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A fully covariant approach to a density dependent hadron field theory is presented. The relation between
in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence
of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon
field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies
which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is
shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the

field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms

of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei
are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the

Bonn NN potentials are used, Results from Hartree calculations for energy spectra, binding energies, and

charge density distributions of ' 0, ' Ca, and Pb are presented. Comparisons to data strongly support the

importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous

improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a
new "Coester line" in the nuclear matter equation of state.

PACS number(s): 21.65.+f, 21.10.—k, 21.30.+y

I. INTRODUCTION

The modern approach to nuclear structure is based on
relativistic field theories describing nuclear matter as a
strongly interacting system of baryons and mesons. The pro-
totype of such a theory is quantum hadrodynamics (QHD)
[1—3] in which nucleons are coupled in a minimal way to a
scalar (a) and a vector (co) meson. A variety of extensions
have been studied including the isovector p meson, electro-
magnetic interactions, and nonlinear meson self-interactions
[4]. The theory is thermodynamically consistent and the co-
variance of the field equations is manifest [2]. The model is
also applied to systems beyond normal nuclear matter, e.g. ,
to strange matter and hypernuclei as in Ref. [5].

In view of the success of the QHD models it is tempting
to derive a hadron quantum field theory from a more micro-
scopic approach to nuclear interactions. A derivation from
QCD dynamics of quarks and gluons is a challenging but
hitherto unsolved problem. Close to the ground state of
nuclear matter confinement is the prevailing mechanism and
a description in terms of baryons and mesons and their inter-
actions is appropriate. But also on the hadronic level an ab
initio calculation of the quasiparticle properties of nucleons
and mesons in a nuclear medium is theoretically and numeri-
cally very involved. Except for infinite nuclear matter and a
few light nuclei [6,7] such calculations seem to be unfeasible
for the near future. The advantages of a microscopic descrip-
tion are obvious because the empirical coupling constants
could be replaced by microscopically derived values. An
even more important aspect is a deeper insight into the dy-
namical content of effective field theories with respect to
many-body dynamics in nuclear systems. In a nuclear me-
dium hadrons are surrounded by a cloud of polarized matter
and, as a consequence, in-medium interactions differ signifi-
cantly from nucleon-nucleon (NN) interactions in free space.

In QHD models the complicated many-body dynamics of
strong interactions at low energy are contained effectively,
but unaccessibly, in empirical meson-baryon coupling con-
stants and nonlinear meson self-interactions. The successful
description of nuclear properties indicates that essential as-
pects of low energy strong interactions are accounted for by
QHD. It is therefore reasonable to attempt a formulation
which retains the basic structure of QHD but provides a more
direct access to many-body dynamics. In this work we study
specifically the question how to implement many-body ef-
fects in nuclear interactions into a hadron quantum field
theory. A first account of a relativistically invariant approach
to a density dependent (DD) hadron field theory was given in
Ref. [8].Here, the theoretical background and applications to
infinite matter and finite nuclei are discussed in more detail.

A widely used and successful description of in-medium
interactions is given by Brueckner theory. The screening of
NN interactions in a nuclear medium is described nonpertur-
batively by an explicit treatment of two-body correlations
[9,10]. Over the past years, extensions to relativistic Dirac-
Brueckner (DB) theory have been investigated by several
groups, e.g. , Refs. [11—18].But again, from a practical point
of view an efficient and reliable approximation scheme is
required before applications to finite nuclei become feasible.
A tractable approach for finite nuclei is the local density
approximation (LDA) which originally was introduced in
nonrelativistic Brueckner theory [19].The essential step of
the LDA is to include many-body correlations into an effec-
tive two-body interaction rather than to treat them explicitly
on the level of wave functions. This leads to the Brueckner
G matrix which retains the boson exchange picture of
nuclear interactions and accounts for medium effects by den-
sity dependent interaction strengths. In relativistic nuclear
structure physics work on this line was initiated by the
Brooklyn Group [11,20—22].
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An important result of relativistic theory is that the bulk
of the in-medium screening is accounted for by a dependence
of DB self-energies on the local baryon number density
while the momentum dependence of interactions in the (posi-
tive energy) Fermi sea is rather weak [13,15,23]. This offers
the possibility to approximate relativistic many-body dynam-
ics by a DD hadronic field theory. In practice, a two-body G
matrix is calculated first in nuclear rnatter for a fixed baryon
number density and then self-energies of baryons are derived

[16,20,24]. Because of the smooth dependence on density the
DB self-energies are expressed by self-energies of a structure
as in the o -co model. A set of meson fields with fixed masses
is chosen and the meson-baryon coupling constants are ad-
justed to the DB self-energies. A first formulation of such an
approach was given in [20] and subsequently applied to in-
finite matter [21] and finite nuclei [22].

It is common practice to use the infinite matter DB cou-
pling constants in an effective hadron quantum field theory.
A QHD-type Lagrangian is chosen and the screening of in-
teractions is taken into account by effective meson-nucleon
vertices depending on the local baryon number density
[17,20,24 —26]. By construction the DB self-energies and the
total energy density in infinite matter are reproduced. Be-
cause the structure of such a density dependent (DD) hadron
field theory is much simpler than the original DB calcula-
tions applications to finite nuclei become possible.

However, this relativistic LDA leads to a field theory of
an unsatisfactory structure as was pointed out in Ref. [8].
Part of the problems become apparent when the theory is
applied to an inhomogeneous system like a finite nucleus.
Then one finds immediately that a parametric dependence of
vertices on the local number density transforms into a depen-
dence of the coupling constants on space-time coordinates.
The Lagrangian ceases to be a Lorentz scalar and questions
on causality, the covariance of the field equations, and the
thermodynamical consistency of the theory arise. If at all,
such an approach provides an effective mean-field Lagrang-
ian which is valid in the nuclear rest frame only.

In order to obtain an intrinsically consistent field theory of
wider applicability the Lagrangian must be formulated as a
functional of field amplitudes only. Approximations should
be introduced in later stages of the calculations after the field
equations have been derived. These are exactly the steps by
which the mean-field approximation to the full QHD La-
grangian is obtained [1,2]. The relation between an explicit
many-body description of in-medium interactions and a field
theory with effective density dependent meson-nucleon ver-
tices is by no means obvious. The two-body NN amplitude
does not enter directly into a field-theoretical formulation. In
a Lagrangian nuclear interactions are described by a vertex
to which baryon and meson fields are coupled. The vertices
are determined by "amputated" diagrams which are obtained
by cutting the two-body amplitude and a resummation of
interactions. In Sec. II A the diagrammatic structure of
meson-nucleon vertices and their use in an effective field
theory are briefly discussed. Vertex calculations are a stan-
dard problem of quantum field theory [27]. The discussion
refers mainly to former works on the electron-photon vertex
in QED [28] and electron-phonon vertices in solid state
physics [29].The many-body theoretical methods developed
in these fields are especially useful for our investigations of

medium effects in meson-baryon vertices. In principle, the
method allows us to calculate the in-medium vertices with-
out the necessity of a numerical fit to nuclear matter T ma-
trices or self-energies. In this work, however, such an ex-
tended many-body calculation is not considered. We rather
assume that the nuclear matter vertices are known from other
sources like DB calculations. A Lorentz-invariant functional
of the baryon field operators is defined to project the nuclear
matter results onto the meson-nucleon vertices of an effec-
tive density dependent field theory. In Sec. II B the model
Lagrangian is introduced. Meson and baryon field equations
are derived in Sec. II C. The Euler-Lagrange equations lead
to additional baryon rearrangement self-energies from the
variation of the vertices. In Secs. II D and II E field equations
and rearrangement self-energies are studied for a description
of medium effects by the scalar and vector baryon densities,
respectively. In the latter case, covariance requires to use the
square of the four-vector current rather than simply the time-
like component only.

The baryon rearrangement self-energies are not obtained
in the conventional formulation of a density dependent field
theory because the vertices are assumed to depend only para-
metrically on the local density which is obtained at the end
of the calculation. Commonly, a self-consistent procedure is
used and the vertices are readjusted in each iteration. Such an
approach accounts for the dependence of interactions on the
bulk variations of the background medium. The dynamical
adjustment of vertices stemming from the polarization of the
many-body background by a baryon, however, is neglected.
From nonrelativistic Hartree-Fock (HF) theory it is known
that rearrangement accounts for an important part of the
nuclear mean field [30] and is indispensable for a good de-
scription of nuclear binding energies and density distribu-
tions [31]. From nonrelativistic structure theory it is also
known that rearrangement includes ground state correlations
from high momentum excitations of the background medium
into the nuclear mean field [9,33].

In Sec. III solutions of the field equations are studied in
the mean-field or Hartree limit. In Hartree approximation the
otherwise highly nonlinear field equations are reduced to a
tractable form because the vertex functionals can be replaced
by functions of expectation values. In the mean-field limit
field equations of a structure similar to conventional DD
Hartree theory are obtained but with inclusion of rearrange-
ment. In Sec. III A the theory is applied to infinite nuclear
matter. Energy-momentum conservation and the thermody-
namical consistency of the model are shown. An important
result is the cancellation of rearrangement energies in the
energy density.

