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Proton momentum distribution in nuclei beyond He

DECEMBER 1995

M. K. Gaidarov, ' A. N. Antonov, '* G. S. Anagnostatos, '~ S. E. Massen, '~ M. V. Stoitsov, ' and P. E. Hodgson
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia I784, Bulgaria

Nuclear Physics Laboratory, Department of Physics, University of Oxford, Oxford OXI 3RH,-United Kingdom
(Received 28 November 1994; revised manuscript received 20 July 1995)

Proton momentum distributions of the ' C, ' 0, Ca, Fe, and Pb nuclei are calculated by a model using
the natural orbital representation and the experimental data for the momentum distribution of the He nucleus.
The model allows realistic momentum distributions to be obtained using only hole-state natural orbitals (or
mean-field single-particle wave functions as a good approximation to them). To demonstrate the model two
different sets of wave functions were employed and the predictions were compared with the available empirical
data and other theoretical results.

PACS number(s): 21.60.—n, 21.90.+f

I. INTRODUCTION

The systematic investigations of the nucleon momentum
distributions in nuclei extend the scope of the nuclear
ground-state theory. Until the mid-1970s more attention in
the theory had been paid to the study of quantities such as
the binding energy and the nuclear density distribution p(r).
This is related to the ability of the widely used Hartree-Fock
theory to describe these quantities successfully, which, how-
ever, are not very sensitive to the dynamical short-range cor-
relations. The experimental situation in recent years concern-
ing the interaction of particles with nuclei at high energies, in
particular the (p, 2p), (e,e'p), and (e,e') reactions, the
nuclear photoeffect, meson absorption by nuclei, inclusive
proton production in proton-nucleus collisions, and even
some phenomena at low energies such as giant multipole
resonances, makes it possible to study additional quantities.
One of them is the nucleon momentum distribution n(k)
[1,2] which is specifically related to the processes mentioned
above. However, it has been shown [3] that, in principle, it is
impossible to describe correctly both momentum and density
distributions simultaneously in the Hartree-Fock theory. The
reason is that the nucleon momentum distribution is sensitive
to short-range and tensor nucleon-nucleon correlations. It re-
jects the peculiarities of the nucleon-nucleon forces at short
distances which are not included in the Hartree-Pock theory.
This requires a correct simultaneous description of both re-
lated distributions p(r) and n(k) in the framework of nuclear
correlation methods.

The main characteristic feature of the nucleon momentum
distribution obtained by various correlation methods [1,2,4—
23] is the existence of high-momentum components, for mo-
menta k)2 fm ', due to the presence of short-range and
tensor nucleon correlations. This feature of n(k) has been
conArmed by the experimental data on inclusive and exclu-
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sive electron scattering on nuclei (e.g. , [1,2,24 —27]).We em-
phasize also the fact that theoretical results of various corre-
lation methods [9,18,19] as well as experimental data for
n(k) obtained by the y-scaling analysis [26] confirm the con-
clusion [5,28] that the high-momentum behavior of the
nucleon momentum distribution [n(k)/A at k~2 fm '] is
similar for nuclei with mass number A =2, 3, 4, 12, 16, 40,
and 56 and for nuclear matter (see [2], p. 139). More pre-
cisely, the high-momentum tails of n(k) are almost the same
for all nuclei with A~4 and thus He is the lightest nuclear
system that exhibits correlation effects via the high-
momentum components of the nucleon momentum distribu-
tion. Since the magnitude of the high-momentum tail is pro-
portional to the number of particles, this effect is associated
with the nuclear interior rather than with the nuclear surface.
This allows us in the present paper to suggest a practical
method to calculate the proton momentum distribution for
nuclei heavier than He (e.g. ,

' C, ' 0, Co, Fe, and Pb)
from that of He which is already known from the experi-
mental data (or from calculations within correlation methods
[2]). Here we should like to emphasize that, though our
method has some similarities to the one suggested in [16]
(extended and developed in [29—31]), in contrast with the
previous calculations, the correlation effects are extracted
from He rather than from nuclear matter. We should like to
mention also that the experimental data for n(k) in He
(which we use in our calculations) as well as for other nuclei
(which we use for a comparison) are not directly measured
but are obtained by means of the y-scaling analysis [26]
relying on the assumption that the 1/q expansion is valid. For
this reason we give an additional comparison of the data for
n(k) in He [26] with the theoretical calculations from [19].

