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6 degrees of freedom in antisymmetrized molecular dynamics and (p,p ') reactions
in the 6 region
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6 degrees of freedom are introduced into antisymmetrized molecular dynamics (AMD). This is done by
increasing the number of basic states in the AMD wave function, introducing a Skyrme-type delta-nucleon
potential, and including NN~NA reactions in the collision description. As a test of the delta dynamics, the
extended AMD is applied to (p,p ') reactions at E„b=800 MeV for a ' C target. It is found that the ratio and
the absolute values for delta peak and quasielastic peak (QEP) in the ' C(p,p') reaction are reproduced for
angles 0"„b~40'. For forward angles the QEP is overestimated, but generally the agreement between AMD
calculations and experimental data is reasonable. The results of the AMD calculations are compared to one-step
Monte Carlo (OSMC) calculations and a detailed analysis of multi-step and delta potential effects is given.
Along this analysis a decomposition of the cross section into various reaction channels is presented and the
reaction dynamics is discussed in detail. As important side results we present a way to apply a Galilei invariant
theory for (N, N') reactions up to E„b=800 MeV which ensures approximate Lorentz invariance and we
discuss how to fix the width parameter v of the single particle momentum distribution for outgoing nucleons
in the AMD calculation.

PACS number(s): 25.40.Ep, 02.70.Ns, 14.20.6k, 24.10.Cn

I. INTRODUCTION

In the interesting and expanding field of heavy ion phys-
ics several models for the treatment of the reaction dynamics
have been developed. Especially microscopic transport mod-
els which take nuclear mean field effects and two-particle
collisions into account have been very successful in explain-
ing various kinds of experimental data. These models are
extensions of the basic intranuclear model (INC) [1,2] in
which two-nucleon collisions are taken into account, but the
nuclear mean held is not treated self-consistently.

Two major microscopic approaches are used: transport
models of the Boltzmann-Uehling-Uhlenbeck (BUU or
VUU) type for the nuclear phase-space distribution function,
solving either a nonrelativistic transport equation (nonrela-
tivistic BUU) [3,5,4] or a relativistic transport equation
(RBUU) [6] and the quantum molecular dynamics (QMD)
[7] or its relativistic version (RQMD) [8], in which the
nuclear phase-space distribution function is modeled by the
sum of single-nucleon Gaussian wave packets, whose peak
positions are propagated in time according to the many-body
Newton equation, taking into account the self-consistent
mean field as the sum of all two-body potentials.

In this paper we will discuss especially the antisymme-
trized molecular dynamics (AMD) [9] which is an extension
of the QMD and is similar to the fermionic molecular dy-
namics (FMD) proposed by Feldmeier [10].In the AMD the
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nuclear wave function is assumed to be a Slater determinant
of single-nucleon Gaussian wave packets. Other than in the
FMD the Gaussian width parameter is time independent and,
in addition to the pure mean field dynamics which is treated
in the FMD, the two-nucleon collision process has been in-
corporated in the AMD [9].

The AMD has proved to be very successful in describing
heavy ion collisions at medium energies ((200 MeV/
nucleon) [9,11—16]. Because the AMD describes the total
system with a Slater determinant of nucleon wave packets it
has quantum mechanical character, which has been demon-
strated in the ability of treating shell effects in the dynamical
formation of fragments. Furthermore it has been shown that
ground state wave functions of colliding nuclei given by the
AMD are realistic and reproduce many spectroscopic data
very well [17—20].

Since the AMD is successful for energies below 200
MeV/nucleon we want to apply it also at higher energies.
Besides the question of Lorentz invariance, which we will
also comment on in this paper, the opening of inelastic chan-
nels, i.e., the excitation of delta degrees of freedom, in the
elementary nucleon-nucleon collision process is the most im-
portant effect for E&,b/A) 600 MeV. Therefore the first part
of this paper is concerned with the question how to incorpo-
rate these inelastic channels into the AMD framework.

Before applying the extended AMD to heavy ion reactions
we want to get a good understanding of the basic dynamics
in our model. We choose to investigate (p,p') reactions at
delta resonance energies. This is in the spirit of the research
done by Engel et al. [21]who studied the pion-nucleus reac-
tion to get a better understanding of the pion and delta dy-
namics in the BUU model. Another reason to apply the ex-
tended AMD to (p,p') reactions is that we found in a
previous paper [22] that the AMD can reproduce data for
(p,p') reactions for energies up to 200 MeV very well, so
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we want to see if this is also true for higher energies.
One major field of interest concerning the (p,p ') reaction

is the shift of the delta peak in respect to the position in the

(p, n) reaction and in respect to the position in the free case
[23]. Experimentally it was found that in the (p, n) reaction
the delta peak is shifted by 70 MeV in respect to the free
case, whereby 40 MeV of the shift can be explained by the
Fermi motion of the nucleons in the nucleus. We will discuss
in this paper why in the calculated ' C(p,p') reaction no
shift of the delta peak can be observed. In the extended
AMD, explained in this paper, the delta peak of (p, n) and

(p,p') reaction are not shifted in respect to each other.
Delta-hole correlations, which are believed to cause the ad-
ditional 30 MeV shift not caused by Fermi motion (see
above), have to be included into the model. Disregarding this
open problem we will discuss the effect of the delta mean
field on the delta peak position in the (p,p') reaction.

Finally to get a better understanding of the rather elabo-
rated AMD calculation for the (p,p') reaction and the ex-
perimental data we compare to a one-step Monte Carlo
(OSMC) simulation for this process. Thereby we can study
the inhuence and importance of mean field effects, multistep
processes, and Lorentz invariant kinematics.

The organization of this paper is as follows: In Sec. II we
explain the AMD framework, discussing the introduction of
delta degrees of freedom in the mean field and in the colli-
sion part; i.e., the delta potential and NN~NA cross sec-
tions are introduced. In this section we also discuss the first
calculations of delta separation energies of "delta nuclei" in
the AMD. In Sec. III we give a description of the OSMC
which we use for comparison with the AMD calculations. As
an important basis for the studies presented in this paper, we
study the question of Lorentz invariance for the (p,p') re-
action within the OSMC. We find and show the interesting
result, that a combination of Lorentz transformation from the
laboratory frame into the total equal-velocity frame, Galilei
invariant treatment in the equal-velocity frame, and follow-
ing Lorentz back transformation into the laboratory frame
ensures approximate Lorentz invariant results for energies
around El,b= 800 MeV. In Sec. IV we discuss the results of
AMD and OSMC in several steps and compare them with
one another and with experimental data. First we present the
results of the OSMC calculations and compare them with
experimental data. Before we discuss the improvements
which are achieved by the full AMD calculation, we explain
how to fix all the parameters, especially the width parameter
v in the single-particle momentum distribution of the outgo-
ing nucleons, in the AMD cross section calculation indepen-
dent of the experiment. This is an important point of the
calculation and should be understood well. After a detailed
discussion of the multistep contributions to the cross section
in the AMD calculation we proceed to discuss multistep and
potential effects by comparing OSMC and AMD calculation
with one another. In a final step we discuss dependence on
the delta potential, on elastic nucleon-nucleon cross section,
and on target momentum distribution of the calculations, and
possible improvements of the AMD calculations. In Sec. V
we give the summary and an outlook on what should or what
could be done in future.