In Sec. IV the theory is used to describe ground state
properties of the doubly closed shell nuclei ' 0, 4 Ca, and

Pb. Details of the numerical calculations are discussed in
Sec. IV A. Once the density dependence of the coupling con-
stants is known the numerical effort to solve the Hartree field
equations self-consistently is comparable to QHD. Density
dependent o. and co meson coupling constants are used which
were derived from infinite matter DB calculations using the
Bonn A, B, and C NN potentials [15,25,34,35]. The main
difference between the three potentials is a different strength
of the tensor interaction. The coupling constants already in-
clude exchange because they were obtained from fits to DB
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self-energies. Therefore, in order to avoid overcounting they
are used in Hartree calculations only. A Hartree-Fock calcu-
lation would require to parametrize the NN T-matrix ele-
ments directly as in Refs. [16,26]. In Secs. IV B and IV C
results of density dependent relativistic Hartree calculations
for energy spectra and density distributions are compared to
data. The best description is obtained with the Bonn A pa-
rameter set and including rearrangement. With rearrange-
ment the description of measured single particle spectra and
charge densities is significantly improved. The importance of
rearrangement in finite nuclei is seen very clearly also from
the dependence of the binding energy per particle on the
central density. Experimental values for nuclei between ' 0
and Pb form a narrow band which can be considered to
represent an equation of state for finite nuclei. The theoreti-
cal results for the three NN potentials arrange on "Coester
lines" and the data are reproduced only when rearrangement
is included. The paper closes in Sec. V with a summary and
concluding remarks.

II. DENSITY DEPENDENT HADRON FIELD THEORY

A. From nuclear matter to finite nuclei

Once a hadronic Lagrangian has been defined medium
effects can be treated systematically with many-body theory.
For the sake of a tractable model, however, an approximate
treatment of medium effects is necessary. Non-
relativistically, the medium dependence of NN interactions is
well described by energy functional methods [33,36]. Rela-
tivistically, a Lagrangian formulation with baryons and me-
sons has to be used and medium effects are described by
effective density dependent meson-baryon vertices. A rela-
tion between microscopic and effective meson-nucleon ver-
tices is, in principle, given in the local density approximation
to DB self-energies [20,23,24,26]. The use of nuclear matter
DB results in an effective hadron field theory, however, de-
serves a closer discussion because the relation of the two
approaches is not obvious. A number of nontrivial approxi-
mations are necessary before the link to a field theory of
mesons and baryons is obtained. At the end, the theory
should account reliably for the complexity of a DB calcula-
tion by a limited number of parameters. In this section the
most important steps in going from a nuclear matter T matrix
to a field theory with medium dependent meson-baryon ver-
tices are outlined.

As a matter of fact, the two-body DB amplitudes do not
enter directly into a held-theoretical description. Rather, ef-
fective medium dependent meson-baryon vertices have to be
extracted from the DB T-matrix M~ As a first step a param-
etrization of M~in terms of effective meson propagators, e.g. ,
as in Refs. [20,26], must be derived. For the following dis-
cussion we assume this to be given. Then, we can proceed as
in Refs. [28,29] and consider directly the vertices describing
the coupling of mesons and baryons. In the usual formulation
M is obtained by an integral equation from the free-space
NN boson exchange interactions U [13,26]. For our purpose
it is more convenient to proceed differently. Let %denote the
two point baryon-propagator including the full in-medium
self-energy X. The effective two-particle propagator is given

by K' =iÃÃ and ~F =C&'Fi X'Xg'F is the projection of
onto the Fermi sphere of occupied states. In a symbolic

FIG. 1. The diagrammatic structure of meson-baryon vertices in
the ladder approximation. Baryon and meson propagators are de-
noted by full and wavy lines, respectively. The correlated vertex
(hatched circle) is obtained from the bare vertex (full circle) by an

equation of Bethe-Salpeter type [see Eq. (3)]. Terms up to fifth
order in the bare coupling constant are shown.

notation M is expressed by the free space NN T-matrix T

M=T —TK,"~~ T=U+US"T,

and the main difference to the usual approach is to disregard
blocking first and then restore the Pauli-principle by sub-
tracting the contributions from the interior of the Fermi
sphere. For our purposes Eq. (1) has the advantage that the
medium projector gF appears explicitly instead of the
complementary projector g= 1 —gF . Also, T is free of the
"hard core" singularities contained in U and thus easier to
handle. As a rather schematic ansatz (see, e.g. , Refs. [20,26]
for realistic descriptions) we assume that

.A~(1,2) =I'(1)b (1,2)I (2), T(1,2) = y(I)h(1,2) y(2),
(2)

are given by an effective meson propagator 5 and the in-
medium and free vertices I and y, respectively. The vertices
y=goeD include the free meson-baryon coupling strength
go= g,g„, . . . and the Dirac structure is taken into account
by eD= I, y„. . . . Using the same propagators in.%~and T
corresponds to assuming that the mesons are unaffected by
the medium. Following Refs. [28] the free and in-medium
meson-baryon vertices are related by a Bethe-Salpeter type
equation

I"=y —I K' T. (3)

Note, that only states from inside the Fermi sphere appear as
intermediate states because of X~ . From the diagrammatic
structure, Fig. 1, it is seen that I includes the full ladder
series of repeated actions of T between the in and outgoing
baryons. Equation (2) and Fig. 1 express an important rela-
tion: The one boson exchange parametrization of M~ corre-
sponds to a resummation of interactions such that the ladder
series is effectively shifted to the vertices. Because of Eq. (1)
the ladder series is now defined in terms of T rather than by
the bare NN potential U.

The weak momentum dependence of self-energies [23]
indicates that the vertices themselves are only weakly depen-
dent on momentum. It is therefore reasonable to define ef-
fective vertices which depend only on the density of nuclear
matter by averaging Eq. (3) over the Fermi sphere
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FIG. 2. Diagrammatic representation of the baryon self-energy

P in a nuclear medium. The self-energy, Eq. (5), is displayed up to
sixth order in the bare vertex (full circle). Baryon and meson propa-
gators are denoted by full and wavy lines, respectively.

I (p„) to a field-theoretical meson-nucleon vertex I (j ).
An extension to multivariant parametrizations is easily ob-
tained by augmenting the required numbers of projections,
e.g. , for asymmetric matter in terms of the isoscalar and the
isovector baryon densities. For more general theories of M~

beyond the DB ladder approximation a description in terms
of n-body baryon and meson operators, respectively, could
be found necessary [8].

tr[I Ã~]
I (kF) =

which means to close the baryon legs in Fig. 1. 9'~= ÃgF is
the nuclear matter two-point function. In nuclear matter the
vertex can be written as I'„=eDI (kF) where the depen-
dence on the Fermi momentum kF, or equivalently on the
density p„=2kF/(3vr ), is introduced by ÃF. The full
nuclear matter self-energy is obtained as in [2,13]

X = tr[w~S'F] = I tr[AI S'F].

Exchange is assumed to be included, e.g. , by a Fierz trans-
formation of M~[27,32]. The diagrammatic structure of X, is
shown in Fig. 2. Equation (5) implies to define the in-
medium meson field

M= M~+ MM+ M;„„

W~~ =V(i y~8" M) W—,

MM= ,'(8„48~4——m„4)

v= co, p, y
( F',"„'Ff » —m'. Vt„ lVt »),

M;„,= Tj'lj'I (po)4 —Tl'y WI'„(po) V„

B. The model Lagrangian

The model Lagrangian [8] includes baryon fields 'P and
the isoscalar n. and co mesons, the isovector p meson and the
photon (y),

4 = tr[AI VW] = tr[A yS'F]I (kF) (6)
—'I"vy Il'g V"—"Ij'-,'(I+ r3) y 'PeA~,

and to use the vertex M;„,=+I'PW in a Lagrangian which
also contains a kinetic and mass term for the meson field
4. The latter can be deduced from 5 '. In nuclear matter
the parametrized vertex, Eq. (4), can safely be used in the
Lagrangian because kF enters as an external parameter. In-
serting Eq. (4) into Eq. (5) the DB self-energies are seen to
be reproduced by construction.

A different situation is encountered in a finite nucleus.
Then the density becomes a dynamical quantity which has to
be determined self-consistently by an appropriate adjustment
of a chemical potential. In Ref. [8] it was shown that an
intrinsically consistent field theory is obtained when the
meson-baryon vertices are chosen as functionals of the
baryon field operators. Here, a more general approach is dis-
cussed by which the mapping from the nuclear matter DB
results to a field theoretical formulation is easily obtained.
Suppose that I (p„) was calculated in infinite matter for a
sufficiently wide range of densities p„. Using the baryon
current operator j~=%"y"'I we define the functional

1(i')= I'(P. ) ~(p.'i g")2P d—P.
&0

(7)

which provides the mapping of the infinite matter results
onto a field-theoretical formulation. The four-vector j~ is
determined in the nuclear rest frame. For infinite matter or a
spherical nucleus, respectively, the expectation value is
(0~j~~O)= 6~ pB where p~ is the baryon number density.
Hence, the functional is Lorentz invariant and depends only
on field amplitudes. Assuming that a particular infinite matter
configuration is determined unambiguously by the value of
the number density p„ the integral provides a pointwise
one-to-one mapping from the infinite matter vertices

where Mz and M~ denote the Lagrangians of free baryons
and mesons, respectively, and their interactions are described
by ~.t

F(~) g y(~) ~ y(~)
p, v P p v p,

is the field strength tensor for a vector meson (a= to, p) or
the photon (l~= y). The Lagrangian resembles those of the
o.-c0 model [1,2] and the DD field theories of, e.g. , Refs.
[12,15,16,14,24]. The important difference lies in our treat-
ment of medium effects in the meson-baryon vertices.

