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The C and Li mirror nuclei are studied in a microscopic n+ He+p+p and a+ H+n+n four-cluster

model using the stochastic variational method. The Be- Li and B- Li mirror subsystems are also investigated
with the same effective interaction. The calculated ground-state energies, the radii, and the densities of the

nucleons are in good agreement with the experimental data. The magnetic and quadrupole moments, except for
the magnetic moments of B and Li, are also reproduced well. The quadrupole moments of C and Be are

predicted to be —5.04 e fm and —6.11 e fm . A possibility of the existence of neutron (proton) halo struc-

ture is studied.

PACS number(s): 21.60.Gx, 21.45.+v, 27.20.+n

I. INTRODUCTION

The experimental and theoretical investigations of the
neutron- and proton-rich light unstable nuclei attract wide
attention due to their unique "halo" structures. To cope with
the formidable difficulty imposed by the nonuniform density
distribution of these nuclei we developed a microscopic mul-

ticluster model comprising Os-shell clusters. In our approach
[1] the wave function is an antisymmetrized product of the
internal states of the clusters and the functions of the relative
motions. Various cluster arrangements are combined to in-

clude the different correlations between the clusters. The
function of the relative motion is approximated by a linear
combination of nodeless harmonic-oscillator functions of
different size parameters. To keep the dimension of the basis
low, we apply the stochastic variational method (SVM) [1,2],
in which we select the "important" basis states by using an
admittance test. This procedure was successfully tested and

applied to the neutron-rich helium isotopes [1,3] and also to
five- and six-body systems [4].

This paper, inspired by the recently accumulated new ex-
perimental data and by the rapid development of theoretical
models, is devoted to the theoretical study of the C and

Li mirror nuclei in the o, +h+ p+ p and in the
n+ t+ n+ n four-cluster framework (h —= He and t —= H).
Their most important B= n+ h+ p and Li = n+ t+ n
three-cluster and Be= n+ h and Li= n+ t two-cluster
(mirror) subsystems are also investigated. The most impor-
tant experimental stimulations for this study include (1) re-
cent measurements of interaction cross sections and the de-
duced radii, and (2) the measurement of the magnetic
moment of C and the planned measurement of C quadru-
pole moment [5].

The structures of Be and Li are quite successfully de-
scribed by ct+ h and u+ t two-cluster models [6—8]. More
recently, due to the possible proton halo of sB [9,10] and to
the astrophysical interest, various three-cluster models [11—
14] have been developed for B and Li nuclei. The four-
cluster model of Li and C formed by adding one nucleon
to the three-body systems seems to be a natural extension of

these models. This description automatically includes the
Li+ n, Li+ n+ n and He(= ct+ n+ n) plus t cluster de-

compositions of Li and the corresponding mirror decompo-
sitions of C.

To understand the exotic nature of "Li, various
Li+n+ n-type three-body models have been used [15—17].

These models assume a simple passive Li core. This picture
is certainly oversimplified and therefore the investigation of
the structure of Li is necessary to understand the halo phe-
nomena of "Li.

Our treatment is unified: The same effective two-nucleon
(sum of central and spin-orbit) force is applied to the two-,
three-, and four-cluster systems and the same configuration
space is used for the mirror pairs; that is, the mirror systems
differ only in the Coulomb interaction. We calculate the
ground-state energies, the radii of the proton, neutron, and
matter distributions, and the magnetic and quadrupole mo-
ments. To explore the halo structure, the nucleon density
distributions and the one- and two-nucleon spectroscopic
amplitudes are also calculated.

The plan of this paper is as follows. In Sec. II we give a
brief outline of our formalism. The microscopic multicluster
model is defined in Secs. II A and II B. Section II C is de-
voted to demonstrating the efficiency and accuracy of the
SVM. Section III contains the results of the calculations. The
input parameters and angular momentum channels are dis-
cussed in Secs. III A and III B. The relative importance of
various arrangements is shown in Sec. III C by calculating
the so-called amount of clustering. Energies, radii, and mag-
netic and quadrupole moments are compared with experi-
ment in Sec. III D. Section III E discusses density distribu-
tions and the halo structure. In the last section we discuss the
results and summarize the most important conclusions.

II. FORMALISM

A. Microscopic multicluster model

In this subsection we briefly sketch our formalism. A
more exhaustive treatment is given elsewhere [1,4]. To de-
scribe the system of interacting clusters of nucleons, we
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build up a trial function which is a sum over the
various cluster arrangements p, (see Fig. 1), each associated
with a particular set of intercluster Jacobi coordinates
p", , . . . , p„,. The spins s; of the clusters are coupled to S,
and the orbital angular momenta I;=—l~ belonging to the Ja-
cobi coordinates p, are coupled to L The. wave function of
the intercluster motion is approximated by a linear combina-
tion of nodeless harmonic-oscillator functions (or "Gauss-
ians") of different size parameters:

,(~&, , p, ) = GI.(pk )exp[ —P;k(p, )']+~, ,(p, ), (1)

with

21+7/2 l + 3/2 1/2
P

«(~) =
+~(21+ 1)!! P; (x)=x'I', (x), (2)

where p~~ is the kth size parameter of the ith relative motion
in the cluster arrangement p, .

