectively, the total pair energy and the deceleration time
in the projectile (target) rest frame. The above condition im-
plies that the deceleration time is large as compared with the
characteristic time, (Po) ', necessary to produce a pair with

energy Pp.
Let us estimate the bombarding energy at which the adia-

batic regime sets in and the induced pair production becomes
negligible. From Eq. (58) one can conclude that it is the case
when 4rrm~r/coshyo&)1. By using Eq. (52) we see that the
adiabatic region is achieved when

ps
(~ 4m' grrmtvR

40 GeV, Au+Au,

30 GeV, S+S. (59)

Below the numerical calculations are made for these two
cases of Au+Au and S+S central collisions.

Of course, this prediction should be regarded with care.
Indeed, our treatment of the meson field dynamics is rather
crude. In a real situation nuclei do not decelerate as a whole,
but a compressed and excited matter is produced in the over-
lap region. Internal compression waves and shocklike fronts
may be formed in the course of a nuclear collision. It is
clear that compression waves may lead to the local decelera-
tion times which are shorter than the nuclear passage time. In
this situation the Fourier frequencies, much higher than

The photon bremsstrahlung in the case of a shock wave excita-
tion has been considered in Refs. [29,30].

where B(x,y) = I (x)I (y)/I (x+y) is the beta function. The
same expression, but for the pointlike nuclei (F= 1), was
obtained in Ref. [10). In the limit r~0 we again arrive at
Eq. (54) with Fo=F/ F(Pr——).

In the opposite case of large Pp7. the Fourier components
I (P) are essentially nonzero at ~I'~=yo, y/. The following
approximate expression can be obtained at Ppr)) 1 from Eq.
(57):

IV. PAIR PRODUCTION BY FUSION
OF VIRTUAL a) MESONS

v (k)= g v&'(k),
u=p, t

(60)

where

V~ i(k) = Dv(k)ptv i(k)U~ i—. (61)

Here the Fourier transformed vector densities of the projec-
tile (u =p) and target (n = t) nuclei can be expressed via the
nuclear form factor [see Eq. (34)]

(k) = 2 B(k U ) AF( q k). —(62)

Under the constraint imposed by the 6-function,
kp= ~ k~~vp, the components of the four-vector k satisfy the
relation

k
I = —k ——&0,2

2
Yp

(63)

where k~ are the transverse components of k. Therefore,
only the spacelike momenta k of the vector field contribute
in this case.

As before we disregard the contribution of the scalar me-
son field. Then the term of the second order in Eq. (30) can
be written as

In this section we study the BB production by processes
of the second order in the mean-field interaction [see Fig.
1(b)]. As has been already stated, in this case pairs may be
produced even if the deceleration of nuclei is disregarded. To
avoid complications connected with mutual slowing down of
the colliding nuclei, below the second order processes will
be studied in the free-streaming limit. As will be shown, the
contribution of these processes drops with decreasing rela-
tive energy of nuclei. Therefore we expect that the neglect of
nuclear deceleration overestimates the magnitude of the sec-
ond order effects.

In the free-streaming approximation, g= vo= const, the
four-velocities of nuclei, U are constant. As seen from Eq.
(32), in this case the time dependence of nuclear densities
enters in the combination z —uot only. Using Eqs. (13), one
can represent the Fourier components of the vector field as
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~ I d4k, d4k,
~"(p+ p-) =

s (2 )'
J 2'

x~(k, +k, p-+ p-)V~»(k, )Vt,')(k, )

x H~'(k, ,p ~,p ). (64)

H"(k tpt+.p-) = y'G(p+ kt) y—'+ y"G(kt p—-) y'
(65)

where the first and second terms correspond to the left and
right diagrams in Fig. 1(b). By using Eqs. (29) and (64) it
can be shown that the second order matrix element is invari-
ant under the gauge transformation of the vector fields

Here H"" is the hadronic tensor (the operator in bispinor
indices)

10

10

10
I

8 0-3

10

10

3 10
e
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10
0 6

r~ (fm)

10

V„"(k) V(„'(k)+ Ck, (66)

I'

k) = co),kgb,
Vp(

(67)

where C is an arbitrary scalar function of k. The latter can be
chosen so that only the transverse components p„, v=1,2
contribute to the operator (64) [9].