For a more transparent presentation only the o. and ~
vertices I' and I „, respectively, are taken to be density
dependent but extensions to other meson channels are obvi-
ous. Also, in the applications vertices from DB calculations
in symmetric nuclear matter will be used which naturally
provide information on the isoscalar mesons only. The verti-
ces are assumed as in Eq. (7) but for a more general formu-
lation a Lorentz-scalar functional pc= po(V, 'P) is used
whose form is specified later. It is assumed that the nuclear
matter vertices entering into Eq. (7) are given in terms of the
expectation value p„=(nm

~ po~ nm). In order to retain com-
mutator relations of Dirac operators and vertices p0 must
contain an even number of baryon field operators. An obvi-
ous choice is to use p0=%% leading to a scalar density
dependence (SDD). The connection to conventional param-
etrizations of DB vertices is obtained with the vector density

A A

dePendence (VDD) Po= j~~ as discussed before. These two
cases will be investigated in more detail in Secs. II D and
II E, respectively.

It is worthwhile to emphasize that other choices are pos-
sible as well. In fact, the consistency of the theory is pre-
served for any Lorentz-invariant combination of baryon and
meson field operators. However, as shown below the dynam-
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ics of the fields are directly affected by the structure of po.
This leads to further constraints on po by physical reasons.
The description of medium effects by a functional of baryon
field operators only, for example, leaves the meson field
equations unchanged and ascribes many-body effects com-
pletely to the baryon self-energies. From a conceptual point
of view this has the advantage that only the baryon sector of
the model is affected. Also, such a description is strongly
supported by DB results and nonrelativistic many-body cal-
culations [9,33]. From a more practical point of view uncer-
tainties on parameters are kept on a controllable level and the
relation to QHD-type approaches is more transparent.

(8 8~+m )4=1' (po)'P'Ir,

(B,F +"+m )V+=I (po)Vy~%',

(10)

(B„F~ ~'+m )V~=g —,'V~y~+, (12)

B„F~(")"=e,'V(1 +7 -)y"9", (13)

where r3= ~ 1 for protons and neutrons, respectively.
An important difference to QHD and conventional formu-

lations of DD theories appears in the baryon field equations.
From Eq. (7) it is evident that the variation with respect to
'Il' will also act on the vertices and thus introduce additional
self-energies. Formally, this is taken into account by treating

po as an additional degree of freedom which can be thought
to act as an external source of many-body correlations. The
variational derivative of W~;„, , Eq. (8), is written as

6'W;„, 8M;„, 8M;„, 8'p'"' +
PP a% qp, PP (14)

po is assumed to depend on the baryon operators only,

~Po
8'Po = PP.

By definition, the derivative of po must be proportional to
'P and covariance requires that the proportionality factor is
composed of Lorentz invariants. Here, we consider only Lor-
entz scalar and vector terms,

Po
8W

= [A, +B.y"]9 (16)

with coefficients A, and 8, , respectively. With

C. The field equations

From the Euler-Lagrange equations meson field equations
are obtained which in form resemble those of QHD [1,2].
The differences reside in the source terms of the cr and co

fields which include in-medium correlations through the ver-
tices

the second term in Eq. (14) leads to the rearrangement self-
energy

g(r) y(r)+ g(r) v
S V

The scalar and vector parts are given by

(18)

X'"'= S(")A Z'" = S(")B-
S S ~ p, p, % (19)

and with the usual self-energies |1,2]

&.")= I'.(Po) C,

X ~=I „(po)V~+g~x V"+ (1+73)eA",

the total baryon self-energies are finally obtained as

(20)

(21)

y(0)+g(r) gp, g(0)p+y(r)p (22)

In structure the baryon field equations are unchanged

[y„(i 8~ —X~) —(M —X,)]'Ir = 0 (23)

but the dynamics are modified by the rearrangement contri-
butions. Equations (16)—(19) are the central results of this
section. They show that a covariant formulation of a DD
hadron field theory leads naturally to rearrangement contri-
butions. Medium effects affect the field dynamics in two dif-
ferent ways, namely, mesons and baryons through the intrin-
sic density dependence of the I „vertices and, in addition,
the baryon fields by the rearrangement self-energies. The
form and Lorentz structure of the latter contributions de-
pends sensitively on the form of po. In the following, two
physically reasonable choices are discussed.

I ..(Po) = I ..(P. ) ~(P.' Po)2P. d—P. (24)
0

It is obvious that Lorentz invariance would be badly violated
if only the timelike component of j~ had been taken at this
point. The link to the usual LDA description is obtained after
the functional mapping which projects the nuclear matter
results onto the invariant local baryon density po. From the
properties of the Dirac 6 function one finds immediately

Jo

~~ cr, el) (P n m )
~(P Po) 2P d P (25)

~pnm

such that the derivative of the nuclear matter vertex is
mapped onto its value at the local invariant number density.

Variation of po with respect to 9" leads to

D. Vector density dependence (VDD)

In the VDD description the square of baryon vector cur-
A A

rent, po= j~", is used. The a and co vertices are defined as
in Eq. (7),

ar. . ar„s(")= '"'= e+ e —v~,
Po Po ~Po

(17) ~Po ~Po
Pp, (26)
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where pou~= j~ with ~ = Jl.. B =u is a four-velocity and2

A, =O. In this case, only a vector rearrangement self-energy
is obtained

ar„. ar."v~„- eve u~
( apo apo

(27)

which includes contributions from both the scalar and the
vector fields.

I'r.(p, ) =
0o

r.(p, )a(p, —p, )dp, (28)

where p, is the scalar density in nuclear matter. Accord-
nm

ingly, the second term of Eq. (14) now includes a summation
over the independent scalar and vector parametrizations.
I „ is given as in Eq. (24). A, = I is nonvanishing and B
remains the same as in Eq. (27). Different to the VDD case,
both scalar and vector rearrangement self-energies are ob-
tained

g(~)u—BI ~

~ps

ar„
V~ ~~.

~po
(29)

X,
(") introduces an additional density dependence into the

effective baryon mass. A comparison of Eq. (29) and Eq.
(27) shows that also the vector rearrangement self-energy is
changed. As discussed below, the differences in SDD and
VDD dynamics lead to different results for the level structure
of finite nuclei which allows to compare the two approaches
on an empirical basis.

As a theoretically interesting side aspect the SDD ansatz
allows to express the full o. and co self-energies as deriva-
tives with respect to the densities

E. Scalar density dependence (SDD)

In leading order the scalar and vector parts of M~are de-
termined by vertices of corresponding Lorentz structures.
Thus it is of interest to investigate a model where medium
effects in r are described by a scalar density dependence

p, =%"W and the vector dependence is retained for r„. In
this case, the scalar vertex functional is chosen as

Po=Po+ C(Po) (32)

is expressed by the pure c-number valued function
po=(po) and a remaining operator part with (C) =0. From
the operator structure of 'P [2,32] the correlation function C
is seen to include the normal ordered parts of po and non-
stationary particle-hole type components. As a consequence
expectation values of powers of po are reduced to powers of
the expectation values, e.g. , (po) =po. Inserting Eq. (32)
into Eq. (7) and expanding the Dirac 8' function under the
integral into a Taylor series the vertex functionals become

III. MEAN-FIELD THEORY

A. Mean-field interactions in Hartree approximation

From the preceding discussion it is apparent that the field-
theoretical formulation in principle includes a wider class of
diagrams than considered in a DB calculation. The vertices
defined in Eq. (7) contain for example contributions from the
Dirac sea as well as from the full range of positive energy
states as seen when the baryon field operators are inserted in
quantized form. By physical arguments and because of nu-
merical reasons DB calculations neglect vacuum contribu-
tions and ascribe medium effects solely to the polarization of
the Fermi sea of positive energy valence particles. Thus fur-
ther approximations are required before DB vertices can be
used in a field-theoretical approach. Here we consider a den-
sity dependent mean-field description of finite nuclei in Har-
tree approximation. As discussed in great detail by Boersma
and Malfliet [16] this corresponds using DD coupling con-
stants fitted to DB self-energies rather than to the in-medium
NN T matrix. As is common practice in mean field and also
DB calculations we neglect contributions from the Dirac sea.
On a more formal level this may be expressed by an explicit
subtraction of vacuum expectation values [2,27]. Here, we
assume that products of fermion operators are normal or-
dered with respect to the Hartree ground state ~0). The
ground state is a single slater determinant of occupied ferm-
ion states. The baryons are moving in a static mean field
generated by stationary classical meson fields. Expectation
values with respect to the Hartree ground state will be abbre-
viated, e.g. , as (I' ) =(0~I ~0).

The Hartree approach allows a particularly simple treat-
ment of the vertex functionals I (po); Sec. II B. Using
Wick's theorem,

y p —y(o)/ + g(~) p —v [" r ("2)]
Cd (30)

8r.„=r..(p, )+ c(P,) r. „(p,)+
~po

(33)

y(o)+ y (~) [p,r (p, )],
ps

(31)
In Hartree approximation the vertex functionals are therefore
replaced by functions of expectation values [8]

where rearrangement is included. The SDD description is
easily extended to other mesons. As a rule, the vertices have
to be parametrized by the densities which are the sources of
corresponding meson fields and therefore are of the same
Lorentz and isospin structure. For example, the p meson
would have to be treated similar to the cu meson but replac-
ing in Eq. (24) the vector current j by the isovector current

j = 'I v'y~'P.