The wave function belonging to an arrangement p and
angular momenta [(st, . . . ,s„)S,(lt, . . . ,l„I)L]JM can
be written as

[(s~, . . . ,s„)S,[l, , . . . , l„~)L]JM ~ K, (s, , . . . ,s„)S[l,, . . . ,I„,)L I[ !s, , . . . ,s„)S lan[I, , ,I„,)L,(PI ~ . ~P„—I)]yM).
K

where M& is the intercluster antisymmetrizer and
is a vector-coupled product of the intrinsic

wave function of the clusters. The intrinsic wave functions
are constructed from harmonic-oscillator Slater determinants
with size parameter P, and the intrinsic function for single
nucleons is just their spin function. The function
I ~~«, )~(p,", . . . ,p„,) is a vector-coupled product

of the intercluster relative functions I', ,„(v„,p, ), where K
I I

stands for the set of the indices Ik), . . . ,k„,) of the size

parameters. The sequence of angular momentum coupling is

chosen so as to follow the pattern of the Jacobi coordinates.
By using an integral transformation [4], the antisymmetrized
product in Eq. (3) can be rewritten as a linear combination of
Slater determinants of Gaussian wave packet single-particle
functions. The matrix elements between Slater determinants
of these nonorthogonal single-particle states are evaluated
analytically by using the algebraic manipulation language
MATHEMATICA [18].

The variational trial function is a combination of different
arrangements and intercluster angular mornenta:

~Tr &
n) s( I s s n —I)

lLI (sI, . . . ,s„)S(ll, . . . ,l„I)L

We give a detailed form of the wave function in Appendix A
for the three-cluster case to guide the reader.

B. Cluster arrangements

The description of the a+ h+ n+ n four-body dynamics
is obviously nontrivial. In a variational framework one has to
find suitable trial functions to approximate the wave function
of the system. One possible way is to choose a particular
Jacobi arrangement (different Jacobi coordinate systems,
"cluster arrangements, " are shown in Fig. 1) and to decom-
pose the wave function into a complete set of partial waves
in this Jacobi coordinate system. The convergence of energy
with inclusion of higher partial waves is, however, rather
slow as will be shown later (see also [19]).This might be the
consequence of the fact that the description of different types
of correlations between the particles in a given Jacobi coor-
dinate system requires the inclusion of higher partial waves,
and that the contribution of higher partial waves to the as-
ymptotic part of the wave function is important. Both effects
are expected to be important in loosely bound halo nuclei.

The partial waves in a given cluster arrange-
ment form a complete set of states and the
different Jacobi coordinate systems are, therefore,
equi»lent. The components W((. .„)s,(l, , . . . ,l„,)L]JM

r

and P(( )s' (t' I' )L']JM in the cluster arrange-[( ls s n s I' '' n —I

ments p, and p,
' are, however, rather different: Any compo-

nent 9"[(„,. . . ,,„)s,(l, , . . . ,l„,)LiJM in a particular arrange-

ment can only be represented by an infinite sum in terms of
another arrangement. The relation of partial wave compo-
nents of different cluster arrangements is shown in Appendix
8 for a simple case.

The second possibility is to (1) decompose the wave func-
tion into partial waves in a given Jacobi coordinate system,
(2) truncate the higher partial waves, and (3) complete the
wave function by inclusion of low partial waves of different
Jacobi arrangements [see Eq. (4)]. This is the basic principle
of the coupled-rearrangement-channels method [20] and it is
widely used in cluster model calculations [12—14].

Each set of Jacobi coordinates implies a particular asymp-
totic configuration and emphasizes a particular type of cor-
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TABLE I. Energies of two-, three-, and four-nucleon systems interacting via the Volkov potential [21].

System

2N

Method

Numerical integration

SVM

Energy (MeV)

—0.545
—0.545

3N Faddeev equation [19]
SVM: (12)3, l, = l2 =0
SVM: (12)3, l, =12~4

SVM: (12)3+1(23) l, = l2=0
SVM: (3N) =(12)3+1(23)+2(13)l, = l2= 0
SVM: (3N) =(12)3+l(23)+2(13) li =12~2

—8.43
—8.00
—8.38
—8.25
—8.46
—8.46

4N Hyperspherical harmonics [22]
SVM: (2N)+(2N), l, =l2=l3=0

SVM: (3N)+N, l, =l2=13=0
SVM: (3N)+N, 1,+12+Is~2

SVM: [(2N)+(2N)]+[(3N)+N], Ii=12=is=0
SVM: [(2N)+(2N)]+ [(3N)+N], Ii+ 12+ is~2

—30.40
—29.17
—29.27
—29.41
—30.42
—30.42

relations. Our experience is that, to describe the motion of
the system for short distances, it is enough to choose a few
states in any of the arrangements, and those provide a major
part of the total binding energy. However, it is very difficult
to describe the "asymptotic" region belonging to one ar-

rangement by a basis that conforms to another arrangement,
and that is why it is useful to include several arrangements,
even if these asymptotic regions do not contribute to the
binding very much. For example, one cannot expect a perfect
description of a separation of Li into (ut) and (nn) by a
truncated basis of the form of ((nt)n)n, and that is what is
improved by the inclusion of a set of functions of the form of
(nt)(nn).