The conditions k& U = k2U ' = 0 and the four-
momentum conservation k&+ k2= p++ p =—P fix the com-
ponents k, and k, (j=1,2):

This cross section corresponds to the case of parallel po-
larizations [12] of equivalent vector mesons and depends on
the Mandelstam variables

s=(kt+k2) =M =4cotto2,2 — 2

t=(p+ kt) .

(72)

FIG. 3. Spectral density of virtual vector mesons for gold
nucleus as function of distance r~ from the beam axis ( vs =200A
GeV). Solid and dashed lines correspond to the meson energy
~= 1 and 10 GeV in the equal velocity frame.

Co2 l

k2 —I o)2,k2~,
vol

(6g)
The explicit formula for the "co-fusion" cross section may be
written as [see Eq. (B8) in Appendix B]

Here k~& are the transverse components of k~ and

tol 2( o+ o ll)™r(e +e )=2Me (69)

d o.(s)
dt

4Pl~ s/2+ 2'~ 3m~
=Op 2 2 1 4S PlT mT

(74)

Q)2= 2 (Po voPll) =mT(e + e —)= —,'Me, (70)

where mr =—gmz+Qr. In deriving Eqs. (69) and (70) we
used formulas (42) and (49) of the preceding section.

In Refs. [9,12] the method of equivalent photons [13,31]
was applied to study the impact parameter dependence of the
electromagnetic production of lepton pairs in relativistic
nuclear collisions. In this paper we generalize this method
and the procedure suggested in Refs. [9,12] for the case of
"equivalent" co mesons. In the lowest order approximation in
the parameters yp

' and k~/m&~1/m&R one can obtain the
following expression for the differential spectrum of NN
pairs in a central collision of equal nuclei (see Appendix B):

dN~'~ do.(s)
rJ n(tot, r~)n(to2, r~) (71)

dcoidco2dt dt

Here n(t0, r~) is the spectral distribution of virtual co mesons
at the distance r~ from the beam axis. The term do(s)/dt.
denotes the differential cross section of the reaction
to(kt)+ ro(k2) ~N(p+)+N(p ).

where 0 p
= d g y/ 1 6 7TmN.

4

The function n(to, r~) describes the fiux density of me-
sons with the energy co created by a nucleus moving with the
velocity vp. It can be expressed as

S
d~, d~, dt = —dy+dy dmT. (76)

Various equivalent representations of Eqs. (71) and (74) can
be written by applying the approximate kinematic formulas

(Ag~) r d k~ . F(Vk~+to /yovo)
n(to, r~) =

vrto J (2m) k~+ to /yovo+ m„
(7~)

The corresponding distribution of photons may be obtained

by replacing Agv~Z/4vre, m„~0. Unlike the case of the
electromagnetic field, n(to, r~) decreases exponentially with
r~ at r~)R (see Fig. 3). This is a consequence of the short-
range nature of nuclear meson fields.

The pair spectra in terms of "observable" kinematic vari-
ables y, gr pr may be obtained from Eq. (71) by using
the relation [see Eqs. (69) and (70)]

The four-momenta of particles are given in parentheses. For ex-
ample, co(k, ) denotes the virtual (k, =0) vector meson with the
momentum k .

S
m —t= 1+eY+ —~- =m (1+e — +). (77)
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From Eq. (71) one can easily get the second order
(cu-fusion) contribution to the NN multiplicity, Nt„~, . A
straightforward calculation gives

Here Pso=2m~yo is the initial energy (per baryon) in the
e.v. frame, T(b) is the overlap integral

fm
Nz„,= d r~ dtutn(tut, rz)(2) 2

Jp Jp
d cu2n( cu2, r~) tT(s).