(r „(p,))=r „(p,) (34)

which brings the originally highly nonlinear field equations
into a tractable form. From Eq. (33) it is seen that the rear-
rangement contributions are obtained from the variation of
the normal ordered parts of po. The Hartree meson field
equations are obtained by taking expectation values on both
sides of Eqs. (10) to (13). Here, we concentrate on the den-
sity dependent scalar and vector fields. The meson fields are
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decomposed into stationary and time dependent fluctuating
parts of vanishing ground state expectation value [2], e.g. ,
for the scalar field

tIs(t, r) =(Cr)(r)+ BCt(t, r).

is given by the classical o. field and the derivative of the
nuclear matter vertex at the local scalar density.

We are now in the position to rewrite the original La-
grangian, Eq. (8), as

Using Eqs. (33) and (32) the vertices and baryon sources are
replaced by expectation values. The o. and the co mean-field
equations become

W= ~F+ aW,

"=.Ms "+MM". (46)

( —5+ m ) mls = I (po) p, ,

( —5 + m „)V"„=r „(p )j ",

(36)

(37)

f
Cr(r) = dr'D (r, r')I [po(r')]p, (r'), (38)

where 4 and V~ now denote static classical fields. With the
scalar and vector propagators D and D~" [2,32], respec-
tively, the solution of Eqs. (36) and (37) are

The difference between the full and the Hartree Lagrangian
is contained in 8W~. The isovector p meson and electromag-
netic interactions will be left out for the moment and we
concentrate on effects from the density dependence of the
vertices. Baryon mean-field dynamics are then described by
the Lagrangian

Br~~s"=+ tV„~ —V'. r (po) —(po —po)~~po )

I

V"„(r)= dr'D ~(r, r')I'„[po(r')]j,(r'). (39)

aI—M- C' r.(po) -(po- po)
~po j

(47)

The p meson and the static Coulomb mean field are the same
as in QHD [2]. They are obtained accordingly by inserting
the appropriate propagators and source terms [8]. The non-
rearrangement parts of the baryon Hartree self-energies are
given by

g", l=r.(p, )c,
Xt l"=r„(po)V~+

gpss

V"+-,'(1+ rs)eA~,

(40)

(41)

which differ from Eqs. (20) and (21) by the replacement of
po by the expectaton value po. In the VDD Hartree descrip-
tion where

p'o=(j )(j')= p' (42)

I BI „ BlX'"»= "V~„- p, e u~.
( ~po ~Pa

(43)

In the nuclear restframe u~= (1,0) and

J v" ta PB Vari rest frame (44)

Correspondingly, the SDD Hartree scalar rearrangement self-
energy

Bl ~g(r)
~ps

(45)

both the o. and cu vertices become functions of the local
baryon density. In the SDD parametrization I is a function
of the scalar density p, =(Ttr'tIr) while for I „the vector den-
sity dependence is retained.

The Hartree rearrangement self-energies are derived by
the same approximations as above. Meson field operators are
replaced by the classical fields and only the fully contracted
parts of products of baryon operators are considered. As a
result, the VDD rearrangement self-energy, Eq. (27), simpli-
fies in the Hartree limit to

( „aIa5;=c r.(p,)-r.(p, )-c(p, ) Ve
~po

„( . ari
(Po) —r.(Po) —C(Po) ~~Pot

(48)

Inserting the Taylor expansion, Eq. (33), for the vertex func-
tionals one finds immediately that terms up to first order in
the vertex derivatives are removed and in leading order
8M is a quadratic form of C(po). The cancellation of the
first order terms is completely due to the mean-field rear-
rangement terms. This indicates that rearrangement intro-
duces additional dynamical contributions into the mean field.

The meson Lagrangian .X~" is defined as MM in Eq. (8) but
here only the static meson fields enter.

The conventional o. and to self-energies [2] are apparent
in Eq. (47). The terms being proportional to the density de-
rivatives of the vertices are the Hartree approximations to the
variational derivatives of the full vertex functionals. Because
they involve the normal ordered and fluctuating parts of po
their expectation values vanish. In Hartree approximation
these terms neither contribute to the source terms of the me-
son field equations, Eqs. (36) and (37), nor to the standard
part Xt i, Eqs. (40) and (41), of the baryon self-energies. By
variation with respect to %" and taking Hartree expectation
values, however, the baryon rearrangement self-energies are
recovered. In total, the baryon and meson mean-field equa-
tions are retrieved from ~~" by imposing the subsidiary
conditions that the baryon sources of the meson equations
and the baryon self-energies are evaluated in Hartree ap-
proximation.

The difference between mean-field and full meson-baryon
interactions is contained in 8W~. Quantal mesonic and bary-
onic modes contribute [2,3] but those parts will not be dis-
cussed here. In the present context contributions from the
density dependence of the vertices to the residual Hartree
interaction are of more interest. They are of a particular
structure given by
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In fact, the same kind of observation was already made in
nonrelativistic Brueckner theory [9,33]. As discussed by
Negele [33] rearrangement self-energies describe contribu-
tions from high momentum one-particle —one-hole and two-
particle —two-hole correlations to the motion of a single
nucleon. They are introduced into a density dependent theory
quite naturally by a fully self-consistent treatment of wave
functions and interactions. In Ref. [33] the corresponding
diagrams are shown to be generated microscopically from
the variation of the projector gF and the self-energies, re-
spectively, which are the sources of the density dependence
of a Brueckner G matrix. Exactly this effect is taken into
account in our held-theoretical formulation by applying the
variational principle also to the vertices. In an effective field
theory, however, it is hardly possible to identify the micro-
scopic origin of single contributions. But, as pointed out by
Negele [33], the contributions from both the Pauli projector
and the self-energies are adequately approximated by a glo-
bal dependence of interactions on the density.

Summarizing this section, the mean-field equations of
conventional DD theories [12—16] were recovered but with
the important difference that baryon rearrangement self—
energies are included. Their significance for an improved de-
scription of single particle properties is known from nonrel-
ativistic theory and, as far as the many-body aspects are
concerned, the same arguments apply here. A diagrammatic
analysis, e.g. , in Refs. [9,33], shows that the rearrangement
self-energies introduce high momentum polarization dia-
grams describing ground state correlations from the short
range NN repulsion into the mean-field potential.

[y~k*~ —m*]u*(k) =0. (49)

The stationary solutions are plane wave Dirac spinors

u„*(k)=
+ m

(50)

where y„ is a two-component Pauli spinor.
The kinetic and canonical 4-momenta k*" and k~, re-

spectively, are related by

I + p I p (g(o)p+ g(r)p)— (51)

B. Infinite nuclear matter

As a first application we consider the mean-field theory of
symmetric nuclear matter. In infinite matter the field equa-
tions strongly simplify and dynamical quantities like the
energy-momentum tensor can be obtained in closed form.
This us allows to show in a particular transparent way
energy-momentum conservation and the thermodynamical
consistency of the theory. Following the usual approach elec-
tromagnetic interactions are neglected. By isospin symmetry
the isovector p-meson contribution vanishes identically and
only the cu meson contributes to the vector potential, Eq.
(21).

In the Hartree limit, Eq. (23) leads to a modified Dirac
equation

and an additional shift is obtained. from the rearrangement
self-energies. Also the effective mass is modified

(g(O)+ g(r)) (52)

and the in-medium mass shell condition is k* =m* . Be-
cause of time-reversal symmetry the spacelike parts of the

vector potential vanishes and k*=k. The energy of the par-
ticles is given by

E*=k*=/k* +m*0 (53)

The scalar density is obtained in closed form as [2]

4 I', m~ m~, kF+EF
p,=(,s d k =

2 kFEF m* ln—
2'lr) J o E* 'tt

I m*
(54)

4 " d k
Z P v [kgPkv keg(r)k P, v]

(27r) g p E*
2 2

(55)

With Eq. (51), the kinetic part of T~' can be rewritten in
terms of kinetic momenta only

4 ~ d'k
Z&"= [k+~k+ "+k*&(r.V +g(")")

kin (2~)3 J E+ CO

key(r)k pv] (56)

Only the timelike components of the vector self-energies are
nonvanishing in Hartree approximation and the energy den-
sity obtained from Eq. (55) is

4 Pl
e=T = dkgk+m*+p I V +(2') J (i

B co

2

"V„,V"„+p, X,("). (57)

As shown in Appendix A the vector rearrangement self-
energies are canceled by compensating contributions from
the baryon field equations. In the VDD case where X(")=0
rearrangement effects are completely removed from the en-
ergy density. This is an important result for the determination
of the coupling functions I „ from DB self-energies: The
same energy per particle is obtained as in the DB calculation,
i.e., the equation of state remains unchanged The rearran. ge-
ment self-energies must be included in order to obtain
energy-momentum conservation, B„T~ =0, as discussed in
Appendix A.

The scalar rearrangement self-energies obtained in the
SDD description are only partly removed from the energy
density. This is seen by expanding the square root under the

with EF= gkF+m* the Fermi energy. Integration over the
momentum states inside the Fermi sphere is indicated by
OF . With the results of Appendix A the energy-momentum
tensor in nuclear matter is obtained as
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4 ~ d'kk'
T"=

3(2~) J o vk +m

+ p X(~)o p X(~)

2 2

2
C"+ 2"V-kV

(58)

Different from the energy density the rearrangement poten-
tials contribute directly to the pressure. In Appendix B Eq.
(58) is retrieved from the thermodynamical relation

a (e)
~PB (PB)

(59)

integral in terms of m* —m*, where m*=M —X( ) is the
effective mass without rearrangement. The leading order
term is canceled but higher order terms remain as found from
Eq. (57).