C. Stochastic variational method

The numerous possible arrangements and angular mo-
menta combined with the size parameters in the expansion
make the dimension of the basis prohibitively large. These
basis functions are, however, nonorthogonal and not all of
them are equally important. In a previous paper [1]we tested
different methods to select the parameters p~k that span most
adequately the state space, while the dimension of the basis
is kept feasible. The most efficient procedure found is the
following [4]. We generate size parameter sets by random
choice from a region which is physically important. The pa-
rameter sets that satisfy an admittance condition are selected
as basis states. Let us assume that N basis states are already
selected and the energy in this N-dimensional basis is F&.
Then we admitted a candidate if it, together with the previ-
ously selected basis states, lowers the energy more than a
preset value a:

+N+1 +~N

To avoid being trapped on Hat plateaus by this condition, we
decrease a dynamically during the search. The angular mo-
mentum channels and cluster arrangements are also ran-
domly chosen.

V(r) = 144.86e ' " —83.34e ' " (MeV). (6)

As several calculations using this potential are available, we
can compare the solutions by the SVM to those of other
methods available in the literature. For the two-nucleon sys-
tem (L=o) we used five basis functions with different
widths.

To illustrate the role of the combination of the cluster
arrangements, we consider the case of three-nucleon system
by treating the nucleons as distinguishable particles. Denot-
ing the nucleons as I (neutron with spin up), 2 (neutron with

spin down), and 3 (proton with spin up), we have three Ja-
cobi arrangements (12)3, 1(23), and 2(13). The conver-
gence of energy by succesive inclusion of these states is
shown in Table I. By combining the cluster arrangements the

energy converges even with the use of l&=l2=0 partial
waves only. By expanding the wave function in one particu-
lar Jacobi system up to l& =12~4, however, one still misses

If ~=25 successive candidates fail to fulfill the condition
[Eq. (5)], we divide e by 2 and continue the search. The
starting value is e = 0.25 MeV in the present calculation and

the search is terminated at a=0.25/2 MeV=0. 001 MeV.
The parameters a and ~ control the rate of convergence. The
present values have been found to give reliable solutions and
economical calculations: Too big a and ~ might further re-
duce the size of the basis, but then more matrix elements
have to be calculated and/or the basis will not be reliable
enough, while too small values may lead to the acceptance of
a great number of unimportant basis states. Each calculation
was repeated several times to check the convergence. This
procedure gives excellent numerical convergence in energy
and reduces the number of trial terms considerably.

We present a test example in order to show the accuracy
and effectiveness of the SVM and to establish that the inclu-
sion of cluster arrangements is needed for an accurate solu-
tion of the dynamics of a multiparticle system. For this pur-

pose we solve two-, three-, and four-nucleon problems using
a simple spin-independent Volkov interaction [21]defined as
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reaching the full convergence. By using a properly antisym-
metrized wave function of three indistinguishable nucleons,
one gets the same energy as in the case of the combination of
the arrangements (12)3, 1(23), and 2(13). The dimension of
the basis in the calculations was around 20.

In the case of the four-nucleon system (L= 0), the (2N)
+(2N) and (3N)+N arrangements were used and partial
waves satisfying the conditions ( —1)'~+'2 '3= 1,
l&+l2+l3~2 were coupled. The results are compared in
Table I. It is impressive that the solutions by the SVM agree
very well with those of other methods. One can see in Table
I that if we use only one arrangement and truncate the partial
waves to l] =l2=l3=0, then a considerable amount of the
binding energy is missing. Table I also shows that the con-
vergence of the energy with including higher partial waves in
a given arrangement is rather slow. The calculation of matrix
elements with higher partial waves, at the same time, espe-
cially for complex systems, is rather time consuming and
would make the calculation unfeasible. By combining, how-
ever, the two arrangements, (2N)+(2N) and (3N)+N, in-

cluding only l&=I2=l3=0 partial waves, the energy be-
comes —30.42 MeV and this value changes less than 0.001
MeV by including higher partial waves.