In general, the knowledge of the momentum distribution
for any nucleus is important for calculations of cross sections
of various kinds of nuclear reactions. It is known that reliable
results for n(k) in sophisticated methods such as the exp(S)
method [5], the variational method with state-dependent cor-
relations [20], the generator coordinate method (with two
generator coordinates [32]), and others are available only for
light nuclei up to the ' 0 nucleus. The local density approxi-
mation (LDA) which has been applied to derive the spectral
function of finite nuclei and to calculate n(k) in ' 0 [29] was
used as a basis to calculate n(k) also in Ca [30] and in
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nuclei with A =16, 40, 48, 90, and 208 [31].
The model suggested in this work uses the transparency

of the single-particle picture, being within the framework of
a given correlation method by means of the natural orbital
representation [33].The latter enables us to specify in a natu-
ral way the high-momentum components in the momentum
distribution which are of the same magnitude for various
nuclear systems. The theoretical scheme of the method com-
bines the mean-field predictions for the nucleon momentum
distribution which are expected to be realistic at small k
(k~2 fm ') with the correlated part of the momentum dis-
tribution. In this sense, the method in this work has a simi-
larity to that from [29] proposed for calculations of the spec-
tral function P(k,E), whose energy integral the nucleon
momentum distribution is. We emphasize that in our work
this is done upon the common ground of the natural orbital
representation. The analyses of n(k) performed in this work
which use essentially the correlations contained in the He
nucleus (in contrast with the calculations based on nuclear
matter results already mentioned) can diminish the theoreti-
cal uncertainties on n(k) for medium-heavy nuclei.

n(k) =n„(k)+n„(k), (4)

where the first term is the hole-state contribution

ClF
1

nh(k)= g (2j+1)X~lR (k)l
n(nlj)

while the second one is the particle-state contribution

1
n„(k) = g (2j + I )X ~IR (k) I

AF

(1 Az
n"'(k)=N n "'(k)+ —g (2j+I)X„;,lR"„;, (k)l'4n Z

Using the assumed equality of the particle-state contributions
n„(k) for all nuclei, we obtain the following general relation
of the correlated proton momentum distribution of a nucleus
(A, Z) with that of the He nucleus:

II. THE MODEL

We start from the natural orbital representation [33],
where the proton momentum distribution normalized to unity
is of the form [2] where

(7)

1
n(k)= g (2j+I)h„,,lR„,,(k)l,4mZ „lj

1
Fw, z

1+ —g (2j+1)k„( —k), '
nlj

' 1/2
(8)

where X.„l, is the natural occupation number for the state with
quantum numbers (n, l,j) and

and F„z is the Fermi level for the nucleus (A, Z).
Taking Ca as an example the above expressions give

g (2j+ I)) „„=Z.
nlj

(2) Ca He 40C -40(
n '(k)=N n '(k)+ ' k„'lR„'(k)l

The radial part of the natural orbital in the momentum space
R„,,(k) is related to the radial part of the natural orbital in
the coordinate space R„,,(r) by

R„&J(k)= (2/~) '
( —i)' r j,(kr)R„&,(r)dr,

00
(3)

where j,(kr) is the spherical Bessel function of order l. We
call hole-state natural orbitals those natural orbitals for
which the numbers X„l, are significantly larger than the re-
maining ones, called particle-state natural orbitals [34]. It
was shown by the Jastrow correlation method [22] that the
high-momentum components of the total n(k) caused by
short-range correlations are almost completely determined
by the contributions of the particle-state natural orbitals. This
fact, together with the approximate equality of the high-
momentum tails of n(k) for all nuclei with A~4, allows us
to make the main assumption of this work, namely, that the
particle-state contributions to the momentum distribution are
almost equal for all nuclei with A~4.