The pressure obtained from the energy-momentum tensor,
Eq. (55), is

IV. RELATIVISTIC HARTREE DESCRIPTION
OF FINITE NUCLEI

A. Details of numerical calculations

The relativistic Hartree theory of finite nuclei has been
discussed in very detail at many places, e.g. , in Refs.
[2,4,26,38]. Here we concentrate on the rearrangement con-
tributions. For spherical symmetric systems such as closed
shell nuclei the stationary Dirac equation is

HP=[u p+P(M —X, (r) —X," (r)) —X (r)
—X'""(r)]0

(63)

where only the timelike components of the vector fields con-
tribute. The Dirac equation is solved with the following an-
satz for the wave function:

where Eq. (57) has to be used. Thus the theory is thermody-
namically consistent and rearrangement affects the location
of the nuclear matter equilibrium point P=O. Another im-
portant test for the intrinsic consistency of the model is ob-
tained from the Hugenholtz —van Hove theorem [37]

~+ p PB+(kF) PBI + (kF) + X'] (6o)

8 r„, a
p, = @=i V„+pB V„+ p, X,"

which states that at equilibrium the mean binding energy per
particle equals the single particle energy at the Fermi surface.
In Appendix B it is shown to be fulfilled only if rearrange-
ment is included.

In a system with fixed baryon number the chemical po-
tential is defined [1,2] by

(64)

The parity eigenvalue is denoted by ~= ~ 1 and the charge
states are distinguished by 73 = ~ 1 for protons and neutrons,
respectively. The spin-angular wave function are defined by

1

P', ' ' (~,v)= X i'
(m, (6,q)x(~2 s)( l2m, ljm)

mI, m~

(65)

A spherical harmonics I'I and a two-component Pauli

spinor y(-2'm, ) are coupled to total angular momentum j with
projection m by a Clebsch-Gordan coefficient. The upper and
the lower radial wave functions, F(r) and G(r), respec-
tively, obey a system of two coupled equations [32]. By
elimination of the lower component, an effective wave equa-
tion for F(r) is derived

4 f+, d'kgk2+m*' .
27r J ()F

(61)
a„(X +X') ( q) q(q+1)

Evaluating the term in brackets as discussed in Appendix B,
the chemical potential is obtained as

—(M —X,) F, '(r) =0, (66)

P, =I V'+X(")'+ gkF+m*'. (62)

In the VDD description, the bare effective mass m* and
X(") from Eq. (43) have to be inserted. The first two terms
combine to X .

The results imply that rearrangement also contributes to
infinite matter. In the first place the baryon propagators are
modified. In the VDD description this can easily be taken
into account by an appropriate shift of the four-momenta as
in connection with Eq. (56). The situation is different in the
SDD case where also the effective mass is affected by rear-
rangement. Equation (62) shows that rearrangement directly
affects the single particle properties in a system with fixed
baryon number. Rearrangement effects should therefore be
especially important in finite nuclei.

F(r) = /E+M X,—X f(r)—(67)

and f(r) is determined by a purely second order differential
equation. The solutions f(r) and eigenvalues are obtained
with the Numerov method [39].The physical wave functions
F(r) are finally reconstructed according to Eq. (67). The
lower components are obtained from

G(r) = 8„+—F(r)
QZ+M —X,—X'i " rj (68)

where r)= ~(j+ —,'). X includes isoscalar and isovector vec-
tor meson interactions and, for protons, the static Coulomb
field. First and second radial derivatives are denoted by 8„
and 8„, respectively. The terms involving first order deriva-
tives are removed by the transformation
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by numerical differentiation. The vector densities for protons
and neutrons, respectively, are obtained in terms of the Dirac
wave functions

25

1
P.,(r) =

4 2X (2i+1)(IF,,"'I'+ IG„,"I') (69) -50
O

-75

and the scalar densities are defined accordingly by the differ-
ence of upper and lower components. Energy levels of angu-
lar momentum j and parity ~ are denoted by k.

The densities are used as source terms in the meson field
equations which are solved by representing the propagators
in coordinate space [2]. Only the monopole parts are needed
for spherical closed shell nuclei as considered below. The
system of density dependent Hartree equations is solved self-
consistently by iteration. The iteration is started by using
densities and self-energies from a full scale relativistic
Thomas-Fermi calculation [5]. Typically, 15 to 20 iterations
are needed until convergence of energies and wave functions
of better than 10 is obtained.

The meson masses I = 550 MeV, m„= 783 MeV, and

m~ = 770 MeV are used. The p-meson coupling strength is
chosen as g /47r=5. 19. In Ref. [15] the vertex functions
1" „were determined from fits to nuclear matter DBHF self-
energies. Here, the parametrizations of Haddad and Weigel
[25] by second order polynomials are used. The DBHF self-
energies are reproduced very accurately over a wide range of
density from 0.2 p„ to 2 p„[25].An extension to a wider
range of mesons as, e.g. , in Refs. [20,26] is obvious. In Ref.
[25] the vertices are given as functions of the baryon density
which is in the spirit of the VDD parametrization. The SDD
ansatz requires to reparametrize I by the scalar density. In
practice, however, this can be avoided by using that the sca-
lar density in nuclear matter, Eq. (54), is given as a function
of the baryon density through the Fermi momentum. Thus
the scalar vertex is simply given by I [p,(kP)]=I (PB).
The derivative of I is determined from the relation

BI BI [P,(kP)] BPB

p, pa ~p,

0
E
O -2

30
-4

-5 I

4
r[fm]

FIG. 3. Dirac potentials for Ca. In the upper part, the central

(Uc) and, separately, the (repulsive) rearrangement potentials are
shown for the DD, SDD, and VDD description. In the lower part the
corresponding spin-orbit potentials ( Uso) are displayed. Parameters
derived from the Bonn A NN interaction were used.

y(0)+ y (.) g(0)0 y (,)0
S S (72)

whereas the sum of the fields enters into the spin-orbit po-
tential. Rearrangement contributes differently to Uc and

U&o and we expect that the spin-orbit splitting is an espe-
cially sensitive measure on the VDD and SDD descriptions.

The Hartree ground state energy is obtained from the
energy-momentum tensor as

1
&g. .= X (2J+1)Fkj 2

d'r[l .(r) p, (r)c'(r)
~ Ejq-~F 2 J

(")PB(r)V (r) gpP3(1) Vp ePp(r) jt (r)]

The central and the spin-orbit potentials are affected re-
versely by the rearrangement contributions. In leading order
Uz is given by the difference of the scalar and vector fields

~PB ( ~P. 2 2I3+ g2
BP,

I
BPB

~

m*

g(0)+g(r) (g(0)0+/(r)0) [(g(0)+ g(r))2
E 1

M 2M

+ (g(0)0+ y(r)0)2] (70)

g ($(0)+g(r) + g(0)0+ g(r)0)
U" 2M Z+M-Z(') —Z(")-Z(')' —r, (")'

S S

which is exact in infinite matter and a good approximation in
finite nuclei.

From Eq. (66), central (Uc) and spin-orbit (Uso) Dirac
potentials, respectively, can be extracted [38]

—„d'r[p, (r)&,'"'(r) —pB(r) &'""(r)]. (73)

where Fkj are the Dirac eigenvalues, Eq. (63), of Particles in
the (positive energy) Fermi sea. Pp is the proton density and
p3= pp —pz the isovector density.

B. Binding energies and density distributions

Calculations for finite nuclei with density dependent field
theories have led in the past to a fair but not overwhelmingly
good description of nuclear ground state properties (see, e.g. ,
[22,24,26]). Typically, either binding energies or charge den-
sities were reproduced reasonably well, but hardly both of
them. In all cases, rearrangement was not taken into account.

The question arises whether rearrangement can improve
on this situation. In Fig. 3 the central and spin-orbit Dirac
potentials, Eqs. (70) and (71) are displayed for " Ca and the
Bonn A parameter set. The rearrangement contributions are
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TABLE I. Root-mean-square charge radii r,„(fm) and binding
energies per nucleon EIA (MeV/A) of closed shell nuclei from
relativistic Hartree calculations using the Bonn A, B, and C param-
eter sets. Results without (DD) and with rearrangement in the VDD
and SDD description, respectively, are shown.
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FIG. 4. Charge density distributions of closed shell nuclei from
relativistic density dependent Hartree calculations using the Bonn A

parameter set. Results without (DD, dash-dotted) and with rear-
rangement in the VDD (long-dashed) and SDD (dotted) description,
respectively, are shown. Experimental densities are denoted by solid
lines and the uncertainities in the interior are indicated (taken from
Ref. [41]).

rch E/A "ch E/A r,h E/A
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"Ca
"'Ca
208Pb
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3.44
3.45
5.44

5.16
5.81
5.71
4.72
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3.74
3.78
5.83

5.46
6.10
6.07
5.01

2.99
3.70
3.74
5.73

5.53
6.20
6.16
5.14

seen to be repulsive. Compared to the DD case, the depth of
the potentials is lowered but also a more diffuse shape is
obtained. The SDD and VDD central potentials are close in
strength. The differences are more pronounced in the spin-
orbit potentials where the SDD and VDD potentials differ by
about 50% in the surface region. Clearly, as seen below, this
will lead to corresponding differences in the energy splitting
of spin-orbit partners. On first sight, it could be expected that
rearrangement will lower the binding energies of nuclei.
However, as seen from Table I, rearrangement actually in-
creases the binding. At the same time, larger charge radii are
found which is in agreement with the fact that the potentials
are more swallow than in a pure DD description. In order to
understand the dependence of binding energies on rearrange-
ment we have to refer to Eq. (73).The proper binding energy
was obtained by subtracting the total rearrangement energy
from the single particle and meson-nucleon interaction ener-
gies. Since rearrangement is repulsive this subtraction com-
pensates the weaker binding of the single particle states and
the total binding energy is increased. The same effect is
found in nonrelativistic HF theory with density dependent
interactions [31].