The optimal choice of the variational basis is a very dif-
ficult task because of either of the following reasons: (1) the
optimization of nonlinear parameters is tedious or (2) if all

parameters are linear, then the size of the basis becomes
extremely large. We have tried to optimize the basis by using
Powell's method [23], but we failed to optimize more than
60 nonlinear parameters at the same time because the opti-
mization became extremely slow and was often trapped in

poor local extrema. This optimization worked very nicely in
a three-body problem but the 60 nonlinear parameters were
not enough to find the best energy in four-body case. The use
of some more advanced optimization strategy could partly
solve this problem but the high numerical cost of the evalu-
tion of the matrix elements can make such calculations too
time consuming. In the second alternative, one chooses the
size parameters of the basis as a geometric progression [20].
Thus the number of nonlinear parameters is reduced to the
two parameters of the geometric progression that can more
easily be optimized or selected by physical intuition. One
serious problem here is that the dimension of the basis be-
comes very large even for a four-body system. By assuming
that k size parameters are sufficient to expand the function of
the relative motion (k is usually about 6—10), the dimension
of the basis for a four-body system is k times the number of
different angular momentum channels of relative motions.
The SVM lies somewhere between these two alternatives.
The nonlinear parameters are not fully optimized, but the
dimension is kept low by selecting new elements which are
sufficiently good with respect to the previously selected
ones.

III. RESULTS

A. Input parameters

We approximate the internal states of o. , t, and h by Os
harmonic-oscillator Slater determinant wave functions of a
conunon width parameter. The width parameter p= mco/fi. is
adjusted to get nearly correct values for the sum of the radii

B.Angular momentum channels

The model space of the 2+ ground state of the Li and
B nuclei was constructed by using all arrangements and

angular momentum configurations that can be physically rel-
evant. To build up the intuitively most important configura-
tion, we added one nucleon with l2=1 to the Li=u+t and
Be=u+h two-cluster systems with l] =1 and coupled the

relevant angular momenta to form the 2+ configuration. The
He=cv+n plus t and the Li=n+p plus h partitions,

TABLE II. Cluster decomposition of Li and B. The arrange-
ments in the first column are those of Li. The corresponding mirror
arrangements are not shown.

Arrangement

Channel

l) l2 L S
Amount of clustering

'B

(nt)n

(un)t

(tn)n

1 1 1

1 2 0
1 2 1

1 1 1

1 2 0
1 2 1

1 1 1

1 2 0
1 2 1

0.95
0.01
0.02
0.95
0.02
0.01
0.94
0.01
0.01

0.96
0.01
0.01
0.95
0.01
0.01
0.94
0.01
0.01

of the free o. plus t and u plus h clusters and to minimize

their energies (p=0.52 fm ). The results are not too sen-
sitive to the choice of the size parameter within a reasonable
limit, as we will discuss later.

We used a Minnesota effective nucleon-nucleon interac-
tion [24], which is a sum of central, Coulomb, and spin-orbit
potentials of Gaussian form. The strength of the spin-orbit
force was set to give the correct spacing between the 3/2
and 1/2 states of the Li and Be subsystems. The u pa-
rameter of the central part was set to get overall agreement
between the experimental and model energies of the states of

Be, B, Li, and Li (u = 1.00). This force, by setting the u

parameter to the five- and seven-nucleon systems, was suc-
cesfully used earlier to describe the Li, He, Li, and

Be nuclei in various models [6,11].By fixing the u and p
parameters as described above, the model contains no free
parameter. We note that we tried different choices of the size
parameter p and changed u accordingly, but the separation
energies and sizes of the two-, three-, and four-body systems
remained nearly the same. We accepted the present value as
it minimizes the sum of the energies of the free clusters.

For the calculation of the bound 3/2 and 1/2 states of
Be and Li the l=1 partial wave and 7 size parameters

were used. The experimental and calculated separation ener-

gies of the 3/2 ground states of Be and Li will be com-
pared later (see Fig. 2). The level spacings between the
3/2 ground states and the 1/2 excited states of these nuclei
are correct as the strength of the spin-orbit force was ad-
justed to reproduce it: E'»2 ——E3&2-=0.50 MeV in the
model (0.48 MeV experimentally) for Li and E, t2

E3/2 = 0.48 MeV in the model (0.43 MeV experimen-
tally) for Be.
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FIG. 1. Different arrangements

used in the calculation for Li.
The small circles are neutrons, the
medium-size circle is the alpha
particle, and the largest circle is
the triton. The orbital angular mo-
menta for the relative motion be-
tween the clusters connected by
solid line are denoted by l;. The
spin of the clusters is s;= 1/2; the
spin of the alpha particle is zero
and it is omitted.

(e)

I
s S

1

'3

((nn)u )t ((un)n)t

which lie 0.89 MeV and 1.97 MeV above the three-body
threshold, are also included with appropriate angular mo-
mentum labels. Finally we included the higher-lying n(tn)
and a(hp) arrangements. As the even partial waves are not
favorable for the u+n, t+n, and u+t (and of the corre-
sponding mirror) relative motions, the lowest physically im-
portant partial wave set to form a positive parity state is
I, = /2 = 1. The higher partial waves (l, = l, l2 = 3 and

l, =3,l2= 1) were found to give no significant contribution
to the energy and to the wave function. The spins of the
clusters were coupled to 5=0,1. The list of the cluster ar-
rangements and angular momentum channels found impor-
tant and used in the calculation is given in Table II.