(78)

T(b)= d'r l (lr bl)l, (r ), (82)

where l (r~) is the longitudinal "thickness" of the nucleus
a=p, t:

Here o.(s) is the total tutu~NN cross section

0=opx 1 x
l

X O(1 —x),

3x'~ 1+ &I —x ( 3x~
ln 1+—gl —x

4 ) I-u'I-. l 4/

(79)

where x= mN]co&co2. The corresponding antiproton multi-2

plicity is obviously a half of that given by Eq. (78). The
analogous formula for the electromagnetic case may again be
obtained by substitutions (39) and A~Z.

f oo

l (r~)= dzp (gr~+z ). (83)

(d) 9 A

8 ~~' »-p = 0.026A ' o.p„px(mb),

The rough estimates may be obtained assuming the homo-
geneous sphere density distribution and using the pp~NX
data instead of the isospin-averaged NN~NX cross section.
In the case of a central collision between equal nuclei
T(0) =9A /87rR and we get the simple expression for the
total multiplicity of direct antiprotons

V. DIRECT PRODUCTION OF NN PAIRS IN BINARY
NUCLEON-NUCLEON COLLISIONS

S=SO

(84)

In this section we estimate the contribution of the direct
pair production in binary collisions of nucleons. We use the
conventional convolution model assuming that antinucleons
are produced as a result of incoherent superposition of the
NN collisions, in accordance with the experimentally ob-
served NN —+NX cross section. Due to the high threshold of
the NN+NX reaction (vs,h, =4m~=3.754 GeV) we take
into account only the projectile-target nucleon collisions.

We proceed from the same scenario of nuclear interpen-
etration as considered in Secs. II and III. Disregarding the
dispersion of the nucleon momentum distribution, the spec-
trum of the directly produced antinucleons can be written as
follows:

N„"= dt v~-~(t) V„„(t)opp.p
Qs= 2m~@(t)

(85)

where o.„p px is the total cross section of the inclusive pro-
cess pp~pX.

Due to the neglect of deceleration the predictions of the
standard convolution model, Eq. (84), should be regarded as
an upper bound. We have modish. ed the convolutional model
by implementing the mutual slowing down of nuclei accord-
ing to the deceleration law suggested in Eq. (50). From Eq.
(80), assuming the homogeneous density distribution, we get
the relation generalizing Eq. (84) for this case

d3N —""
N

d p

f
d x pv (x)pv (x) g[U" (x) U ' (x)] —1

3d ~NN~Nx

[U(p)+ p(t)]2
N

Here vz&=2poy lgl is a quantity proportional to the fre-

quency of elementary NN collisions, g and y are, respec-
tively, the velocity of the projectile center and the corre-
sponding Lorentz factor in the e.v. frame, V„„is the volume
of the projectile-target geometric overlap

d &8(& —
&~

—y' (l(l+ lzl) )

(dir) 3d NN d ~NN-Nx= T(b)d p d p S=sp
(81)

The analogous expression in the case of pion production has been

suggested in Ref. [32].

Here the same notations are used as in Eqs. (31) and (32)
and da.&N Nx/d p is the differential cross section of the
NN~NX reaction at the c.m. energy squared s.

In the standard convolution model deceleration effects are
disregarded. In this free-streaming case the four-velocities
U are constant and the densities p are functions of r~
and g~ vpt. A straightforward calculation of the integral in
Eq. (80) gives the following result in the case of a nuclear
collision at the impact parameter b:

2'
3y

(&- vl(l)'(2&+ ~lkl)O'(~- ~Ill) (86)

It is easy to verify that in the free-streaming limit ((=vo)
Eqs. (85) and (86) give the same p multiplicity as Eq. (84).

To calculate the excitation function of direct antiprotons
one should know the energy dependence of c7pp px In the

region Qs,h, (gs(15 GeV we use the parametrization of ex-
perimental data suggested in Ref. [33j:

tT„„„-x= 0.012( v s —4m~) ' (87)

Here and below vs and o.„~ ~x are given in GeV and mb,
respectively. In the high energy domain the pp~pX data are
usually represented in terms of the average p multiplicity in
a single pp collision, (n„-)—=o„„„x/o„'"„,whe. re rr-„'" is. the
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10 m„=0783 GeV gv=1378 ~v=2 GeV (91)
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These values are in a good agreement with the parameters
used in the OBEP potentials [37] as well as in the realistic
mean-field models (see Ref. [38]).One should bear in mind,
however, that the antinucleon yields predicted by the consid-
ered coherent mechanism are rather sensitive to the choice of
g V. Indeed, as one can see from Secs. III and IV the contri-
butions of bremsstrahlung and ~-fusion processes are pro-
portional to gv and gv, respectively. The results for other
choices of gv may be obtained by a simple rescaling of the
antibaryon yields given in this section. The situation is even
more uncertain in the case of the AA production. The corre-
sponding formulas may be obtained from those in the NN
case by rePlacing mN m&, gv=gvN gv&. In this work we
choose [38]