The cancellation of rearrangement effects found in bind-
ing energies does not occur in one-body observables like
charge density distributions and root-mean-square (rms) ra-
dii. They are determined directly by single particle wave
functions which include the full rearrangement contribution.
As can already be deferred from the potentials in Fig. 3
rearrangement will generally lead to radial wave functions
which are pushed out to larger radii than in a DD calculation.
The repulsive effects are surviving in density distributions
and, as in Table I, larger rms radii are obtained. This means
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FIG. 5. Charge density distributions of closed shell nuclei from
relativistic density dependent Hartree calculations using the Bonn B
parameter set. For captions see Fig. 4.

that the otherwise strong correlation of nuclear binding en-

ergy and radius as observed in pure DD calculations, e.g. , by
Celenza et al. [22] is partially lifted by rearrangement.

Rearrangement strongly affects the shape of density dis-
tributions. In Fig. 4 charge densities from DD, SDD, and
VDD calculations with the Bonn A parameter set are com-
pared to data derived from elastic electron scattering [41].
Without rearrangement (DD) the central densities and there-
fore the saturation properties of nuclear matter are strongly
overestimated. The best description of the measured shapes
and, as seen in Table I, also of charge radii is obtained with
the VDD calculations. The theoretical point particle density
distribution, Eq. (69), are folded with a Gaussian proton
form factor [31]with g(r )~=0.8 fm.

In Table I and in Figs. 5 and 6, also results for the Bonn B
and C parameter sets are shown. Comparing the results of
the three NN potentials to the experimental binding energies
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FIG. 6. Charge density distributions of closed shell nuclei from
relativistic density dependent Hartree calculations using the Bonn C
parameter set. For captions see Fig. 4.

TABLE II. Experimental values of rms-charge radii and binding
energies per nucleon of the same nuclei as in Table I. Data are taken
from Refs. [26,41].

16O "Ca 4'Ca 208pb

I"ch

E/A
2.73
7.98

3.49
8.55

3.47
8.67

5.50
7.86

and charge radii in Table II and the measured charge distri-
butions, the Bonn A parameters are clearly superior. The
Bonn B and C potentials systematically underestimate the
binding energies and give too large charge radii when rear-
rangement is included. Interestingly, without rearrangement
the shapes and radii of the densities are described the best
with the Bonn C parameter set but on the cost of a strong
underestimation of binding energies (see Fig. 6 and Table I).
This observation can be understood as a consequence of the
saturation properties obtained from the different parameter
sets [15].Also in nuclear matter Bonn C describes fairly well
the saturation density but strongly underestimates the bind-
ing energy. With Bonn A the nuclear matter binding energy
is reproduced but a too high saturation density is found. The
results for Bonn B lie in between. The present DD results
differ from those of Brockmann and Toki [24] although the
same parameter sets are used. In part, this is related to a
different treatment of isovector and Coulomb interactions
and a somewhat different extrapolation of the DB results to
very low densities. In Ref. [24] the p meson was not in-
cluded and the Coulomb interaction is added perturbatively
at the end of the calculation [40].

In Ref. [33] rearrangement effects were studied micro-
scopically in nonrelativistic Brueckner-Hartree-Fock calcula-
tions. Interestingly, the same behavior as seen in Figs. 4 to 6
was observed. Without rearrangement the saturation density
in Ca was strongly overestimated. Actually, the overesti-
mation of the central density in Brueckner-Hartree-Fock cal-
culations is known for many years [43]. Including rearrange-
ment from various types of ground state correlations the
calculations were found to approach systematically the mea-
sured charge density distribution (see Fig. 7 of Ref. [33]).In

FIG. 7. Isovector shift in the charge densities of Ca and
Ca. The difference of the " ' Ca charge densities multiplied by

r~ is shown for the Bonn A parameter set. Results of DD (solid),
VDD (long-dashed), and SDD (dotted) calculations are compared to
data [41]. Experimental uncertainties are indicated by the hatched
band.

fact, the final result in [33] is in close agreement with our
Ca VDD calculation, Fig. 4.
In N=Z nuclei isovector contributions from the p meson

are only visible through higher order Coulomb effects. Thus
they are strongly suppressed in ' 0 and " Ca. A suitable way
to study the p-meson isovector mean field is to compare the
densities of different isotopes. In Fig. 7 the charge densities
of the symmetric Ca and the asyrrunetric Ca system are
compared. In order to emphasize the isotope shift the density
difference was multiplied by r . In agreement with experi-
ment [41], the Ca charge density is pushed to larger radii.
This effect is coming from an intriguing interplay of isosca-
lar and isovector interactions. In a neutron-rich nucleus like

Ca the isovector p-meson mean field is in the average at-
tractive for protons and repulsive for neutrons. Such a behav-
ior would lead to a stronger binding of protons in Ca as in

Ca. However, the bulk part of the matter distribution is
determined by the isoscalar interactions. For Ca, this
means that the excess neutrons exert a static polarization on
the protons. As a result, the charge density follows the total
matter density such that in Ca an excess proton density is
found in the surface region. In Fig. 7, the isotopic shift den-
sity is described very well by both the SDD and VDD rear-
rangement calculations. Larger deviations occur in the sur-
face region beyond 4 to 5 fm. This indicates the limitations
of the present interaction parameter sets which have been
determined in infinite nuclear matter calculations. From Fig.
7 it is seen that the DD calculation without rearrangement
gives only a very rough description of the isotopic shift den-
sity and, therefore, is practically ruled out.

The calculations indicate that rearrangement alters the
correlations between binding energies and radii in important
aspects. This observation is illustrated very clearly in Fig. 8
where theoretical and experimental binding energies are
shown as functions of the central charge densities of ' 0,

Ca and Pb. The diagram can be considered to represent
the saturation properties of finite nuclei and roughly corre-
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-5-
TABLE IV. Single particle energies of Ca obtained with the

Bonn A parameter set. Results without (DD) and with rearrange-
ment in the VDD and SDD description, respectively, are shown.

-6

I
-7-

Cl
UJ

-8

I I I I I

0.06 0.07 0.08 0.09 0.10 0.11

pc [fm ]

1s ii2 64.6
1P3' 47.1

1P»2 43 5

1 d5j2 29.5
2s i12 23.6
1d3(2 23.1

53.0 51.9
37.3 36.6
34.4 34.5
22.1 21.6
18.1 18.9
17,5 18.4

55.7
38.6
35.0

21.9 21.5
18.2 15.6
15.6 15.3

44.8 43.5
29.4 28.5
26.6 26.5
14.6 14.1
10.8 11.4
10.0 10.8

50~ 10
34~ 6
34~ 6

15.5
10.9
8.3

"Ca
Neutrons Protons

Shell DD VDD SDD Expt. DD VDD SDD Expt.

FIG. 8. Equation of state in finite nuclei. The experimental and

theoretical binding energies per particle of ' 0, Ca and Pb are

plotted against the central densities. Only for the Bonn A potential
(lower set of curves) and with rearrangement the region of mea-

sured values (shaded area) is approached. The DD, SDD, and VDD
results are denoted by solid, dotted, and dashed lines, respectively.
The upper set of curves shows VDD results with the Bonn B
(squares) and C (triangles) potential. The lines are drawn to guide
the eye.

sponds to a nuclear equation of state. The experimental val-
ues arrange in a narrow band with a slope towards larger
binding energies with increasing central density. This behav-
ior is mainly due to the properties of the Ca isotopes.
The best description is again obtained with the Bonn A pa-
rameters. The theoretical results reproduce the data surpris-

ingly well in the VDD description. VDD calculations with
the Bonn B and C are also shown in Fig. 8. They range far
off the data and are having the wrong slope. The probable
first attempt of a fit to a "Coester line" in a DB approach like
in Fig. 8 was made by Anastasio et al. [41].Our results only
partially confirm the conjecture of Ref. [41] that relativistic
effects are the main source of nuclear saturation. From Fig. 8
it is apparent that even in a fully self-consistent relativistic
DD-Hartree description the theoretical "Coester line" ap-
proaches the experimental values only if rearrangement is
taken into account. The charge densities, Figs. 4 to 6, and the
results of Fig. 8 clearly show that also in a relativistic theory
nuclear saturation is mainly determined by the density de-
pendent screening of in-medium interactions from the cou-
pling to the many-body background.

TABLE III. Single particle energies of ' 0 obtained with the
Bonn A parameter set. Results without (DD) and with rearrange-
ment in the VDD and SDD description, respectively, are shown.
The experimental values are taken from Ref. [26].

C. Single particle energy spectra

In single particle energy spectra more details of nuclear
dynamics are seen than in global quantities like binding en-
ergies. In the present context, their properties are especially
conclusive. From Eq. (63) it is evident that single particle
energies include the full rearrangement contribution while
they are canceled to a large extent in the total binding ener-
gies. In nonrelativistic theory this effect is known already for
a long time [30,31].The potentials shown in Fig. 3 indicate
that further constraints on the type of density dependence
might be obtained from the single particle spectra.