To describe Li in the u+t+n+n four-body model all
Jacobi arrangements and angular momentum sets are in-
cluded that are expected to be important: The ((at)n)n con-
figuration [see Fig. 1(a)] is best suited to describe a
Li+ n+ n "shell-model-like" configuration. The arrange-

ments ((an)t)n [Fig. 1(b)] and ((tn)n)n [Fig. 1(c)] em-

phasize the correlation between the n particle and a neutron
and the triton and a neutron, respectively. The arrangement
(nn)(at) [Fig. 1(d)] prefers a Li plus a dineutron cluster.
The arrangements in Figs. 1(e) and 1(f) correspond to
6He+t-type fragmentation containing the a(nn) and
(un)n subsystems that are found to be important to describe
the He nucleus [1,3]. The first three arrangements [Figs.6

1(a), 1(b), and 1(c)] can also be viewed as Li+n-type con-
figurations because they include the same three-body Jacobi
coordinate systems (at)n [Fig. 1(a)], (an)t [Fig. 1(b)],
and (tn)n [Fig. 1(c)] as those used in the description of

Li.
This four-cluster model with different arrangements can

be related to the multiconfiguration multicluster model [6].
In the multiconfiguration multicluster model one divides the
nucleus into different two-cluster systems allowing for ex-
cited states of the clusters as well, and combines those con-
figurations to form the wave function. In this framework our
model can be considered a combination of Li+n,
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TABLE III. Energies, matter radii, and quadrupole moments of Li and B in different subspaces. If for
a given arrangement the angular momenta (l, l2)LS are not specified, then all sets listed in Table II are

included. The arrangements belong to Li, The corresponding mirror arrangements are not shown. The
experimental energies are —4.50 MeV for Li and —1.73 MeV for B.The configurations of B marked by
an asterisk are unbound with respect to the Be+p threshold. The energy of Be relative to the n+h
threshold is —1,60 MeV.

Subspace

configuration 'Li
E (MeV)

8B 'Li
r (fm)

8B
Q(efm)

Li 8B

(ut)n: (11)11
(un)t: (11)11
(tn) u: (11)11
( ut) n: (11)11, (11)21, (11)20
(ut)n
(un)t
(tn)a
(ut)n+ (an)t
(at)n+ (tn) u
(un)t+(tn)u
( a t) n + (un) t+ (tn) u: (11)11

full model

—3.90
—3.64
—3.37
—4.03
—4.09
—3.80
—3.53
—4.24
—4.22
—4.06
—4.09
—4.31

—1.60*
—1.60*
—1.60*
—1.60*
—1.60*
—1.60*
—1.60*
—1.73
—1.69
—1.60*
—1.66
—1.78

2.43
2.53
2.44
2.42
2.41
2.49
2.42
2.45
2.42
2.45
2.44
2.44

2.56
2.50

2.62
2.56

2.01
1.59
1.50
2.11

2.14
2.18
1.87
2.19
2.24
2.14
2.17
2.23

6.71
6.48

5.80
6.65

Li+(nn), and He+t two-cluster systems including ex-

cited states of the constituents.
To form the 3/2 ground state of Li we assume the total

orbital angular momentum to be L= 1 and couple the spins
of the clusters to S= 1/2. We restrict ourselves to the lowest
possible partial wave sets: l

&

= 1,l2 = O, l3 =0; l )
= 0, l2

= 1,l 3
=0; l

&
= 0, l2 = 0, l 3

= 1; and l
&

= l 2
= l 3

= 1. The par-
tial waves (see Fig. 1) are coupled as ((l&lz)l &2ls)L and the
spins of the clusters s ~

= s2 =ss = I/2 (see Fig. 1) combined
as ((sts2)st2ss)S to form the total spin S. (The spin of the
a particle is zero and we omitted it to simplify the notation. )
The intermediate quantun numbers l &2 and s&2 are chosen to
be l &2= 0,1 and s &2= 0, 1. The number of possible configura-
tions is reduced by excluding the unfavorable even partial
waves from the a+t, o.+n, and t+n relative motions and
the two-neutron configurations in singlet-odd or triplet-even
relative states. The model space defined by combining the
cluster arrangements with these angular momentum labels
will be referred as model space A.