FIG. 4. Multiplicity of direct antiprotons in central Au+Au col-
lisions as a function of c.m. bombarding energy per nucleon.
Dashed line shows the result of calculation in the free-streaming
approximation. Solid line is calculated with inclusion of decelera-
tion effects assuming the rapidity loss 6'y =2.4.

inelastic pp cross section. At 50( Ps(10 we use the aver-
age of the two parametrizations of the ISR and FNAL data
given in Ref. [34]:

0.37 0.5)
(n„-)= —0.7+ + 0.1+ lns.

s I, s
(88)

Multiplying this function by the inelastic cross section (50
%Ps~ 10)

a.„'"„(mb)= 5.1+7.5 Ings, (89)

we obtain the high energy approximation of o.
pp px At the

intermediate energies 15(Ps(50 we apply a powerlike de-
composition

3

i/2o pp~px ~ ai~
i=a

matching smoothly with the parametrizations (87) and (88)
and (89). The matching procedure gives the values
ao= —0.3663, ai = 3.816X 10, a2= 3.503X 10, and
a3 = —3.609X 10

The results of numerical calculation based on Eqs. (84)
and (85) are shown in Fig. 4 for the case of central Au+Au
collisions. We use the deceleration law (50) with the same
parameters ~ and By as suggested in Sec. III. One can see
that due to the degradation of energy (mutual stopping) of
baryons in the course of the nuclear collision, the direct p
yield is strongly reduced as compared with the free-
streaming case.

=2
gVA 3gVN (92)

and assume the same cutoff mass Av as for nucleons. The
reduction of the coupling constant is the main reason for a
noticeable suppression of the A yield as compared to the p
production (see Figs. 9 and 13). Below we consider only
central collisions of equal nuclei, namely, Au+Au and S+S
reactions at various c.m. bombarding energies Ps. Unless
otherwise stated we use the Woods-Saxon density distribu-
tion and choose the deceleration time 7. in accordance with
Eq. (52). We assume the rapidity shifts By =2.4 (see Sec. III)
and 1.6 [39] for the Au+Au and S+S central collisions,
respectively.

Another physical quantity, which may enhance signifi-

cantly the BB yields, is the baryon (antibaryon) effective
mass mg(B =N, A, . . . ) [6,33]. Generally speaking, the re-
duction of m~ as expected in a dense medium should be
determined self-consistently, by the space and time depen-
dent scalar field, m~ =mz —gonzo. . But this study is out of
the scope of this paper. Here we perform the calculations
with constant m~, which, however, can differ from the
vacuum values mz. In particular, for nucleons we take the
value m~=0.7mN attributed to normal nuclei. This choice
might be not so unreasonable because pairs are produced
predominantly in the space-time domain where the vector
field has the strongest variation, i.e., within the colliding nu-
clei. The newly produced particles and the compression of
matter may further increase the scalar density and, therefore,
reduce m~. To partly simulate these effects we also give
results for mN = 0.5m& .

Figure 5 shows the antiproton multiplicity as a function of
the bombarding energy (excitation function) in the case of
central Au+Au collisions. The contributions of the brems-
strahlung and co-fusion processes were calculated using Eqs.
(45) and (78), respectively. To get the p multiplicity we put
d, = 1. Note that the ~-fusion component is calculated in the

VI. RESULTS

Below we present the results of numerical calculations
obtained within the model described in the preceding sec-
tions. We adopt the following parameters of the vector me-
son interaction [36]

One should be cautious using the formulas of Sec. III when

2m~ comes close to I„,i.e., to the pole of the co-meson propaga-
tor. To regularize this pole, it is necessary to introduce the
co-meson width and to take into account the mixing of the co and
NN emission channels.
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FIG. 5. Antiproton multiplicity in central Au+Au collisions ver-

sus c.m. bombarding energy per baryon. Solid and long dashed
show the bremsstrahlung and co-fusion contributions. Dotted line

represents the direct p yield.