Let us decompose the proton momentum distribution (1)
into two terms:

(9)

with

40c 1 40c 1 40c 3 40c= "1P' " 5' '1Q' "+
10 ' "

40c "Ca 4 He+ —Kid '+

As shown in [22], the hole-state natural orbitals are al-
most unaffected by the short-range correlations and, there-
fore, the functions R„I (k) in Eq. (7) can be replaced by the
corresponding Hartree-Fock single-particle wave functions
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TABLE I. Experimental values of the proton momentum distri-
bution in He [26]. The normalization is fn(k)d k= 1.

k

(MeV/c)
n(k)
(fm')

k

(MeV/c)
n(k)
(fm')

10

50
100
150
200
250
300

0.757 916
0.331 900
0.119684
0.039 692
0.011 019
0.002 855

350
400
450
500
550

0.001 065
0.000 749
0.000 615
0.000 548
0.000 380 10

0.00 0.50 1.00 1.50 2.00

k(fm )

2.50 3.00

or by the shell-model single-particle wave functions R„,,(k).
The hole-state occupation numbers X„I are close to unity
within the Jastrow correlation method [22] and we can set
them equal to unity with good approximation. The properties
of the hole-state natural orbitals and occupation numbers and
the decomposition of the proton momentum distribution in
the hole- and particle-state contributions [Eqs. (4)—(6)] lead
to a similarity of our model to that suggested for calculations
of the spectral function in [29]. In it the mean-field predic-
tions for the spectral function are combined with its corre-
lated part extracted from the nuclear matter calculations and
recalculated for finite nuclei within the local density approxi-
mation. In our model, the correlated proton momentum dis-
tributions can be calculated for any nucleus by means of the
occupied shell-model wave functions and the proton momen-
tum distribution of the He nucleus which is taken from [26]
and which contains short-range correlation effects.

III. CALCULATIONS AND DISCUSSION

In this work we calculate the proton momentum distribu-
tion for the nuclei '2C, &60 4oCa 56Fe, and Pb. Empirical
estimations for n(k) are available for the nuclei ' C and Fe
[26].

In our calculations of proton momentum distributions we
use two types of mean-field approximation (MFA) single-
particle wave functions: (1) single-particle wave functions
obtained within the Hartree-Fock method by using Skyrme
effective forces and (2) multiharmonic oscillator single-
particle (s.p.) wave functions (with different values of the
oscillator parameter for each state) which lead to a simulta-
neous description of ground-state radii and binding energies
[35,36]. In addition to [36], in our calculations the multihar-
monic oscillator s.p. wave functions are orthonormalized.
The values of all hole-state occupation probabilities X„&, in
Eqs. (7) and (g) are set equal to unity. The empirical data of
n(k) for He are taken from [26]. They are given in Table I.
As mentioned in the Introduction, the extraction of the data
for n(k) is model dependent. Due to this, we give in Fig. 1

the comparison of the data for n(k) in He from [26] with
the calculations within the variational Monte Carlo method
from [19].As can be seen from Fig. 1, the agreement is good
and later we use in our calculations the data for n(k) in He
from [26].

The calculated proton momentum distributions for the nu-
clei examined are given in Figs. 2—6, respectively. They are

FIG. 1. Proton momentum distribution n(k) versus k of "He.
The solid triangles represent the data from [26].The solid line is the
result from [19].The normalization is jn(k)d k= 1.

compared with the available data for ' C and Fe from [26]
and the proton momentum distributions obtained in various
theoretical methods, namely, for ' C from [22], for ' 0 from
[20,22,29—31], for Ca from [22,30], and for Pb from
[31].For the C nucleus the results for the proton momen-
tum distribution using the s.p. wave functions from the mul-
tiharmonic oscillator shell model but without including cor-
relations are given in Fig. 7. Hence, the necessity of
accounting for correlations becomes apparent.