C. Cluster decompositions

To explore the relevance of the different cluster arrange-
ments and the angular momentum decompositions we per-
formed several test calculations restricting the model space
by omitting configurations. These pilot calculations reveal
the relative importance of the different channels and check
the completeness of the model space. In the first example, we
included only the presumably most important configuration:
the (at)n arrangement with (l, l2)LS=(11)11 for Li (see
Table III). The binding energy of Li was 0.4 MeV smaller
than in the full calculation and the quadrupole moment also
decreased by 10%. Different Jacobi coordinate systems with
the same (l, l2)LS = (11)1 1 angular momentum channel
give different energies, showing the different natures of the
cluster arrangements. By including other angular momentum
components in the (ut)n arrangement, the energy decreases

but, as we mentioned before, the convergence is slow. We
also calculated the energy in different cluster arrangements
using all angular momentum sets that are listed in Table II.
The (ut)n arrangement gives the lowest energy for "Li as
one may expect, but none of the arrangements gives a bound
state for B with respect to the Be+p threshold. We then
combined two arrangements in all possible ways to see
whether any of the three arrangements can be omitted. The
results suggest the relative importance of the (at)n and

(un) t configurations, but no arrangement seems to be redun-
dant. The full calculation was repeated several times and was
terminated when we had convergence for not only the energy
but also the calculated physical quantities. The dimension of
the basis was about 80. To check the completeness of the
model space we included some other partial waves such as

(l, l2) =(33),(13),(31), as well. The energy changed less
than 0.01 MeV so that the model space is nearly complete. In
the case of B, due to its small binding energy, one should be
careful in building up the wave function.

The wave function in this nonorthogonal basis can be
characterized by the "amount of clustering" [25]. The
amount of clustering is defined as the weight of the compo-
nent of the wave function that lies in the subspace of the
model space associated with that particular clusterization.
Each subspace bears an arrangement label p, and a set of
angular momentum labels. Since the subspaces are not or-
thogonal, the sum of the amount of clustering over the sub-
spaces is not necessarily unity. These weights for the various
channels are listed in Table II. One finds that each arrange-
ment with (l, l2)LS=(11)11 angular momentum label has
large and almost equal weight, but, as one learns from Table
III, if the other angular momentum components are ne-
glected, the binding energy decreases considerably. The
weights of the components of the wave function with differ-
ent angular momenta (L,S)=(l, l), (2,0), and (2,1) are
96.0%, 1.6%, and 2.4% in Li and 96.5%, 1.6%%uo, and 1.9% in
8B
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Channel

Arrangement l
&

l 2 l &2 l3 $]2

Amount of clustering
'Li 'C

((ut) n)n

((un) t)n

((tn) a)n

(nn)(ut)
((nn) u)t

((un) n)t

1 1 1

1 0 1

1 0 1

1 1 1

1 0 1

1 0 1

1 1 1

0 1

0 0 0
0 0 0
0 1 0
1 0 1

1 1 0

1 1

0 0
0
1 1

0 0
0 1

1

0 0
1 0
1 0
1 0
0 0
1 0

0.89
0.19
0.09
0.87
0.11
0.07
0.80
0.13
0.40
0.34
0.21
0.43
0.23

0.84
0.20
0.12
0.86
0.11
0.06
0.82
0.14
0.44
0.22
0.13
0.29
0.17

To find the most important configurations of the four-
cluster system, we first carried out a calculation in model
space A. Test calculations show that this model space is close
to a complete set and the inclusion of a few higher partial
waves does not change the energy and the radius of the four-
body systems. The physical quantities calculated in model
space A will be discussed later. (See Tables V and VI, be-
low. ) This model space, however, is quite extensive. The
wave function in this model space is a combination of doz-
ens of different components (cluster arrangements with vari-
ous angular momentum labels), and many of these compo-
nents have only a small weight in the total wave function. To
understand the structure of the wave functions and the physi-
cal significance of tne different components, it is worthwhile
to define a model space by selecting only a few dominant
configurations. To this end we have calculated the weights
(amounts of clustering) of the components of the selected

TABLE IV. Cluster decomposition of Li and C. The arrange-
ments in the first column are those of Li. The corresponding mirror
arrangements are not shown. See also Fig. 1. L = 1, S= 1/2,
J= 3/2.

wave function in model space A and defined a model space
(model space B) for Li and C by excluding the angular
momentum channels with weights less than 0.03. This model
space B consists of the most important configurations (see
Table IV). [A similar reduction of the model space can be
achieved by using a larger value for e of the acceptance
criteria in Eq. (5).] The calculation in model space B shows
that the energy increases by 0.31 MeV in the case of Li and

by 0.13 MeV in the case of C. The calculated physical
quantities (magnetic and quadrupole moments, proton, and
neutron radii), at the same time, remain essentially the same
(see Table V). By accepting this energy loss as the price for
a simpler model space, one may use model space 8 to inves-
tigate the role of the different cluster arrangements and to
show the relative importance of the most important configu-
rations. This model space may also be a starting point to
build up the model space of the more challenging
n+ t+ n+ n+ n+ n-type six-cluster calculation for "Li.

The effect of the omission of cluster arrangements is in-
vestigated in Table V. The four-body separation energy of

Li is 0.3—1.5 MeV smaller in a single cluster arrangement
calculation than in the full calculation including all configu-
rations listed in Table IV. The matter radius and quadrupole
moment are somewhat more diverse in different arrange-
ments than they were in the case of Li, due probably to the
differences in separation energies. The basis size of the cal-
culation in model space B is about 150.