N

FIG. 1. Basic Feynman diagram for pion production in nucleon-
nucleon collisions.

II. FORMULATION OF EXTENDED AMD

A. Basic idea

For intermediate energy collisions Ei,+ ~ 600 MeV in-

elastic channels open in the elementary nucleon-nucleon pro-
cess. The first channel to open is the pion production. As it is
known from one-boson exchange model calculations for the
elementary process NN &NN7r [2—4,25] the pion production
proceeds mainly through excitations of delta states as it is
depicted in the Feynman diagram in Fig. 1. Diagrams with
an excitation of an off-shell nucleon are only important for
energies near the pion production threshold.

To include additional processes in the collision part of
microscopic models the cross sections for these processes are
needed. In the pion production case these cross sections are
well known from experiment, but still there are in principle
two ways to include pion production into microscopic mod-
els. One way is to treat the NN~NNvr reaction directly, but
this approach has several deficiencies. First of all the pions in
heavy ion collisions are produced in the nuclear medium and
therefore can be reabsorbed during the collision. Since the
pion absorption process in the nucleus is not well under-
stood, it is not clear how to treat it after a pion production in
the nuclear medium. Salcedo et al. [26] calculated density-
dependent pion absorption probabilities in the nucleus, but
these calculations are based on a local Thomas-Fermi ap-
proximation and therefore are only valid for ground state
nuclei and cannot be used in heavy ion collisions. Another
drawback of the pure pion and nucleon cascade approach is
that it is well known from experiment that also delta degrees
of freedom survive in the nuclear medium.

Due to this drawback we choose another way which is
also adopted in other microscopic models (see, for example,
Refs. [1,8,27,28]). We cut the NN~NN7r reaction into two
steps: (1) NN~Nb, and (2) A~Nvr reaction. This is pos-
sible since the decay of deltas into pions occupies nearly
100% of the delta width.

To simulate the produced pion and nucleon momentum
spectra correctly we have to take a mass distribution of the
intermediate excited delta resonance into account. The origin
of this mass distribution is easily understood by calculating
the contribution of the Feynman diagram in Fig. 1 to the pion
production cross section. In the production cross section a
term proportional to the square of the delta propagator
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M —[Mg —il (M)/2]

will appear, where M is the square of the four momentum of
the delta, Ma the delta rest mass and I (M) the width of the
delta [see Eq. (15)].Therefore off-shell states will contribute
to the cross section with the weight of a M-dependent factor
proportional to 6& . To simulate the off-shell character of the
delta in microscopic models we populate delta states with a
mass distribution proportional to 6&, interpreting M as the
mass of the delta, but propagating the delta states as on-shell
particles (see Sec. II D).

Now by including also the reverse processes NA —+NN
and ~N~A we get a consistent picture of the delta and pion
dynamics in heavy ion collisions. Unlike in the pure pion
case discussed above, the pion absorption process is fixed in
this approach, namely, (1) 7rN +6 and —(2) NA ~NN lead to
a pion absorption. It has been shown that this treatment of
the collision term can reproduce many experimental data for
the pion-nucleus reactions quite well [21].Also unlike in the
pure pion case the delta is included explicitly as degree of
freedom.

As a first step of extending the AMD we discuss in this
paper only the extension to include delta degrees of freedom.
We expect that for calculations of (p,p') reactions for light
targets the treatment of only delta degrees of freedom is suf-
ficient due the following reasons. First, we find that the num-
ber of AN~NN reactions is negligible even with infinite
lifetime of the delta resonances and therefore the decay of
the deltas with finite lifetime would not change the nucleon
dynamics. Second, the reabsorption of the pions from decay-
ing deltas does not change the outgoing proton momenta.
That is, the momenta of protons originating from second
generation deltas are small and hence do not show up in the
calculated experimental data. In addition the pion reabsorp-
tion is expected to be small due to the size of the ' C
nucleus.

The decay of the deltas is calculated in the final time step
of the calculation, when the deltas have escaped the nuclear
medium (see Sec. II E). Later we plan to include also pion
degrees of freedom in the nuclear medium and the full pion
dynamics as explained above.

Besides the inclusion of the delta in the collision part it
also has to be included into the mean field part of the theory.
Normally this is done by treating the delta as a heavy
nucleon and propagating it in the same mean field as the one
for nucleons. More refined calculations have been done
which use different mean potentials for deltas and nucleons
P9]. We also adopted a delta potential which is different
from the nucleon potential.

We will proceed in Sec. II B by explaining how to de-
scribe a system of deltas and nucleons in AMD, presenting
the basic formulas, and also the various potentials used in the
later calculations. After this we describe in Sec. II D the
adopted cross sections, i.e., the delta related cross sections,
and how we treat the collision term in the extended AMD.

B. Mean field with delta

The details of the AMD formulation have been explained
in Ref. [9].We will only comment on the modifications due

to the introduction of delta degrees of freedom and those
points which are important for the understanding of the cal-
culation discussed in Sec. IV.

In AMD, the wave function of an A-nucleon system is
described by a Slater determinant

~
4(Z) ),

1
det[%, (&)] I', = 4'z, .X,.Ic (z)) =

QA!
(2)

where y stands for the spin-isospin function and nj repre-
sents the spin-isospin label of the jth single-particle state,
n/= pf, p J, , n$, or n!„. Pz is the spatial wave function of

J
the jth single-particle state which is a Gaussian wave packet,

(2vi '
/ Z, 1

exp —v r — + -Z(rl@z,) =
77

1

l

Z, = QvD, + K, ,2' v
(3)

'=a++ a+ ~'a
or in other words we use a delta spin averaged wave func-
tion. For deltas we use the same spatial wave functions as for
nucleons as given in Eq. (3) leaving also the width parameter
v unchanged.

In the same way as in the original AMD the time
development of the coordinate parameters, Z
= iZ (j= 1,2, . . . ,A)), due to mean field propagation is de-
termined by the time-dependent variational principle,

«2 (4(Z)
~ [if& (dl d t) —H]

~

4 (Z) )
(e(z) lc (z))

which leads to the equation of motion for Z,

a (e (z) ~H~+(z))
" "dt " azk (4'(Z) ~4&(z))

82
Ck 1,—— ~ In(4 (Z) ~4(z)), (6)

where a, ~=x,Y,z.
In the case of the extended AMD the many-body Hamil-

tonian has to be changed. For an A-body system with Nz
nucleons and Nt, deltas (A=Ntv+Na) the Hamiltonian is
given by

where the width parameter v is treated as time independent
in the present work. We take v=0. 16 fm in the calculation
in this paper. Here XJ is the complex vector whose real and
imaginary parts, D~ and K, are the spatial and momentum
centers of the packet, respectively.

For the description of delta states we extend the possible
number of spin-isospin functions X in Eq. (2). This leads to
the introduction of 16 additional states. But since we only
use spin-independent cross sections and a spin-independent
delta potential we can reduce the number of delta states to
fOUI',
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NN p. Ng p N~
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l~= 1 m lg= 1 mg l~(j~

(7)

N/i/ Ng

v, =(c(z)lX X v~a(4. 4)le(z)) (e(z)le(z))
'N

(9)

N~ Ng

+g g v~, (iw, t, )+ g v„(t, ,Z, ).
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It is a sum of kinetic energies for deltas and nucleons and the
various two-body potentials for nucleon-nucleon, nucleon-
delta, and delta-delta interactions.