free-streaming approximation. For comparison we show also
the direct p yield evaluated on the basis of Eq. (85). As one
can see from Fig. 5, at all energies from AGS (Ps= 5A

GeV) to LHC (Vs =6.4A TeV) the tu-fusion process gives a
smaller relative contribution as compared to the bremsstrah-
lung mechanism. The relative smallness of the second order
contribution justifies to some extent the perturbative scheme
used in our model. In accordance with the discussion given
in Sec. III, the bremsstrahlung part of the antiproton multi-

plicity raises rapidly with vs reaching the maximum,
N-"-150, near the RHIC energy and remains approxi-

mately constant at higher Ps. At all energies below the
RHIC domain the bremsstrahlung mechanism gives the p
multiplicities greater or of the same order as the direct pro-
duction mechanism.

In Fig. 6 we show the total c.m. energy E~„, of the NN
pairs, produced by bremsstrahlung in the same reaction. This
quantity was calculated by integrating the r.h.s. of Eq. (45)

10

FIG. 7. Excitation function of antiprotons produced by brems-
strahlung in central Au+Au collisions. Solid line corresponds to the
deceleration time ~ equal to half of the passage time, Dotted and
dashed-dotted lines are calculated for constant deceleration times
7=1 and 0.1 fm/c. Dashed line corresponds to the instantaneous
deceleration (~=0).

with the weighting factor Po. In the case of the vacuum
nucleon mass, E~„, is about 10% of the available c.m. en-

ergy, Ps —2m~A. By comparing F. „,with the t. otal mass of
pairs, 2m&N~„„one can estimate an average kinetic energy
of the NN pairs. E~„, may increase even more when

m~(m~. These energy losses will modify significantly the

stopping power of nuclear matter.
Figure 7 shows the sensitivity of the results to the choice

of the model parameter ~ characterizing the mutual decelera-
tion of nuclei. One can see that the bremsstrahlung contribu-
tion is very sensitive to this choice and, therefore, may serve
as a probe of the hadronic matter dynamics in nuclear colli-
sions. However, Fig. 7 shows that at very high bombarding
energies ( Ps~ 500A GeV for central Au+Au collisions) the

p multiplicities may be obtained with a good accuracy by
assuming instantaneous mutual deceleration, ~=0.

The A dependence of the bremsstrahlung pair production
is illustrated in Fig. 8. As mentioned above, we expect
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FIG. 6. Total c.m. energy F~„,of NN pairs produced by brems-
strahlung in central Au+Au collisions (solid line). Dotted and

dashed lines correspond to total available energy, Ps —2m~A and

total mass of pairs, 2m'~„„respectively.

s /A (GeV)

FIG. 8. Excitation functions of antiprotons (bremsstrahlung con-
tribution) in central Au+Au and S+S collisions.
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smaller values of the parameters 7 and By for the lighter
combination S+S. But the factor A [see Eqs. (40) and (45)]
leads to a substantial suppression of p yields in the S+S
reaction as compared to the Au+Au case.

FIG. 11. Antiproton rapidity distribution in central Au+Au col-
lisions at RHIC bombarding energy. Solid line represents the
bremsstrahlung contribution. Dotted line shows the contribution of
the co fusion. Squares and diamonds show the results of RQMD
(impact parameter b = 2 fm) [27] and MPEM (multiparton eikonal
model) [35].

The p and A bremsstrahlung yields are compared in Fig.
9. One can see that in the case of central Au+Au collisions
the model predicts about a factor 5 smaller multiplicities of
A than p.

Figures 10(a) and (b) show the sensitivity of antiproton
multiplicities to the choice of the nucleon effective mass.
One can see that the reduction of m~ leads to a very pro-
nounced enhancement of the antiproton yields, for both the
bremsstrahlung [Fig. 10(a)] and cu-fusion [Fig. 10(b)] contri-
butions. In accordance with the discussion of the adiabatic
limit in Sec. III, this effect is especially pronounced at lower
bombarding energies.

The rapidity and transverse momentum spectra of anti-
baryons at the RHIC energy are displayed in Figs. 11—16.
The relative smallness of the co-fusion contribution is once
again demonstrated in Fig. 11. One can see that in the con-
sidered reaction the model predicts a clear dip of dN-/dy atP
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FIG. 10. Excitation functions of antiprotons in central Au+Au
collisions produced by the bremstrahlung (a) and ru fusion (b)
mechanisms. Results are shown for three different values of the
nucleon effective mass m~.