Proton and neutron single particle energies from DD,
SDD and VDD calculations with the Bonn A parameter set
are shown for ' 0 in Table III, ' Ca in Tables IV and V
and for Pb in Table VI and Figs. 9—12. When available the
theoretical results are compared to experimentally observed
separation energies [41].Even if one considers the large un-

certainties in the experimental values one is led to the con-
clusion that rearrangement improves the agreement signifi-
cantly. On the average, the VDD results are again closest to
the data. It should be noted that without adjustment of pa-
rameters the same quality of agreement is obtained as in
nonrelativistic HF calculations with phenomenological
Skyrme interactions, e.g. , in Ref. [31]. Also relativistic
Hartree-Fock calculations with interactions based on a pa-
rametrization of the full DBHF G matrix [16,26] do not pro-
vide a better description than the present density dependent
Hartree calculations with rearrangement. An exception is
found in Ca where the neutron energies are systematically

TABLE V. Single particle energies of Ca obtained with the
Bonn A parameter set. Results without (DD) and with rearrange-
ment in the VDD and SDD description, respectively, are shown.

4'Ca

Neutrons Protons

Shell DD VDD SDD Expt. DD VDD SDD Expt.

1 s i)~ 50.6 40.2
1p 3(2 28.0 20.9
1p i)2 22.3 16.7

38.6 47 46.2 36.0 34.4 40~ 8

20.3 21.8 23.9 17.1 16.4 18.4
17.5 15.7 18.2 12.9 13.6 12.1

16O

Neutrons Protons

Shell DD VDD SDD Expt. DD VDD SDD Expt.

1 s i' 65.4
1P3/2 48.3
1p i)2 45.6
1 d5)2 30.9
1 d3i2 25.6
2s i)2 24.6
1f7I2 14.~

52 8 51.7
38.0 37.0
35.9 35.5
23.2 22.6
19.2 19.8
19.2 19.9
9.5 9.0

62.2
46.7
43.7

16 29.9
12.4 24.4
12.4 21.7
9.9

48.9 47.8
35.3 34.5
33.1 32 9
21.3 22.6
17.2 17.9
15.9 16.7

55~ 9
35~ 7
35~ 7

20
15.3
15.8
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TABLE VI. Single particle energies of Pb obtained with the
Bonn A parameter set. Results without (DD) and with rearrange-
ment in the VDD and SDD description, respectively, are shown.

208Pb -5

Pb Neutrons

Shell

Neutrons Protons

DD VDD SDD Expt. DD VDD SDD Expt.

1s
1P3/2

1P s/2

1 d5/2

1 d3/2

2s
lf7a
lfsa
2P3/2

2P i/2

1 g9/2

& g7/2

2d5/2

2d3/2

1h»/2

1h9/2

2f7,2

1l1

2fs&2

3P 3/2

3P 1/2

72 3 58 9 58.3
65.2 52.5 51.9
64.6 52.0 51.6
56.5 44.9 44.4
55.2 43.9 43.6
51.6 41.4 41.2
46.8 36.6 36.0
44.5 34.8 34.8
39.8 31.5 31.6
38.8 30.7 31.0
36.3 27.7 27.2
32.7 24.9 25.2
28.2 21.7 22.1

26.5 20.4 21.2
25.5 19.6 20.2
25.4 18.4 18.0
20.5 14.7 15.3 10.8
17.0 12.2 12.8 9.7
14.5 9.1 8.6 9.0
14.7 10.3 11.4 7.9
136 94 104 83
12.7 8.7 9.8 7.4

60.5 46.6 46.1

53.9 40.7 40.2
53.3 40.2 39.8
45.7 33.6 33.1
44.3 32.5 32.3
40.0 29.6 29.5
36.3 25.6 25.1

33.9 23.7 23.7
28.6 20.0 20.2
27.6 19.2 19.7
26.1 16.9 16.5 15.4
22.4 14.1 14.4 11.4
17.2 10.4 10.9 9.7
15.6 9.1 10.0 8.4
14.1 8.0 8.8 8.0
15.5 7.9 7.5 9,4

TABLE VII. Spin-orbit splitting for the 1P shell in ' 0 and the
1d shell in Ca and Ca. The Bonn A parameter set is used.

too strong while the proton levels are described reasonably
well. Very likely, these deviations are related to the isovector

p meson. The neutron excess of " Ca enhances the p meson
contributions. In Pb isovector effects are less visible be-
cause they are hidden behind the stronger Coulomb interac-
tion of the protons.

The interaction parameters originate from symmetric
nuclear matter and, in fact, do not include the p meson cou-
pling. At present, DB calculations for asymmetric matter are
not available and it is an open question how charge asymme-
try would affect the coupling constants in general. A density
dependence of the p meson vertex can be expected but prob-
ably also the isoscalar couplings would be modified through
higher order effects. The results of Tables IV—VI and Figs.
9—12 lead to the conclusion that the description of the is-
ovector channel with a density independent p meson-nucleon
coupling constant is in vain.

In Table VII results for the energy splitting of spin-orbit
partners in the valence shells of ' 0 and ' Ca are shown.

3&in

CD 2fQg

3&ae

-10
1h~

CD

UJ

-15

exp. Bonn A Bonn B Bonn C

-20

FIG. 9. Neutron single particle spectrum near the Fermi energy
for Pb with rearrangement contributions obtained in the VDD
parametrization. The calculations are performed with the Bonn A,
B, and C parameter sets. The experimental values are taken from
Ref. [41].

Pb Protons

-5

. 3,.
2d-10

U) 1 gran

CD

UJ

Here one finds, that the splitting surprisingly is described
best by the DD calculations except for Ca. The most im-
portant contribution to the spin-orbit potential comes from
the nuclear surface where the density changes rather rapidly
from saturation to the free space regime. This means that the
spin-orbit splitting is determined to a large extent in a density
region where the DB interaction parameters cease to be reli-
able. The uncertainties are not coming from the parametriza-
tion of DBHF self-energies which are reproduced accurately
over the whole range of densities [25]. Rather the question
arises how reliable the nuclear matter DBHF results them-
selves are at low densities. Such doubts are supported by the
observation that parametrizations from different DBHF cal-
culations, e.g. [13],and t 15], are in reasonable agreement for
densities higher than about half of the saturation density but
start to disagree drastically at lower densities.

The sensitivity of the calculations on the low density re-
gion is also indicated by the strong shift of the 1h»/2 proton
level, Fig. 12 and Table VI. In the calculations the 1h»/2
state becomes the proton Fermi level while experimentally a
3s„z state is observed (see Table VI). The best result is ob-
tained in the VDD Bonn A calculations where the two levels
approach. But the 1 h

& &/2 state remains by about

Neutrons Protons
DD VDD SDD Expt. DD VDD SDD Expt.

-15 - ~a

exp. Bonn A Bonn B Bonn C
"O 57
"Ca 6.4

Ca 5.3

4.2
4.6
4.0

2.8
3.2
2.8

6.1

6.3
3.6

5.7
5.2
5.5

4.2
4.6
4.1

2.8
3.3
4.7

6.3
7.2
4.3

-20

FIG. 10. Proton single particle spectrum near the Fermi energy
for Pb. For captions see Fig. 9.
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Potential DD
Neutrons
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208Pb

SDD DD
Protons

VDD SDD

Bonn A

Bonn B
Bonn C

0.5650 0.0573
0.1472 0.0294
0.1226 0.0614

0.0966 0.5955
0.0423 0.1234
0.0593 0.0540

0.0211 0.0325
0.0910 0.0971
0.2237 0.2358

TABLE VIII. Mean y deviation of theoretical and experimental
neutron and proton single particle energies in Pb. As indicated,
results for the Bonn A, B and C parameter sets and without (DD)
and with rearrangement (VDD, SDD) are shown. In all cases rear-

rangement significantly improves the agreement.

-25

FIG. 11. Neutron single particle spectrum near the Fermi energy
for Pb without rearrangement (DD) and including rearrangement
in the VDD and SDD parametrizations. The calculations are per-
formed with the Bonn A parameter set.
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FIG. 12. Proton single particle spectrum near the Fermi energy
for Pb. For captions see Fig. 11.

100 keV above the 3si&2 state. This behavior is a persistent
feature of many relativistic structure calculations, e.g. , also
in the DBHF calculations of Boersma and MalAiet [16].
Taken together with the former observations and considering
the high orbital momentum of that state it is very likely that
the shift is caused by a too low attraction in the nuclear
surface. Interestingly, the position of the 1h»&2 proton level
is reasonably well reproduced in QHD calculations with em-

pirical coupling constants [2].
As a global test for the quality of description the mean

square deviations of theoretical and experimental single par-
ticle energies were calculated. DD, SDD, and VDD results
for protons and neutrons in Pb are shown in Table VIII.
The largest y values are obtained for the DD case without
rearrangement. With rearrangement the results of Table VIII
are in favor of the VDD description. Comparing the Bonn A,
B and C results one finds that the neutron spectrum seems to
be better described in the average by the Bonn 8 parameter
set while the proton results support the use of Bonn A. How-
ever, the differences in y are insignificant and taken to-
gether with the results for binding energies and charge den-
sities we are led to the conclusion that the Bonn A parameter
is superior.