In the case of the four-cluster systems the wave function
is more complex than in the case of Li and sB (see Table II
and Table IV), and the interplay between the different com-
ponents seems to be important. We conclude that the wave
functions of these three- and four-cluster systems are combi-
nations of various different components and, although some
of these components have small weights, they contribute to
the energy and to the physical quantities considerably. A ne-
glect of these components requires due care especially in the
case of light exotic nuclei with extended density distribution.
It is worthwhile to emphasize here that repeating the calcu-
lation starting from different random points leads to the same
weights up to the digits shown in the tables.

TABLE V. Energies, matter radii, and quadrupole moments of Li and C in different subspaces. All sets
of the angular momenta that belong to a given arrangement in Table IV are included for the first six
configurations. The model space A is an extensive model space defined in Sec. III B. The model space B is
the combination of those configurations that are listed in Table IV. The arrangements belong to Li and the

corresponding mirror channels are not shown. The experimental energies are —8.56 MeV for Li and
—3.02 MeV for C.

Subspace
configuration 'Li

F (MeV)
'Li

r (fm)
9C

Q (efm)
'Li 'C

((at)n)n
(ut)(nn)
((nn) a)t
(u(tn))n
((ut)n)n+ (a(tn))n+ ((an)t)n
((nn) u)t+ ((an)n)t
model space B
model space A

—7.18
—6.98
—6.01
—7.05
—7.24
—6.35
—7.74
—8.05

—1.96
—1.90
—1.77
—1.98
—2.04
—1.85
—2.49
—2.62

2.43
2.38
2.37
2.40
2.40
2.35
2.39
2.39

2.47
2.47
2,58
2.53
2.49
2.56
2.50
2.50

—2.55
—2.60
—2.30
—2.80
—2.72
—2.39
—2.69
—2,74

—5.16
—5.22
—5.41
—5.29
—5.12
—5.44
—5.09
—5.04
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FIG. 2. Experimental (solid line) and calculated (dotted line)
energies of the two-, three-, and four-body systems.

D. Comparison with experiment

The calculated and experimental energies of the ground
states are compared in Fig. 2. The overall agreement is rea-
sonably good. The Li, Be, and B nuclei are slightly over-
bound, while the Li, Li, and C nuclei are somewhat un-
derbound. One cannot expect to improve the model energies
further by using the same effective nucleon-nucleon interac-
tion for all of these nuclei. The calculated physical quanti-
ties, in test runs, did not show strong sensitivity to small
changes in the model energy. That is, if we tune the force
parameter u for any of the systems separately, so as to take
the model energy closer to the experimental value, the results
do not change substantially. Such a tuning of the parameters,
however, would make the calculated quantities of different
nuclei incomparable.

The proton, the neutron, and the matter radii, assuming
pointlike nucleons, are included in Table VI. The only infor-
mation about the size of the unstable systems comes from the
measurement of their interaction cross sections on different
targets. The proton, neutron, and matter radii are then deter-
mined by assuming some simple (usually Gaussian or
harmonic-oscillator) density distributions in Glauber-type re-
action models and fitting the interaction cross section data
[26]. These model-dependent empirical data are listed in the
"experimental" line of the Table VI. The interaction cross
section of C on carbon target at 800 MeV/nucleon has re-
cently been measured, and found to be slightly larger than
that of Li. The empirical radii of C are, therefore, sup-
posed to be close to the mirror values, but the empirical radii
of C have not been determined yet.

The model and the empirical data are in good agreement
for the Li isotopes, but the agreement for the proton-rich side
is not so good. The interaction cross sections of the mirror
pairs were found nearly the same experimentally. The corre-
sponding empirical radii therefore are almost equal for mir-
ror pairs. The model, however, tends to give larger radii for
the proton-rich side. This seems to be reasonable because,
due to the repulsive Coulomb interaction, the separation en-
ergies (see Fig. 2) of Be, B, C are much smaller than
those of the respective mirror nuclei (the difference between
the separation energies of Li and B is 2.8 MeV and that of

by

E. Density distributions

The proton and the neutron density distributions, defined

2x10 "—

1x10 ' =
~~ ~

E

nfl
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j
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r (frn)

FIG. 3. Proton density distribution of Be (short dashed line),
Li (dotted line), and neutron density distribution of Be (long

dashed line), Li (solid line).

Li and C is 5.5 MeV), and therefore they are less tight
systems. The larger radii on the proton-rich side can be at-
tributed to the difference in the density distributions at large
distances, as shown later.

The difference of proton and neutron radii, the skin
"thickness, " is less than 0.5 fm in all cases. The thickest skin
is found in the case of B (0.49 fm) and C (0.48 fm). These
differences seem to be reasonable consequences of the large
proton excess. On the neutron-rich side, the thickness of skin
of Li and Li is about 0.4 fm.