FIG. 12. Antiproton rapidity spectra in central Au+Au (solid
line) and S+S (dotted line) collisions at RHIC energy Ps=200A
GeV. Only bremsstrahlung contributions are shown. The rapidity
shifts are 8'y =2.4 (Au+Au) and 1.6 (S+S).
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FIG. 13. Rapidity spectra of antiprotons (solid line) and anti-
lambdas (dashed line) produced by the bremsstrahlung mechanism
in central Au+Au collisions at RHIC energy.

midrapidity. This minimum becomes more pronounced for
the lighter combination S+S (see Fig. 12) and is present also
in the A spectra (Fig. 13). The two-hump structure of the
antibaryon rapidity spectra is a result of the destructive in-
terference between the projectile and target contributions dis-
cussed in Sec. III (the pair yield vanishes at the total pair
rapidity I', =0). These two peaks are separated only by
two units of rapidity and have nothing to do with the con-
ventional baryon peaks in the projectile and target rapidity
region (y, = ~5 at the RHIC energy). The appearance of
the dip of dN~/dy at midrapidity may be used as a clear
signal of the bremsstrahlung mechanism. Indeed, at the same
bombarding energy and the same combination of nuclei the
models, assuming an incoherent particle production in binary
collisions of nucleons or partons, predict much smoother and
broader rapidity distributions of antibaryons. The results of
the RQMD [28] and multiparton eikonal model (MPEM)
[35] are also shown in Fig. 11. Of course, the annihilation
processes may diminish to some extent the number of anti-
protons, but in contrast, the reduced nucleon effective mass
may enhance their yield (see the discussion in Sec. VII).

FIG. 15. Same as in Fig. 14, but for different values of rapidity
shift 6y.
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Therefore, we expect that the nontrivial structure of anti-
baryon spectra may still be observable at high enough inci-
dent energies above the "background" of the direct produc-
tion.

Figures 14 and 15 show how the shapes of the antiproton
rapidity spectra depend on the parameters ~ and 6y charac-
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FIG. 14. Antiproton rapidity spectra in central Au+Au colli-
sions at RHIC bombarding energy for different values of decelera-
tion time. In all cases the rapidity shift By=2.4 is assumed.

FIG. 16. Rapidity (a) and transverse momentum (b) spectra of
antiprotons produced by the bremstrahlung mechanism in central
Au+Au collisions at RHIC energy. Results are shown for three
different choices of the nucleon effective mass I&.
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terizing the global dynamics of the nuclear collision process.
As before, one can see a high sensitivity of the bremsstrah-
lung production to the dynamics of baryon stopping. Only at
very small v., i.e., close to the 1imit of the instantaneous
velocity loss, the spectra become independent on r (Figs. 7,
14) This behavior was found earlier in the pion bremsstrah-
lung [14].

The sensitivity of differential spectra to the nucleon effec-
tive mass is demonstrated in Figs. 16(a) and (b). One can see
that the reduction in the nucleon effective mass results in a
significant enhancement of dNldy at all rapidities [Fig.
16(a)]. In contrast the transverse momentum spectra are af-
fected mostly at pz.~m~ [Fig. 16(b)].The calculations show
the same qualitative behavior of differential spectra at the
SPS and LHC energies.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have demonstrated the importance of the
coherent dynamical mechanism of the baryon-antibaryon
pair production via the bremsstrahlung and the meson-meson
fusion. Our calculations have a qualitative character aimed to
emphasize the new features which are not present in thermal,
Quid-dynamical, or cascade models. Within the perturbative
approach we have shown that this new mechanism can give
more antibaryons than the direct production in elementary
nucleon-nucleon collisions. The collective mechanisms of
pair production become important in central collisions of
heavy nuclei at c.m. energies Ps~ IOOA GeV, i.e., in the
RHIC and LHC energy domains. In all considered cases the
bremsstrahlung (first order) process gives a much larger con-
tribution as compared to the co fusion (second order) compo-
nent.