We have the following purposes within the practical
method suggested in this work for realistic calculations of
the nucleon momentum distribution in light, medium, and
heavy nuclei. (1) We wish to show that the high-momentum
tail of the momentum distribution for any nucleus can be
approximated by that for He. We also check to what extent
this approximation affects the central part of the momentum
distribution. Since the low-momentum components of n(k)
are determined mainly by the hole-state natural orbitals con-
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FIG. 2. Proton momentum distribution n(k) versus k of ' C.
Calculations by using single-particle wave functions from the mul-
tiharmonic oscillator shell model [36] are presented by solid line
and those by using Hartree-Fock single-particle wave functions by
long-dashed line. The short-dashed line is n(k) calculated in the
Jastrow correlation method [22]. The solid triangles represent the
data from [26]. The normalization is as in Fig. l.
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FIG. 3. Proton momentum distribution n(k) versus k of ' O.
The lines 1 and 2 are the results of the present work using Hartree-
Fock and multiharmonic oscillator shell model [36] single-particle
wave functions, respectively. The lines 3, 4, 5, 6, and 7 are the
results from [22,30,20,31,29], respectively. The normalization is as
in Fig. 1.

FIG. 5. Proton momentum distribution n(k) versus k of Fe.
Calculations by using single-particle wave functions from the mul-
tiharmonic oscillator shell model [36] are presented by solid line
and those by using Hartree-Fock single-particle wave functions by
long-dashed line. The solid triangles represent the empirical data
from [26]. The normalization is as in Fig. 1.

tribution, the justification of the use of shell-model or
Hartree-Fock s.p. wave functions instead of hole-state natu-
ral orbitals can be checked. (2) We examine how well differ-
ent s.p. shell-model wave functions can describe also the
middle part of the momentum distribution which bridges the
shell-model behavior of the central part and the non-shell-
model behavior of the tail of the momentum distribution. (3)
We wish to apply this method in which correlation effects are
extracted from He to calculate n(k) as alternative to the
methods in which correlations are extracted from nuclear
matter and in this way, if possible, to diminish the theoretical
uncertainties on the momentum distribution for medium-
heavy nuclei.

One can see from Figs. 2 and 5 that the use of the single-
particle wave functions from the multiharmonic oscillator

shell model leads to better description of the experimental
data for the central part of the momentum distribution than
the use of the Hartree-Fock single-particle wave functions. In
both cases the main deviations from the experimental data
are for small momenta (k~0.5 fm '). They are larger in the
case when Hartree-Fock s.p. wave functions are used and
this is a common feature of the results for all nuclei consid-
ered. This is due to the well-known fact [37]that the Hartree-
Fock method cannot give a realistic wave function for the 1s

4Hestate in the He nucleus; namely, this function [R„"' (k)]
takes part in the expression for n(k) [Eq. (7)] in all nuclei.
Both types of s.p. wave functions, however, give similar re-
sults for the middle part as well as for the tail of the momen-
tum distribution in all cases considered.
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FIG. 4. Proton momentum distribution n(k) versus k of Ca.
The solid and long-dashed lines are as in Fig. 2. The dotted line is
n(k) calculated in [22]. The short-dashed line is the result from
[30].The normalization is as in Fig. 1.
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FIG. 6. Proton momentum distribution n(k) versus k of Pb.
Calculations by using single-particle wave functions from the mul-
tiharmonic oscillator shell model [36] are presented by solid line
and those by using Hartree-Fock single-particle wave functions by
long-dashed line. The results from [31] are given by short-dashed
line. The normalization is as in Fig. 1.
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results and those from [31]for Pb in the middle part of the
momentum distribution (Fig. 6).