During the dynamical reaction stage of the collision, the
total system can be separated into several isolated nucleons
and fragments. Since the wave functions of the center-of-
mass motion of these isolated nucleons and fragments are
Gaussian wave packets, each of these isolated particles car-
ries spurious zero-point energy of its center-of-mass motion.
The total amount of the spurious energy of center-of-mass
motion can be expressed as a function of Z, [9,12] which we
denote as E,~„(Z). The actual Hamiltonian we use in the
above equation of motion [Eq. (6)] is therefore given by

(4 (z) lHl4(z))/(4&(z) l@(z))—E,z„(z).
As discussed in Sec. II A the deltas in the AMD will have

a different mass than the free on-shell mass. This is reflected
in Eq. (7) by using m; in the expression for the kinetic

energy.
Equation (6) with definitions Eqs. (7) and (2) are the basic

formula for the extended AMD on behalf of the mean field,
but to do actual calculations the form of the potentials have
to be fixed.

For the effective two-nucleon force we adopt the Gogny
force [30] which has been successfully used in studying
heavy ion reactions with AMD [12,13]. The Gogny force
consists of finite-range two-body force and density-
dependent zero-range repulsive force. This force gives a
momentum-dependent mean field which reproduces well the
observed energy dependence of the nucleon optical potential
up to about 200 MeV but levels off to be zero at higher
energies whereas the experimental value at E&,b= 800 MeV
is repulsive by about 50 MeV. The nuclear matter EOS given
by Gogny force is soft with the incompressibility E= 228
MeV. Corresponding to the choice of the Gogny force, the
calculational formula of the total spurious center-of-mass en-

ergy F,z„(z) is taken to be the same as Ref. [12].The bind-

ing energies of ' C are calculated to be 92.6 MeV while the
observed value is 92.2 MeV. The calculated rms radii of
' C is 2.55 fm which is reasonable.

For the delta-nucleon potential we use a zero-range
Skyrme-type force dependent on nucleon density (p~),

v~~(r~, rq) = 8(riv —ra)[to &+ t3&piv '(tv)]

with parameters to~, t3 ~, and ~. This ansatz leads to a total
delta-nucleus energy

drpq(r) [to a p~(r) + t3 a p~(r) '],

where pN and p~ are the nucleon density and delta density,
respectively. If we take the limit of infinite homgeneous
nuclear matter of Eq. (10), we get the same form of the delta
potential derived from the delta hole model by Ehehalt et al.
in Ref. [29]. Therefore we use their parameters, tot, =
—700 MeV fm, t3~= 1750 MeV fm, and ~=5/3 in the
calculation. The parameters are chosen to reproduce
the mean field value for the delta potential Ua(pp)
= BV~(po)/Bpa = —30 MeV for infinite nuclear matter, since
this value is known from pion-nucleus scattering [31].

It is important to note that the nucleon-nucleon potential
we use has finite range which leads to a momentum-
dependent nucleon-nucleus potential. On the other side the
delta-nucleon potential adopted here has zero range, and
therefore the delta-nucleus potential is momentum indepen-
dent.

Since there is nothing known about the delta-delta poten-
tial we choose U~ ~ to be zero. As a remark we want to point
out that the calculation presented in this paper is independent
of the choice of the delta-delta potential because in the cal-
culated nucleon-nucleus reactions there is a maximurg of one
delta excited at a time. For the future calculation of heavy
ion collisions we propose to use a delta-delta potential of the
same type as the delta-nucleon potential Eq. (8) since these
potentials should be similar except for spin-isospin factors
and this choice gives a consistent picture of the interaction.

Numerically the integrations in Eq. (10) to calculate
Va(l@(Z))) and those needed to get its derivatives due to
Z; are calculated in a similar way as those described in the
Appendix A of [11] for the density-dependent part of the
nucleon-nucleon interaction.

We also include the Coulomb potential in our calculation,
but the results are not sensitive to this.

C. Delta nuclei

To construct the ground states of colliding nuclei in the
AMD the frictional cooling method [17—20] is used which
leads to a consistent picture of mean field dynamics and
ground state nuclei. It has been checked that wave functions
given by AMD are realistic and reproduce many spectro-
scopic data very well.

As the first check of the incorporated delta mean field
dynamics we calculated the binding energies of "delta nu-
clei ~" This is in a way an academic study since no "delta
nuclei" exist or can be detected, but it gives us information
on the kind of wave functions we can have in a delta-nucleus
system. In the future this kind of wave function could be
used for studying the admixture of delta states in ground
state wave function [32].

We calculated the delta separation energies for delta nu-
clei. For this we used the frictional cooling method to cool
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D. Deltas in the collision term

The idea of how to incorporate delta resonances in the
collision part of microscopic theories was already discussed
in Sec. II A. Here we give the cross sections adopted in the
AMD. To include the deltas in the collision term we used the
same cross sections as described in [21,28], therefore we will
only recall the most important formulas.

FIG. 2. Delta binding energies for various nuclei calculated in
AMD with frictional cooling method.

first an ensemble of protons, neutrons, and one additional
delta. Then we cooled the same ensemble of nucleons with-
out the delta. The difference of the minimum energies of
these two calculations gives the delta separation energy. The
results for delta separation energies with the parameters
given in Sec. II B are shown in Fig. 2.

The results in Fig. 2 can be understood in the following
way: The delta separation energy is determined by the over-
lap between the delta Gaussian wave function and the re-
sidual many-nucleon system, as can be seen in Eq. (10).
Therefore the minimum energy state calculated with the fric-
tional cooling method leads to a delta state with maximum
overlap with the nucleons. Because of the 3/2 isospin nature
of the delta the configuration of maximum overlap is Pauli
allowed. The mass dependence we get in Fig. 2 for the delta
separation energy refIects the structure of the ground state
wave function in AMD, which was able to describe the alpha
clustering of light nuclei. We found that the delta separation
energies for "He and Be are the same. This can be under-
stood on the basis of the two-alpha clustering of the Be
ground state. In the ground states of both nuclei the delta is
in the middle of an alpha cluster, since this is the state of
maximum overlap of delta and nucleus wave functions.
Therefore they have the same delta separation energy. Be-
cause of the dissolving of the alpha structure and the exist-
ence of larger zones with higher nuclear densities for heavier
masses, also the delta separation energies increase for
heavier masses.

p+ p+n+ 5++
p+p p+~'
n+p —+p+5
n+p~n+5+
n+n~p+5
n+n —+n+6

0 ~p+ 1/2o i i,
3/2o ii,
1/2o. »+ 1/4o. &p,

1/2o 11+1/4o 10,
o ]p+ 1/2o ] ],
3/2o ig,

for the NN —+NA cross sections where a;f denotes the cross
sections used in the VerWest-Amdt parametrization for given
isospin (f) and (i) of the final and initial nucleons, respec-
tively [33].The angular dependence of the NN~Nb, is cho-
sen in the same way as in Ref. [28].