It has been demonstrated that the coherent production is
very sensitive to the dynamics of a heavy-ion collision. In
particular, the bremsstrahlung mechanism leads to the two-
hump structure of the antibaryon rapidity spectra, unlike the
predictions of cascade models. The position of the peaks is
related to the average rapidity loss of baryons in the decel-
eration process. Therefore, the experimental observation of
this structure may give an additional information about the
stopping power of nuclear matter.

Our schematic treatment ignores the back reaction (ap-
pearance of induced currents) of produced baryons and anti-
baryons. Apparently, this is a rather crude approximation. In
the future one should implement a more realistic treatment of
the source terms for meson fields taking into account the
deformation of nuclear densities in the course of the reaction
as well as the effects of the induced antibaryonic currents.
Another obvious problem is to introduce the annihilation
channels which will reduce the observable baryon yields.
Two channels should be considered: first, the annihilation on
the baryons of the colliding nuclei and, second, the annihila-
tion between partners of different BB pairs. We expect that
the first process is more important at lower energies (AGS
and SPS) when the central rapidity region is strongly con-
taminated by stopped baryons. The cascade calculations
show that in this case the annihilation effects could give
large suppression factors (up to 30 for the AGS energy [40]).
At higher energies, including the RHIC and LHC domain,
this first channel is presumably not so strong and the annihi-

lation between the different BB pairs should be more impor-
tant.

Rather high BB multiplicities are obtained in the model,
especially when the reduction of the baryon effective mass is
taken into account. For instance, thousands of coherent NN
pairs are predicted in the heaviest combinations at RHIC
energies. Of course, these large numbers should be consid-
ered with caution and only as an indication of possible orders
of magnitude. Indeed, many uncertain factors, like the anni-
hilation and vertex corrections, may reduce these numbers by
a factor 10 or more. The realistic treatment of the nuclear
collision dynamics is also necessary for more firm predic-
tions. But despite these uncertainties the discussed coherent
mechanisms are worth studying both theoretically and ex-
perimentally.

In particular, they open the possibility of producing multi-
antibaryon and multi-antihyperon clusters containing three
and more antiparticles. The conventional coalescence model
predicts the probabilities to produce these objects which are
much smaller as compared to the collective mechanisms [5].
The reason is that the antibaryon clusters are already pre-
formed in norma1 nuclei due to the additive action of strong
scalar and vector fields. Therefore, the fast dynamic process
may simply "kick out" these clusters into the upper con-
tinuum states. Our present calculations show that the pro-
duced antibaryons are relatively close in the momentum
space. So they can easily coalesce and form clusters.

Above we focused on the baryon-antibaryon pair produc-
tion only. But it is clear that the same mechanism can pro-
duce also mesons. For instance, the real co mesons can be
generated in the bremsstrahlung process when the four-
momenta of quanta satisfy the mass shell constraint

p =m„. The m meson fusion may result in the two-meson
final states (7r~, KK, . . . ). These channels are characterized
by lower threshold and, therefore, by smaller momentum
transfers. Since the corresponding coupling constants are
also large, one can expect high multiplicities of mesons co-
herently produced in ultrarelativistic nuclear collisions.

Our last comment is about a possible formulation of the
problem on a more fundamental level, introducing quarks
instead of baryons. The photon bremsstrahlung radiation
from a thermalized quark-gluon plasma was considered in
Refs. [41,42]. In the spirit of our approach one can use the
effective quark-meson Lagrangians like the linear o. model
or the Nambu —Jona-Lasinio model. Then the quark-
antiquark production can be studied in time-dependent clas-
sical meson fields. This problem was partially addressed in
Ref. [43].The transition on the QCD level, including gluons,
is less straightforward. Indeed, the average gluon field in the
nucleus vanishes and one should develop a new formalism
for considering the pair production by-fluctuating fields. The
photon-gluon processes leading to the production of the qq
pairs were studied in Ref. [44].
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g f(P, Q)= 6((M —4m~)~S~ —M V*vt"

+(M' —4m,')(V„*V&+
~
V, ~') —4~Q, V, ~'

+8miv Re(S*Qi Vi )). (A4)
APPENDIX A THE DISTRIBUTION OF

BREMSSTRAHLUNG PAIRS IN TOTAL MOMENTUM

Below we derive the formula (43) for the distribution of
pairs in their total momentum P Let f. (P, Q) to denote the
r.h.s. of Eq. (36). Then the total number of NN pairs, pro-
duced by the bremsstrahlung mechanism, may be expressed
as

In Eq. (A4) we took into account the transversality condition,
Eq. (21), and denoted by Vi the component of V, transversal
to P.