V. SUMMARY AND CONCLUSIONS

An effective hadron field theory with medium dependent
meson-baryon vertices was presented. The dynamical struc-
ture of in-medium meson-nucleon vertices and the use of
nuclear matter results in an effective quantum field theory
was discussed. A density dependent field theory was obtained

by a functional mapping of nuclear matter vertices onto ef-
fective meson-baryon vertices. Covariance of the field equa-
tions, energy-momentum conservation and the thermody-
namical consistency of the theory were shown. The approach
provides a conceptual link between a microscopic many-

body description of in-medium interactions and an effective
hadron field theory.

A consistent treatment of medium effects in a density de-
pendent field theory leads to important changes in the baryon
field equations. In the Euler-Lagrange equations also varia-
tions of the vertex functionals with respect to the baryon
field operators have to be considered. It was shown that this
gives rise to rearrangement self-energies. To a large extent
their Lorentz structure is determined by the conditions that
the Dirac equation has to be covariant and vertices and
baryon field operators must commute. Parametrizations using
the nuclear vector (VDD) and scalar densities (SDD), respec-
tively, have been investigated. The SDD and VDD descrip-
tions differ dynamically. With VDD vertices only vector re-
arrangement self-energies appear while in the SDD case both
scalar and vector rearrangement self-energies were found. A
mean-field Lagrangian accounting for rearrangement was de-
rived. The relation to other approaches [20,24,26] became
apparent in the Hartree VDD description with vertices de-
pending on the local baryon number density.

The essential difference to a DD theory without rear-
rangement lies in the dynamical structure of the mean field.
In a pure DD theory the dependence of the interactions on
the bulk density is taken into account but the polarization of
the background medium is neglected. In a theory with rear-
rangement the quasiparticles are additionally dressed by high
momentum excitations of the background medium from the
short range WW repulsion. A whole class of one-particle-
one-hole and two-particle —two-hole diagrams is included
into the mean field such that the corresponding diagrams are
canceled in expectation values of one-body operators [9,33].
The intermediate configurations are far off the quasiparticle
energy-momentum shell. Such virtual off-shell excitations
introduce energy shifts and alter the momentum structure of
wave functions but leave the quasiparticle in a stationary
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state. It is therefore still possible to use a Hartree or Hartree-
Fock description.

Density dependent Hartree results without and with rear-
rangement were compared to data for charge density distri-
butions and energy spectra of finite nuclei ~ From the calcu-
lations it is obvious that rearrangement significantly
improves the agreement with data. Most impressively the
importance of rearrangement was seen in the charge densi-
ties. Only with rearrangement a realistic description of the
observed saturation densities, charge radii and binding ener-
gies could be obtained. The results indicate a sensitivity also
on the low density region. Applications to light neutron-rich
dripline nuclei in the neighborhood of "Li are likely to pro-
vide a deeper insight into interactions at low, but nonvanish-
ing density. The halo structure of these nuclei emphasizes
contributions from the low density region [43—45]. Different
from the situation in stable nuclei the transition from the
high to the low density regime is very smooth which should
allow studying the intrinsic density dependence of interac-
tions in more detail.

One has to be aware of other contributions like the cou-
pling to low energy core excitations [10,46] which are im-
portant for a precise description of single particle spectra.
They lead to dynamical self-energies which have a particular
strong inhuence on the valence shells. Dynamical polariza-
tion is beyond a Hartree or Hartree-Fock description. RPA
methods [46] should be used but at present relativistic
particle-core coupling calculations are not available.

The Hartree results favor the Bonn A parameter set and
the VDD description. For this combination binding energies,
charge radii and densities are well described over the whole
range of the mass table as indicated by the results for ' 0,

Ca, and Pb. Interestingly, also infinite nuclear matter
is described the best by the Bonn A parameters [15]. In
former DD Hartree calculations without rearrangement
[24,25] the Bonn C potential was found to provide a better
description of finite nuclei although nuclear matter properties
are poorly reproduced. Our rearrangement calculations re-
solve this conAicting finding and restore the dynamical con-
sistency between nuclear matter and finite nuclei.

In the calculations, no attempt was made to optimize the
input parameters. In this sense the calculations are parameter
free. The theory of Sec. II could be applied equally well on
an empirical basis. The density dependence of the vertices
could be determined by fitting a polynomial with adjustable
coefficients to data rather than to DB self-energies. In view
of the lack of theoretical information on medium effects in
isovector p and other meson vertices an empirical approach
could lead to valuable results on the density dependence in
these interaction channels. The theory can easily be extended
to hyperons and heavier baryons. Of particular interest are
applications to hypernuclei and strange matter in neutron
stars [5,4S] where an enhancement of medium effects can be
expected.

APPENDIX A: ENERGY-MOMENTUM CONSERVATION

neglected. Their vertices are density independent and give
standard contributions to the energy-momentum tensor
which are known to be energy-momentum conserving [32].

The energy-momentum tensor is defined by

gp V

+a'v F" — [a &pa 4—
cok a

(A2)

Energy-momentum conservation is given if B„T~ =0 holds.
The divergence of the kinetic term in Eq. (A2) is evalu-

ated with the help of the Dirac equation and the correspond-
ing equation for the adjoint baryon field

[y„(lal' Xl' —x—"~)—(M —X, ' —X," )]e'=0,
(A3)

V[y, (l a&+ X("&+X'"'&) + (M —X"'—X'"')]= 0
(A4)

which gives

a (l'Vy a'4') = Il'(a'[y (X " +X "
)

y(o) y(~))])qy (A5)

The divergence on the right-hand side of Eq. (A5) acts only
on the term in brackets. The derivative of the second term in
Eq. (A2) which includes the rearrangement potentials is split
into two parts

—[(a Vy w)X(")' —(a'V%)X'")]

and the sum of Eq. (A5) and Eq. (A6) gives

(A6)

Vy w(a"X" ) —Vw(a'X"') —(a'Vy %)X ' '

+ (a'Ve) X,'") . (A7)

From the first two terms in Eq. (A7) one finds

a Zt')~=a. [r„(p,) v~]

ar„=r„(p )a'v~+v~ 6 a'j',
~po

(AS)

8MT+"=—g""M++ a"p, , @,=V,w, c,v'„.
a(a~4;)

(Al)

Inserting the Dirac equation, Eq. (23), one finds

T"'= 'V a""P— "4'[ Xt") —X(")]'P+a 4a "lIi

In a density dependent hadronic field theory energy-
momentum conservation is found to depend critically on the
proper treatment of rearrangement. In order to avoid unnec-
essary complications the p meson and the photon will be

a r, ',"=a [r.(p,)e]
BI=r.(p, )a"a + e a"~„
~ps

(A9)
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and compensating contributions to the rearrangement parts in

Eq. (A7) are obtained. It is apparent that such a cancellation
would not have been obtained if rearrangement had been
neglected in the baryon field equations. In that case, the
terms involving the derivatives of the vertices would remain
and lead to a violation of energy-momentum conservation,
especially in finite nuclei. Equation (A8) leads to

APPENDIX B:THERMODYNAMICAL CONSISTENCY

Thermodynamical consistency requires the equality of the
pressure obtained from the thermodynamical definition, Eq.
(59), and from the energy-momentum tensor, Eq. (58), i.e.,

a, (iVy~a I—g~'4'[y, X'""—X,'"']9')

= r„(a.v.„)Rye —r.(a"e )e ~. (A10)
a hei 1 T".

apa ( pal
(81)

The right-hand side of Eq. (A10) is of the same form as in

the original o.-~ model. Making use of the meson field equa-
tions, Eq. (10) and Eq. (11), a straightforward calculation
shows that Eq. (A10) cancels with the derivative of the re-
maining part of T~ which contains the conventional meson
contributions. Thus energy-momentum conservation is ful-
filled if and only if rearrangement is taken into account in the
baryon field equations.

In the following, it is shown that this relation is fulfilled for
the density dependent hadron field theory. As in Appendix A,
we consider for simplicity symmetric nuclear matter and ne-

glect the p meson and the photon.
The left-hand side of Eq. (81) is evaluated with e= T

Eq. (57),

8 e 8 4P=
apa 1 pal apa (2'ir) J

a aI„
d'kE*(k)+ (P,g,"')+Pa "V'„

o~ ~pa

2 2

2 2 pg
(82)

wh«e E*(k)= Pk'+ I* . In spin and isospin saturated infinite nuclear matter the density is related to the Fermi momentum

by

32
Pa= 2kF3' (83)

and thus the first term in Eq. (82) can be split into a derivative with respect to the upper boundary of the integral, i.e., to

kF, and a derivative with respect to the implicit density dependence of m which enters via I

4 t k g 4 4 ( m* 8m*
pg d kE*(k)=- d kE*(k)+ 3 d k

apa (2m) J oF 3 akF (2m) (27r) J o E* aPa

1 4 ~ k' 4
d k

3 (27r) J oF E*(k) (27r) J

OIm*
d kE*(k) + p,

0~ ~pa
(84)

In Eq. (83) we made use of the relation

kFE*(kF) =— dk — + dkk E*(k)
E*(k)

(85)

Using that

8m*
ps ~ (p, &',")

~pa
(86)

the equality of the thermodynamical pressure, Eq. (82), and the field-theoretical pressure, given in Eq. (85), is apparent.
Finally, from Eq. (85) the Hugenholtz —van Hove theorem [37] is obtained immediately,

e+P= 3 ~
d kE*(k)+— d k

2M Jo 3 J o E*(k)
+Pa(&o + &o" ) = PaE(kF) (87)
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