As discussed in Sec. II A it is not enough to define the
cross section for the NN~NA reaction but we also need to
use an appropriate mass distribution for the delta resonance.
We choose

d~NN~NA F(M )

f " F(M )dM(m~+ m ~)

(12)

M, r(M)
F(M )=—~ (M' M', )'+ M—',r(M)' (13)

1 r(M)i4
vrMg (M —Mg) +r(M) /4 (14)

with the delta rest mass M~ =1232 MeV and the momentum-
dependent delta width [34]

(q& Mat U qr(M)= —' ' ' ' r„M iU(q, ))

with

U(q) =
P~+ 2+q

I"„=110MeV,

P=300 MeV,

where q and q„denote the pion momentum in the rest frame
of the delta for delta mass M and on-shell mass M=M&,
respectively, defined as

[M (mA' m )'][M' —(m+™)']
q (M)= 2 . (16)

cross sections in Ref. [33]. Assuming that all pions in the
NN~NN~ reaction are produced via a delta resonance we
get

1. NN —+NA reaction

The cross sections for the NN~NA reaction are derived
from the VerWest-Amdt parametrization for pion production

To get information on the validity of the adopted delta
mass distribution we calculated the neutron momentum spec-
trum in the p(p, n)p 7r+ reaction and compared to the experi-
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with, consequently, low momentum neutron partners are
formed in proton-proton collisions. Therefore the neutron
momentum spectrum is shifted to lower energies. On the
other hand using a strong suppression factor, n= 3, leads to
an underestimation of low momentum neutrons as seen in
Fig. 3 (dashed line). The best fit for the neutron spectrum in
the p(p, n)p7r+ reaction with the OSMC simulation is at-
tained when using n = 2 in Eq. (17) for the suppression factor
as seen in Fig. 3 (dash-dotted line). Both low and high neu-
tron momenta can be described rather well. In Sec. IV A we
will comment on the dependence of the (p,p') reaction on
the choice of the mass distribution.

0 I I I I

700 800 900 1000 1100 1200 1300 1400 1500

Neutron momentum P~,h [MeV/c]

FIG. 3. OSMC of the p(p, n)pm. + process at F. &,h= 830 MeV
with different delta mass distributions. Experimental data are from
Ref. [35]. (See text for details. )

mental shape of the spectrum. In Fig, 3 the result of this
calculation is shown. The experimental data are a measure-
ment of the neutron spectrum for laboratory angles
0'„=0 —6' in coincidence with a proton and a ~ for pro-
ton energy Et,h= 830 MeV [35]. This reaction proceeds
mainly via an excitation of a 5++ state. The calculations
which are shown were made with OSMC explained in detail
in Sec. III using a proton target: A delta excitation in a
proton-proton collision is simulated choosing the mass and
momentum according to the given mass distribution [Eq.
(14)] and the scattering angle according to the differential
cross section of Ref. [28], respectively, by a Monte Carlo
method. The deltas are assumed to decay isotropicly in their
rest frame. Taking into account the proper transformations of
the momenta we calculate the cross section for neutrons
emitted in coincidence with a ~+ and a proton.

Besides the calculation with the mass distribution of Eq.
(14) we made calculations with a mass distribution multi-
plied by a phase-space factor

pa(M)
fphase space(M) =

/ sa)maxP pl, le
(17)

with

[s —(mtv M) ][s—(m—jv+M) ]
pt, (M) = (18)

where s is the square of the four-momentum of the system.
pa(M) is the momentum of the delta and pa(M) '" is the
possible maximum momentum of the delta assumed for
M=m„+m . With this phase space factor [Eq. (17)] we
take into account the fact that the final phase space for maxi-
mum delta mass, M = Ps —m~, is zero. In Fig. 3 calculations
for the p(p, )pvnr+ reaction with n=0, n=2, and n=3 in
Eq. (17) are shown. All calculations are scaled with the same
factor to reproduce the experimental data. By taking into
account only the mass distribution without a phase-space
suppression factor, n =0, solid line, we find that the neutron
spectrum is not reproduced so well. Too many heavy 5++

2. Nh —+NN reaction

Since there is no delta beam or delta target available the
cross section for the AN+NN process has to be derived by
theory. It has been pointed out by several authors [36,37,21]
that the naive detailed balance formula is not appropriate for
this process. The simple argument to understand this point is
that in the nucleon-nucleon collisions in which the deltas are
formed the cross section has to be folded with the mass dis-
tribution to get the mass of the delta in the simulation, as
described in Sec. II D 1, but in the NA~NN reaction the
delta in the simulation has a definite mass and therefore the
mass distribution is not present for the calculation of the
NA —+NN cross section. For a more detailed discussion of
this problem see Ref. [21].

For simplicity we adopted the formula derived by Wolf
et al. [37], which was proven to give a realistic description
of the NA~NN cross section (see discussion in Ref. [21]).
Therefore we use

f( + )2F(M )dM
~nA++ —+pp 4 2 ~pp~n5++ (~ )2

with the o.zz z~ cross sections from VerWest-Amdt and the
mass distribution F(M ) given in Eq. (14). In Eq. (19) pq
and pz are the initial delta and the final nucleon momenta in
the center-of-mass (c.m. ) frame, respectively, whereas the
factor 1/4 is due to spin averaging and a symmetry factor for
identical particles in the final state. Since this cross section
[Eq. (19)] is infinite for zero-energy collisions we apply a
low momentum cutoff of o™'=100mb, which takes the
screening of the delta in the nuclear medium into account.
This screening cutoff which is mainly introduced to cut the
divergence of the cross section at low relative momenta can
be physically motivated by the fact that the delta inside the
nuclear medium can only interact with its neighbors and not
with all nucleons. In case of the (p,p ') reaction the screen-
ing is not effective because the produced deltas are fast del-
tas.

3. NN elastic scattering

For the nucleon-nucleon elastic scattering we used a new
parametrization of Cugnon which is isospin dependent and
therefore takes into account proton-neutron and proton-
proton collisions differently [38].This is not the case in the
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old isospin-independent Cugnon parametrization [1], which
is mainly adopted in other microscopic models, in which all
isospin channels are treated the same way, in contrast to
experiment. The isospin-dependent parametrization also in-
cludes a backward peak for the proton-neutron scattering
which is not included in the isospin-independent parametri-
zation.

d o
dA'd, =

j
27rbdb X p (p) p' (22)

i = isolated
protons

with

Applying the Lorentz transformation into the laboratory
frame we get

K. Simulation

The actual simulation of the AMD is done in several
steps. In the first step the ground states of the target and
projectile nuclei are calculated by the frictional cooling
method. With these ground state configurations the collision
is calculated in the c.m. frame (see discussion about Lorentz
invariant scattering in Sec. III 8) using the above described
cross sections and mean fields for the particles. The delta
decay is not yet incorporated in the AMD therefore deltas
will survive until the final state of the calculation. The decay
of these deltas is calculated assuming an isotropic decay in
the rest frame of the delta. In this step the relativistic expres-
sion for the pion energy is used. In the final step the statis-
tical decay of primordial formed fragments is calculated. Pri-
mordial fragments mean the fragments which are present
when the dynamical stage of the reaction has finished. These
fragments are not in their ground states but are excited, and
they decay through evaporation with a long time scale. In
this paper, the switching time from the dynamical stage to
the evaporation stage was chosen to be 150 fm/c. Before the
statistical decay calculation we calculate the decay of the
remaining deltas. Statistical decays of fragments were calcu-
lated with the code of Ref. [39] which is similar to the code
of Piihlhofer [40].