It would be useful also to have estimations obtained ex-
tracting the correlation effects from nuclei lighter than He,
such as the deuteron or He. As shown, however, in the
variational correlation method (see Fig. 5 in [19]),the high-
momentum components of n(k) for the deuteron and He,
although with slopes similar to those of n(k) for He and
nuclear matter, are quite different from them. At the same
time, the high-momentum components of n(k) for He and
nuclear matter are almost the same. This is the reason to use
in our model correlation effects extracted from He and to
relate them to the properties of the nuclear interior.

FIG. 7. Proton momentum distribution n(k) versus k of ' C.
Calculations by using single-particle wave functions from the mul-

tiharmonic oscillator shell model [36] without including correla-
tions are presented by solid line. The solid triangles represent the
empirical data from [26].The normalization is as in Fig. 1.

The comparison of the results obtained by using different
mean-field single-particle wave functions can be useful for
the proper choice of the latter in the applications of the
model to practical calculations of n(k) in cases when the
knowledge of this quantity is necessary.

Our numerical check shows that the results obtained by
using values of the occupation probabilities X„I~ coming ei-
ther from the experiments or from nucleon-nucleon correla-
tion methods (e.g. , the Jastrow one [22]) are almost the same
as those obtained with X„I =1. As long as the correlated
values of X.„I, do not differ significantly from the value

X„& =1, the improvement is not sizable.
We emphasize that only hole-state occupation probabili-

ties and wave functions enter the main relationships of the
model [Eqs. (7) and (8)]. In this way the suggested model
can be easily applied to calculate momentum distributions in
nuclei taking into account the nucleon-nucleon correlation
effects. Concerning the particle-state contribution n„(k) [Eq.
(6)] to the proton momentum distribution [which is ac-
counted for in the model by means of the term n «(k) in Eq.
(7)] we would like to mention that the decisive role for the
existence of the high-momentum components in n„(k) is the
form of the particle-state natural orbitals R (which are
strongly localized in coordinate space) but not the particle-
state occupation numbers k (a)nF) [1,2, 13,22].

As can be seen from Fig. 3 the results for the proton
momentum distribution using the s.p. wave functions from
the multiharmonic oscillator shell model are in agreement (at
least for k)0.8 fm ') with those obtained in the variational
Monte Carlo method [20] and in the calculations based on
the local density approximation from [29—31].The same can
be seen from the comparison of our results for Ca with
those from [30] given in Fig. 4. In our opinion, the calcula-
tions within the suggested model (with correlation effects
from He) and the similarity of the results with those ob-
tained in methods with correlations from nuclear matter can
diminish in some sense the theoretical uncertainties on n(k).
We would mention that some differences remain between our

IV. CONCLUSIONS

In the present paper a correlation model for calculating
the proton momentum distribution in nuclei with A)4 is
proposed. The model combines the mean-field part of the
momentum distribution with its correlated part taken from
He on one and the same footing using the natural orbital

representation. The estimation of the correlated part of n(k)
is based on the well-known fact that the high-momentum
components of the momentum distribution normalized to
unity (at k~2 fm ') are nearly the same for all nuclei with
A~4. This fact, together with the use of the natural orbital
representation, gives the possibility to obtain realistic mo-
mentum distributions in nuclei (including the regions of
small momenta, k&2 fm ', and of intermediate momenta,
k-2 fm ') using only hole-state natural orbitals. The latter
are replaced to a good approximation by shell-model single-
particle wave functions. Thus the model gives a practical
way for an easy calculation of the momentum distribution for
any nucleus. The numerical results in this work confirm to a
great extent the abilities of the suggested correlation model
to give realistic estimations for the proton momentum distri-
bution in ' C and Fe and to predict the behavior of n(k) in
' 0, Co, and Pb nuclei. They are in agreement with the
results for the proton momentum distribution in ' 0 and Co
obtained within other theoretical methods in which the cor-
relation effects are incorporated using nuclear matter results
and with some empirical data for ' C and Fe obtained using
the y-scaling method. The knowledge of the realistic proton
momentum distributions obtained in this work would allow
us to describe in a similar way as is done in [38] quantities
which are directly measurable in processes of particle scat-
tering by nuclei.
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