It can be shown from Eqs. (17) and (40) that the four-
vector V~ is spacelike: V„*V"=—~v„*vt'~(0. Using Eqs.
(95) and (96) one gets

fdP+ (dP
Npajp:

~ p p f(P Q)
+

f
=4 d P+ d P 0(P+) ~-(P+ ™v)0(P)

d'N(')
d4P

2d, I' 0 (M —4m~ )
d2 Q(2~)'~ '

M v'M' —4m'

X((M2 —4m') ~S~'+4m,'~ V„*V&

+(M' —4m,')
~
V, (' —4(Q, V, ~'). (AS)

x 8(p —m~)f(P, Q). (A 1) After calculating the integral in the r.h.s. we arrive at the
final result (43).

Qo Qll
2

1

4 M ' (A2)

Let us make transition to the new variables (37) and (38) and
introduce the longitudinal (Q~~) and transversal (Qi ) compo-
nents of the vector Q with respect to P At given P a. nd

Qi the on-mass-shell constraints in Eq. (Al) fix the compo-
nents Qo, Q~~ of the four-vector Q:

APPENDIX 8: METHOD OF EQUIVALENT MESONS
FOR CALCULATING SECOND ORDER EFFECTS

IN PAIR PRODUCTION

Below we briefly describe the procedure for calculating
the second order contribution to the NN-pair production. The
gauge transformation (66) which simplifies the calculations

(see Sec. III) may be obtained after replacing U~„~ in Eq.
(61) by

where m~=—mlv+Q~ and M =Po P. —
From Eq. (Al) we get U( ) U( )

P P co. JP
J

(B1)

0(P,)8(M' —4m~2)

M M —4m'
(A3)

Here the sum is taken over the two values of Qo(Q~~) defined
in Eq. (A2). A straightforward calculation shows that

where j= 1 and 2 for u =p and t, respectively. By using Eqs.
(67)—(68), in the lowest order in yo

' we get

U( )=~ 0,—k, ,O
ro

(B2)
loj i

From Eqs. (29) and (64), performing the gauge transfor-
mation one has

6N(2) 1 " t d2$ ) d2k2
++ —d3 d3 ~2 ~2 1 i2 ~ 4 g(ki)g(k2) ~(kli k2J PT)

d k, ~d k2~ k, k2k, k2
4 g(k1 )g(k2) ~(kli + k2J PT) 2 2 ilnm ~

460~ 602
(B3)

where
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and

g(k ) =AF(g —k )Dv(k)

d
Sg(S" —m„)H„(k, ,l +,&

X (P+ ™tv)H„,(kt, P+,p )). (B5)
and

(B4) Hel'e

n( (or~)=
1 I' dki

(
)2k~e' &"~g(k ) (B7)

The summation in Eq. (B3) goes over the transverse indices

i, l, m, n= 1,2 and k are obtained from k by replacing
k'J +k'J ~

Making the integration over the pair transverse momen-
tum PT and disregarding the dependence of J;I „on k]z and

k», we gei

dm~'~

dy+dy-d Qr

(,c, dW~'&

d~] do)2dI'

CO~ CO2
d r~n(to , rt~t)n(to2, r~)I (tot, to2, t). (B6)

m J

gv
4

"(tot to2 t)= 2 z. (J—;tt;+J;t;t+J;;tt) (BS)
64m') ) w2 8

where the summation over double indices is implied. The
calculation of traces in Eq. (B5) shows that the function
I'( c,o, c2o, t) coincides with the cross section doldt d.eter-
mined by Eq. (74).

In the case of coco collisions the characteristic four-
momenta squared k entering the arguments of g functions in

Eq. (101) are small (~k ~~R ) as compared to the cutoff
parameter Av in the intrinsic nucleon form factor fv(k).
Substituting fv(k) = 1 into the function D v(k) [see Eq. (19)]
we obtain the expression for the equivalent meson spectrum
given by Eq. (75). Finally, we arrive at formula (71) of the
main text.
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