F. Calculation of cross section

The experimental data we want to compare with in this
paper are given in the laboratory frame. As discussed in Sec.
III 8 we choose a combination of Lorentz and Galilei trans-
formation to achieve approximate Lorentz invariance using a
Galilei invariant theory. The combinations of transformations
have to be also taken into account for the cross section cal-
culation. In the equal-velocity frame the Galilei invariant ex-
pression of the double-differential cross section has the fol-
lowing form:

F.
p,'(p') = p, (p) z, (23)

where p and F are the relativistic expressions for the mo-
mentum and the energy in the equal-velocity frame, p' and
F' the relativistic momentum and energy in the laboratory
frame and p;(p) the function given in Eq. (21).

I' p-l I' I-l
p(r) = po 1+n — exp-

(~) (&I
(24)

which is based on the harmonic-oscillator model, with pa-
rameters o. = 1.247 and a = 1.649 fm for the ' C target deter-
mined through experiment [41].And then we attributed ran-
domly a momentum smaller than the local Fermi momentum,
which gave us the momentum distribution f(p),

III. ONE-STEP MONTE CARLO SIMULATION FOR (p,p ')

A. Formulation

In order to get a better understanding of the rather elabo-
rate AMD calculations, we also perform one-step Monte
Carlo (OSMC) simulations of the (p,p') reaction. In this
section we explain the OSMC simulation. In the OSMC
simulation the summation over the impact parameter
f2~bdb is not made for simplicity. The projectile protons
are initialized in the laboratory frame according to the rela-
tivistic momentum energy relation. Since we studied the in-
fluence of the target momentum distribution on the results
for the (p,p ) reaction we initialized different target momen-
tum distributions. As one approach we attributed a random
momentum smaller than the Fermi momentum at normal
nuclear density lpl(lkrl to the nucleons. As another ap-
proach we used the local Thomas-Fermi ansatz to simulate
the momentum distribution by first choosing a position in
coordinate space according to the space density

d o. I' d M(p, b) 0[k~(r) —p]f(p)= dr47rr p(r) [ ( )]3,

d ~(p, b)
dAdp

dQdP = p '(p) d'p, (20)
i = isolated

protons

(25)

i 3/2

P (P = i&PIP'z, .&l

1
exp —

2 (p —K;)

(21)

where d p=p dpdQ and ()b stands for the average value
over the events with impact parameter b. In this formula, the
outcoming protons are expressed by Gaussian wave packets
with momentum width A. Qv.

where 0 (x) is the step function; 0 (x) = 1 for x)0,
0(x) =0 for x(0.

As next step we transform the energy and the momentum
of the projectile proton from the laboratory frame into the
equal-velocity frame of target and projectile with Lorentz
transformation. The transformation P for the incident proton
in the z direction and a target with A nucleons with four-
momenta

(26)
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p,'A
(28)

is

FIG. 4. The total reaction probabilities in the OSMC simulation
which are determined by the total cross sections for proton incident

energy E»b= 800 MeV.

In the case of a delta event we have to determine the mass
of the delta and, since we take into account the charge of the
particles, the charge of the delta. The charge and mass are
chosen according to the ratio given by the cross sections and
the mass distribution in Sec. II D 1, respectively. To calculate
the cross sections the Ps of the two-nucleon system is
needed. This we calculate in the two nucleon Galilei c.m.
frame using the nonrelativistic expression for the energies. In
the next section the validity of this evaluation is discussed.

The three-momentum of the outgoing particles, deltas, or
nucleons, are determined according to the angle-dependent
cross sections in the two-nucleon c.m. by the Monte Carlo
method. Since in the delta excitation kinetic energy is trans-
formed into mass energy the final relative momentum in the
c.m. frame for the NN~NA reaction decreases.

The decay of the excited deltas is calculated in the delta
rest frame assuming an isotropic decay. For the delta decay
we use a Lorentz invariant prescription because the pions are
light particles and need to be treated in relativistic invariant
kinematics. It is important to mention here that the Lorentz
transformation in the delta decay is only adopted to trans-
form from the delta rest frame to the equal-velocity frame of
the total system. The charge of the pions and nucleons is
chosen according the probabilities given by the Clebsch Gor-
dan coefficients for the decay.

To calculate the multiplicity distribution of the outgoing
protons or neutrons in the laboratory frame for given mo-
menta and angle, the momenta of the particles are backtrans-
formed from the total equal-velocity frame to the laboratory
frame by Lorentz transformation with pb„k = —p given in

Eq. (29). The multiplicity distributions are calculated with
the formula

(P P P)= 00
pz

P
1

( Pz/
(29)

d N ¹

dp;dA; Ap2~5 cosON, '

where A is the number of target nucleons and m„ the nucleon
mass. It can be seen that this transformation is not dependent
on the number of target nucleons. This is natural since the
total equal-velocity frame is the same as the two-nucleon
c.m. frame, if we disregard the Fermi motion of the target
nucleons.

We choose to transform into the total equal-velocity
frame, because in this frame nonrelativistic approximations
can be applied. In the equal-velocity frame we change to
nonrelativistic kinematics using the obtained momenta and
the nonrelativistic expression for the energy. Also for the
transformation of the target nucleon momenta into the equal-
velocity frame we use the nonrelativistic Galilei transforma-
tion. In the next section it will be shown that this kinematical
treatment of the scattering, which we also adopt in the AMD,
leads to approximate Lorentz invariance.

The two-nucleon collision in OSMC is calculated in the
c.m. frame of the two nucleons with Galilei invariant kine-
matics. As possible collision processes we incorporated delta
excitation and elastic scattering. We fixed the ratio of delta
excitation to elastic events beforehand, which is well justi-
fied, since this ratio is mainly determined by the initial en-

ergy of the proton. The cross section ratios for E&,b=800
MeV which are incorporated in the calculation are given in
Fig. 4.

where N, is the number of nucleons with momentum

p; —Ap/2~ p ~p, + Ap/2 and cosO' —6 cosO/2~ cosO
~cosO;+6 cosO/2, and N,~ the number of performed simu-
lations. In the calculations shown we use Ap = 0.02 GeV and
50~=2.99'. In the calculation of cross sections for the

(p,p') reaction we use a factor X f„„,to scale to the experi-
mental data:

do dN
dp, dn, dp, dn, """Xf~ctor (31)

The factor Xf„„,has a dimension, which is because we do
not integrate over the impact parameter. The number of
simulations was varied according to the accuracy needed.

B.Lorentz invariance

To justify the approach used for the scattering kinematics
in the OSMC simulations and also the AMD calculations we
compared the OSMC simulation described in Sec. III A with
simulations using pure Galilei and pure Lorentz invariant
kinematics, respectively. For this comparison we did one-
step elastic scattering simulations using an isotropic angular
distribution for the scattering in the nucleon-nucleon c.m.
frame disregarding the charges of the particles. The results
for the multiplicity distribution for Lorentz invariant kine-
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[11]),only the Gaussian distribution in the coordinate space
is taken into account, whereas in the momentum space only
the centers of Gaussian wave packets are used. Therefore in
nucleon-nucleus collision calculation with AMD the momen-
tum distribution of the target is only partly explored dynami-
cally. For heavy ion reactions the effect of the high momen-
tum tail of the wave function is negligible as long as
subthreshold processes are not important for the calculated
process, but, as will become clear in the following, the QEP
region of the (p,p ) reaction is sensitive to the width param-
eter v of the outgoing nucleons.

In order to solve the above-sketched problem, getting a
reliable exploration of the momentum distribution of the tar-
get in the (p,p') reaction within the AMD calculation, two
lines of argumentation can be followed. One is to take into
account the Gaussian momentum distribution of the colliding
nucleons in the collision prescription, and the other is to
change the width parameter v of the outgoing nucleons. In
the first approach the width parameter v of the incoming
proton should be zero, at least in the simulation of the first
nucleon-nucleon collision. Technically this can be taken into
account in the collision prescription, but it is not clear what
width should be attributed to the incoming proton after the
first collision. We follow the second approach to get a reli-
able treatment of the momentum distribution of the target,
since there is a way to determine the width v of the outgoing
nucleons independently of experimental data, namely, the
AMD calculation should reproduce the width of the QEP
caused by the Fermi motion. We do calculations both with
the OSMC and a modified version of the AMD, the "one-
step AMD" for the (p,p') reaction. In the case of the OSMC
we use both, a box momentum distribution for the target, like
in nuclear matter, and a Thomas-Fermi momentum distribu-
tion for the target, as explained in Sec. III A. In the one-step
AMD calculation we allow only one possible collision in
each event after which the particles propagate in their mean
field. We determine the width v of the outgoing nucleon so
that the one-step AMD calculation reproduces the width of
the QEP in the (p,p') reaction given by the OSMC calcula-
tion with the Thomas-Fermi momentum distribution for the
target.

As can be seen in Fig 8, the QEP at 0'= l5' is much
narrower than at 0" = 30'. The width parameter v in the one-
step AMD calculation is fitted to reproduce the width of the
QEP caused by the Fermi motion. In the actual calculations
we do not change the width parameter v but we use a cut of
the Gaussian momentum distribution

(32)

and renormalize the function p'(p) in Eq. (22), which has
the same effect as adjusting the width parameter v in the
single-particle wave functions.

We find that in the one-step AMD calculation for the
' C(p, p') reaction we have to use Q,„,=0.5 for 0"=15',
Q,„,= 1.0 for 0 = 30', Q,„,= 1.6 for 8 =40' and no cut for
0" =60' in order to reproduce the width of the QEP in the
OSMC simulation with Thomas Fermi momentum distribu-
tion of the ' C target. In all AMD calculations we use the
above-determined cuts.

By comparing the one-step AMD with OSMC calcula-
tions with box momentum distribution, the nuclear rnatter
case, we find that we only have to apply a cut at 0 = 15 to
reproduce the effect of the Fermi motion. This is a nice result
which states that for cross section calculations for heavy ion
collisions no cuts are needed, since a large amount of nuclear
matter is involved in the reaction.

After fixing all parameters we can proceed to discuss the
results of the AMD calculations which are shown in Fig. 9
(solid line). In general we find a better reproduction of the
experimental data with the AMD than with the OSMC. Here
we will only state the improvements established by using the
AMD instead of the OSMC. In the following section (Sec.
IV C) we study the reaction mechanism in the AMD calcu-
lation in detail and in Sec. IV D we will discuss the origin of
the improvements in the AMD.

Instead of an underestimation of the low momentum re-
gion for angles 0'=30 and 0=40 in the OSMC, we find
that the experimental data can be better reproduced in the
AMD calculation. In general the agreement with the experi-
mental data for these angles is much better in the AMD than
in OSMC, because the smooth behavior of the experimental
data for 0" = 30, and especially for 0 =40, is much better
reproduced. In the case of the OSMC we do not get absolute
cross sections and therefore the comparison of the calcula-
tions with the shape of the momentum (p') dependence is
important and this is much better reproduced in the AMD
calculations.

The AMD can also reproduce the high momentum tail of
the cross section for 0"=30 better and for =40 and for
0" =60' much better than the OSMC. Also the flat behavior
of the cross section for p'= 1000—1200 MeV at 0= 15 is
reproduced.

So we find that the agreement between AMD calculation
and experiment is much better than the one between OSMC
and experiment. The experimental data can be quantitatively
reproduced in AMD, whereby the elastic processes seem to
be overestimated in forward direction. In Sec. IV E we will
discuss how to improve the AMD results, but in the next
sections we will first try to get a clearer understanding of the
reaction dynamics in the AMD for the (p,p') reaction.

C. Multistep contributions to the cross section

To get a better understanding of the reaction dynamics we
calculated the decomposition of the cross section into differ-
ent multistep contributions and reaction processes. The result
of this decomposition is shown in Fig. 10. We show calcula-
tions for four angles: 0'=15,30,40 and 0'=60 . The elas-
tic multistep contributions shown in Fig. 10 are protons with
one-step elastic scattering [ELA-1 step, long-dashed line]
and protons with two-step elastic scattering [ELA-2 step,
dashed line]. Nucleons involved in inelastic collisions can
contribute to two different sources of outgoing protons: pro-
tons emitted as delta decay products and protons which acted
as collision partners in the delta excitation process. The con-
tributions of these different sources in inelastic collisions are
also shown in Fig. 10: Protons emitted as partner of an ex-
cited delta in the first chance collision [b -1 step(N), dotted
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line], and protons from delta decay after the first chance
collision [b, -l step(A), dash-dotted line].

In the calculation for 0 = 15' we see that mainly the one-
step scattering process (long-dashed line) contributes to the
QEP. The two-step contribution is much smaller for all mo-
menta. A similar behavior is found for 0'=30, where the
two-step contribution (dashed line) gets more important but
is smaller than the one-step contribution for almost all out-
going proton momenta. At 0 = 30 0' =40, and 0 = 60
the two-step contributions dominate the high momentum tail
of the proton spectrum, since one-step scattering cannot
reach this region of the phase space easily.

For 0'=30 and 0=40' we find that for the lower mo-
mentum part of the cross section, below the QEP, many
higher step processes contribute to the cross section. Besides
the processes shown in Fig. 10 two-step and three-step elas-
tic processes followed by an inelastic process contribute to
the cross section. Therefore the reproduction of the smooth
behavior of the cross section in this momentum region is
quite sensitive to the ratio of inelastic to elastic cross section
and the multistep contributions.

D. Comparison of AMD and OSMC:
Multistep and potential effects

After having discussed the reaction dynamics in the AMD
in detail we can comment on the differences between AMD
and OSMC and what kind of physical effects are important
for the (p,p') reaction.

As one could have expected, the main differences of
OSMC and AMD are due to multistep processes, but the
details of the origins of the differences are much more inter-
esting than this plain statement, and therefore we discuss this
question in detail. Also we have to investigate the role of
potential effects which could interfere with the multistep
contribution effects. To make the above statements more
transparent we show in Fig. 11 the outcome of the one-step
AMD calculation (dashed line) we mentioned in Sec. IV B,
in which we did not allow any more collisions after the first
proton-nucleon collision occurred in the AMD, propagating
the particles from this time step onwards only in their mean
fields without collisions. Therefore the only difference be-
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ca cu a ion so s inc) given in Fig. 9. (See text for details. ) Experimental data

tween one-step AMD and OSMC is the treatment of the
mean fields in the AMD and the differences between one-
step AMD and AMD are only due to multistep contributions.
The results of the one-step AMD should not be confused
with the one-step contributions to the full AMD calculations
discussed in the last section.

First we want to discuss the differences due to multistep
contributions and the improvements achieved by this in re-
producing the experimental data with the AMD. Therefore
we compare one-step AMD (dashed line) and AMD (solid
ine) calculations in Fig. 11 on the basis of the multistep

decomposition of the AMD results shown in Fig. 10.
Multistep contributions which involve at least one inelastic
step are mainly responsible for a better reproduction of the
experimental data for momentum below the QEP at
0'=30' and =40' in the AMD calculation. The high mo-
mentum tails above the QEP at (0'=30 ) 0=40' and
0 = 60 are better reproduced in the AMD due to multistep
elastic scattering contributions.

The apparent quantitative agreement of the heights of the
QEPs for 0 = 30' and 0' =40' in the one-step AMD and the
AMD is not a trivial result. The reduction of the QEP due to
multistep scattering is balanced out by an enhancement due
to multistep processes in the AMD. At 0"=60 multistep
processes lead even to an increase of the cross section in the

QEP region in the AMD calculations. For 0'= l5' the net
effect of multistep contributions is a reduction of the QEP.

Another important improvement of the AMD calculations
due to multistep contributions is that the flat behavior of the
experimental data at 0'= 15 for momenta p' = 1000—1200
MeV can be described unlike in the OSMC where there is a
dip in the cross section.

Concerning the potential effects in AMD we find no sig-
nificant difference between one-step AMD and OSMC cal-
culations except of a shift of the QEP of 20 MeV/c to lower
momenta at 0=15'. There are no apparent differences
caused by the inclusion of potentials for the particles in the
other areas of the phase space. (See more detailed discussion
about delta potential effects in the next section. )

E. Dependence on delta potential, cross section and target
momentum distribution, and improvements

Since we have now established a detailed understanding
of the reaction dynamics in the AMD we can study the de-
pendence of the results on the physical input quantities and
what we can learn about these in the (p,p') reaction.

well
One important question which is always asked b t tu no yet

we understood, is the question of the delta potential and the
behavior of the delta in the nuclear medium. We want to
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i.e., delta mass distribution from vr + nucleon invariant mass
spectra (see for example Ref. [35]) in (p, x)x'7r reactions.

Concerning the dependence on the angular distribution of
the adopted elastic nucleon-nucleon cross section we find

strong dependence on the adopted parametrization. Since the
OSMC calculation is much less time consuming we studied
the cross section dependence within the OSMC. In Fig. 12
we show the result of the OSMC calculation for isotropic
elastic nucleon-nucleon cross section (solid line) and for the
isospin-independent Cugnon parametrization [1]for the elas-
tic nucleon-nucleon cross section. Since the isospin-
independent Cugnon parametrization is strongly forward
peaked for all nucleon-nucleon channels, at 0' = l5' the QEP
is largely overestimated and at larger angles the QEP is un-

derestimated [Fig. 12 (dashed line)]. In case of an isotropic
nucleon-nucleon cross section the opposite is the case: The
QEP at 8 = 15' is much better reproduced, but for all other
angles there is a large overestimation of the QEP [Fig. 12
(solid line)].

If we would do AMD calculations with the isotropic or
the iso spin-independent parametrization of the nucleon-
nucleon cross section, neither choice would improve the re-
sults, which we achieved using the isospin-dependent param-
etrization of Cugnon. This is a satisfying result, since the

isospin-dependent parametrization of Cugnon gives the best
reproduction of the experimental data for elastic nucleon-
nucleon scattering among the discussed parametrizations.

The strong dependence on the angular distribution of the
nucleon-nucleon cross section and the effect of multistep
scattering discussed above show how difficult it is to explain
the considered experimental data for the (p,p') reaction
which at first view seem to be very dull, uninteresting and
easy to understand.

With the OSMC we checked the dependence of the results
on the adopted momentum distribution of the target. In Fig.
8, besides the original OSMC calculation (solid line), also
calculations with a box momentum distribution of the target
(dotted line) are shown. The higher momentum components
in the target lead to a broadening and reduction of the QEP.
But in general the (p,p') reaction is not sensitive to the
details of the momentum distribution in the target. The large
variation of width of the QEP between Thomas-Fermi and
box momentum distributions is caused by a large difference
of the distributions themselves.

We did calculations with different mass distributions for
the delta discussed in Sec. II D, but these only have a minor
effect on the result of the calculation.

We have checked the effect of Pauli blocking in the
OSMC. All OSMC calculations presented in this paper in-
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corporate Pauli blocking. In the AMD the Pauli blocking is
incorporated naturally (see Ref. [11]for details). We found

that only the high momentum tail of protons at 0=15 is

inftuenced by the consideration of Pauli blocking.
In general we see in the multistep decomposition of the

AMD calculation in Fig. 10 that the contribution of elastic
scattering is overestimated. This is especially prominent for
0=30 but also for other angles the defect can be seen. As
a first attempt to cure this problem we did calculations in
which we reduced the elastic nucleon-nucleon cross section
artificially by 50%. This leads to the results shown in Fig. 9
(dashed line). The QEP can be reproduced much better and
also the general agreement between experimental data and
AMD calculation gets better. At 0' = 40' the smooth momen-
tum dependence of the cross section is well described but the
cross section is slightly underestimated.

The reduction of the elastic cross section is also motivated
by the fact that we find a total reaction cross section of 307
mb for the ' C(p, p') reaction at E&,b=800 MeV in the
AMD calculation, which is too large compared to the experi-
mental results (see Sec. IV A).

With the OSMC we did calculations with a 70% reduced
elastic cross section. For this choice of the cross section we
have to use X &„„,= 190 mb which is less than the measured
total cross section. The results are shown in Fig. 8 (dashed
line). Also in case of the OSMC the reduction of the cross
section leads to a better agreement with the experimental
data for 0 = 15' and 0=30 . But in the case 0'=40' and
0 = 60 the agreement with the experimental data gets
worse.

One possible physical effect which will lead to a reduc-
tion of elastic scattering events is the correct treatment of the
momentum dependence of the mean field. As written above
the adopted Gogny force does not give the correct momen-
tum dependence of the nucleon-mean potential. Instead of
Uz(800 MeV) =50 MeV the Gogny force leads to Vz(800
MeV)=0 MeV. Using a repulsive potential would lead to
more nucleons diffracted to larger angles. This also implies
that nucleons would have less interactions with the target
since they are diffracted from their way through the target.
This effect is especially true for nucleons with large impact
parameter which contribute strongly to the elastic scattering
peak. In a future investigation this idea should be tested.

Finally we briefly want to comment on the differences of
the AMD and OSMC calculations for the ' C(p, p') reaction
at F &,b= 800 MeV from the PWIA calculations by Alexander
et al. [46] for the same process. Alexander et al. take one-
step elastic and one-step inelastic scattering into account.
Unlike in the OSMC results discussed in this paper the
smooth dependence on the outgoing proton momenta for
larger angles can be better described in their PWIA calcula-
tion. This is because they use an unrealistic high pion pro-
duction cross section. Therefore they need no multistep con-
tributions to get the smooth behavior of the cross section for
large angles as we find in the AMD calculations. If one
would add the multistep contributions to their PWIA calcu-
lation this would lead to a large overestimation of the experi-
mental data.

Another defect of the PWIA calculations of Alexander
et al. is that they fit the heights of the QEP in the double-
differential cross section with an angle-dependent scale fac-

tor which hides the strong dependence on the angular distri-
bution of the elementary nucleon-nucleon cross section.

In the region of phase space where multistep contributions
determine the cross section Alexander et al. underestimate
the inelastic scattering cross section. This is in good agree-
ment with the findings presented in this paper using the
OSMC model.

V. SUMMARY

In this paper we discussed how to incorporate delta de-

grees of freedom into the AMD. We especially discussed the
inclusion of inelastic channels in the collision term and the
form of the delta-nucleon potential. For the delta-nucleon
potential we used a Skyrme-type potential which gives
Uz(pa)= —30 MeV for infinite nuclear matter calculation,
thereby reproducing the experimental data found in pion-
nucleus scattering.

With the help of the frictional cooling method we calcu-
lated delta separation energies for "delta nuclei. " There we
found that the minimum energy of the delta-nucleus system
in the present calculation is achieved when the delta and
nucleus wave functions are in the state of maximum overlap.
Therefore we found that the clustering of the AMD wave
function is refIected in the delta separation energy.

For a detailed discussion of the (p,p') reaction we devel-
oped a one-step Monte Carlo (OSMC) model for this reac-
tion. As required by the energy region considered in this

paper (E„b=800 MeV) we incorporated both nucleon and
delta degrees of freedom using the same cross section as
done in the AMD.

As a first application of the OSMC we investigated the
question of Lorentz invariance for nucleon-nucleus scatter-
ing for energies E&,b=800 MeV. We found the interesting
result that, applying a combination of Lorentz transforma-
tions, a Galilei invariant theory can also be used to treat
nucleon-nucleus scattering in this energy region. Also the
calculation of Ps in a Galilei invariant theory can be per-
formed in an approximate Lorentz invariant way.

Before applying the AMD calculation to the (p,p') reac-
tion, we discussed how to determine the width parameter v
of the single-particle wave function for outgoing nucleons.
The determination was made by comparing one-step AMD
and OSMC calculations, This is a unique way to get
parameter-independent results in the AMD.

Both with extended AMD and OSMC, we performed cal-
culations of double differential cross sections do /dp'/dO,
for the ' C(p,p') reaction for angle- and momentum-
dependent cross sections. We found a quantitative difference
between AMD and OSMC calculations which is mainly due
to multistep contributions to the cross section, which are ab-
sent in one-step calculations.

Generally we find that OSMC and AMD can reproduce
the qualitative behavior of the experimental data. Both the
delta peak and the QEP can be seen in the calculation and the
angle dependence of the cross section is reproduced rather
well. In case of the AMD we find a quantitative good de-
scription of the experimental data except for the overestima-
tion of the QEP in the forward direction. Therefore the agree-
ment with the experimental data improves if we perform
calculations with a reduced elastic cross section. One reason
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for the reduced elastic cross section could be that the correct
treatment of the momentum dependence of the nucleon mean
field at this energy region leads to a repulsive potential and,
because of this, to more diffraction of the incoming protons
to larger angles. This then leads to less elastic scattering
probability. This effect would be most serious for big impact
parameters.

For a better understanding of the reaction process we per-
formed a multistep decomposition of the cross section. To
get the smooth momentum dependence seen in the experi-
mental data for 8=30' and 0=40', a complicated inter-

play of elastic and inelastic channels is important which is
approximately reproduced by the AMD calculation.

One interesting result of the multistep decomposition of
the cross section is that two and higher step contributions
govern the high momentum tail of cross sections for larger
angles. The unsatisfying point is that an overall reduction of
the elastic scattering cross section, which seems to be needed
to reproduce the experimental data better, leads to an under-
estimation of multistep processes and therefore to an under-
estimation of the cross section in the region of phase space
where these processes determine the cross section, such as
the region of the high momentum tail at larger angles. Again
the above-offered cure to the overestimation of the elastic
scattering, a correct treatment of the momentum dependence
of the mean field, would mainly reduce the one-step contri-
butions and not the multistep contributions.

As one important physical property, which is often dis-
cussed but not well understood, we discussed the influence
of the delta potential on the (p,p') reaction. We found that
the results for the (p,p') reaction are not very sensitive to
the choice of the delta potential. The reason for this is that
the contributions to the cross section which change due to
different delta potentials are small and are hidden below
multistep and elastic step contributions to the cross section.
We pointed out that the dependence on the delta potential
will be more apparent in calculations for experimental data,
where the excitation of the delta dominates the reaction, i.e.,
delta mass distribution from ~ + nucleon invariant mass
spectra (see for example Ref. [35]).

Commenting on previous calculations we found that the
AMD model gives a much more realistic picture of the

' C(p, p ') reaction at E&,b= 800 MeV than the PWIA calcu-
lations of Alexander et al. in Ref. [46] for the same process.

Finally we conclude with an outlook: This paper leaves
many open questions and ways to extend the field of study.
First of all a nucleon-nucleon potential should be adopted
which gives the correct momentum dependence of the
nucleon mean field and then the statements made about the
change of the heights of the QEP should be tested.

Also the full pion dynamics should be incorporated in the
AMD, which is expected to have a minor effect on the cal-
culations presented in this paper where we treat a light target
' C, since we find that the AN~NN process is negligible.
But for the study of the (p,p') reaction for heavier targets
the correct treatment of pion absorption (3 N~NN reaction)
and pion reabsorption (7rN~It. ) will be much more impor-
tant.

With fully incorporated pion dynamics detailed studies of
pion production and pion-nucleus reactions can be done.

Another way to follow is to perform a more detailed study
of dependence on delta and nucleon potential. Especially a
momentum-dependent delta potential could be introduced
and the difference between momentum-dependent and
momentum-independent potentials could be discussed. For
this investigation we have to compare to experimental data
which are more sensitive to the adopted potentials. Also we
have to introduce a self-consistent treatment of the delta
mass in the AMD for the the NN~NA process as discussed
in Sec. IVE.

Further, (p, n) reactions should be investigated in detail
with the AMD. For this study the question has to be dis-
cussed how to incorporate delta-hole correlations and how to
describe the time development of these correlations in the
AMD framework.
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