The experimental information on the magnetic and quad-
rupole moments is also available for some of these nuclei.
These moments may serve as probes of the spatial extension
and angular momentum content of the model wave function.
No effective charge was employed. The calculated magnetic
and quadrupole moments also agree well with the available
experimental data. The only noticeable disagreement occurs
in the case of the magnetic moment of Li and B. Most
likely this is a consequence of the fact that we approximated
the internal states of h and t by single Slater determinants. In
this simple description of the three-nucleon clusters, the two
like nucleons have opposite spins and the contribution of the
spins to the magnetic moment comes from the third nucleon.
The magnetic moments of t and h in our model are, there-
fore, taken equal to those of the proton and neutron, respec-
tively. If, instead, the observed values of the magnetic mo-
ments were used, the discrepancies in the Li and B
magnetic moments would be significantly reduced.

The quadrupole moments of Be and C have not yet
been determined experimentally. The model predictions for
the quadrupole moment of Be is —6.11 e fm, and that of

C is —5.04 e fm .
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FIG. 4. Proton density distribution of B (short dashed line),
Li (dotted line), and neutron density distribution of B (long

dashed line), Li (solid line).

FIG. 5. Proton density distribution of C (short dashed line),
Li (dotted line), and neutron density distribution of 9C (long

dashed line), Li (solid line).

(where P; projects out the protons or neutrons), are also de-
termined. The density distributions po(r)//4m, belonging to
l =0 partial wave are shown in Figs. 3—5. The nucleon dis-
tributions in the Li and B nuclei are rather alike (Fig. 3).
The tail part of the proton distribution of B is significantly
larger than that of Li (Fig. 4), causing considerable differ-
ence in the radii (see Table VI). The difference between the
proton and neutron density distributions of C is even larger
than that of sB (Fig. 5), but this is natural as it has one more
proton. The difference between the proton and neutron radii,
at the same time, is nearly the same.

The density distributions of B (Fig. 6) and of Li (Fig.
7) of our model are compared to those of the pure harmonic-

oscillator shell model. In the pure harmonic-oscillator shell
model limit of our model the wave functions of relative mo-
tions are approximated by harmonic-oscillator functions. In
this limiting case the microscopic multicluster model reduces
to an LS coupled harmonic-oscillator shell model. The size
parameter of the harmonic-oscillator model is chosen to fit
the empirical radii. As one can expect, the density distribu-
tion of the harmonic-oscillator shell model decreases very
quickly at the nuclear surface. The density in the multicluster
model, on the contrary, has a long, slowly decreasing tail.
This tail part gives non-negligible contributions to the radii
and quadrupole moments even at about 10 fm
[r X r p(r) = 10 fm X 10 fm X 10 fm ], and certainly

TABLE VI. Proton, neutron, and matter radii, and quadrupole and magnetic moments. The empirical radii
are from Ref. [26].

Be (3/2 ) expt.
Be (3/2 ) model —1.27

Q(efm)

—6.11

r (fm)

2.31
2.36

r (fm)

2.36
2.41

r„(fm)

2.25
2.31

Li (3/2 ) expt.
Li (3/2 ) model

3.26
3.15

—4.00 0.06 '
—3.65

2.33
2.33

2.27
2.27

2.38
2.38

B (2 ) expt.
sB (2+) model

1.04
1.42

6.83~ 0.21
6.65

2.38
2.56

2.45
2.73

2.27
2.24

Li (2+) expt.
Li (2+) model

1.65
1.17

3.27~ Q.Q6 3.11~0 05 '
2.23

2.37
2.44

2.26
2.18

2.44
2.58

C (3/2 ) expt.
C (3/2 ) model —1.50 —5.04 2.50 2.64 2.16

Li (3/2 ) expt.
Li (3/2 ) model

3.44
3.43

—2.74 '
—2.74

2.32
2.39

2.18
2.10

2.39
2.52

'Quadrupole moments from Ref. [27], magnetic moments from Ref. pO].
Quadrupole moments from Ref. [28], magnetic moments from Ref. pO].

'Quadrupole moments from Ref. [29], magnetic moments from Ref. pO].
Magnetic moments from Ref. [5].
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2x10 '

1x10 '

1x10

1x10

1x10 4

leads to a Li-n potential of longer range, and makes the

effects of the Pauli principle stronger than that deduced in a
harmonic-oscillator approximation. A full understanding of
the structure of "Li will thus call for this microscopic struc-
ture of Li even in the Li+n+ n three-body approach.

Two other quantities that can be used to characterize the
spatial distribution of the nucleons are the one- and two-
nucleon removal spectroscopic amplitudes. The one-proton
removal amplitude of B is defined as

1x10 g"(r) =(W( Be)8(r—p)~W( B))=g g"&(r) 1'1(r), (8)
gl

-61x10 I I I I
l

I I i I
[

I I I I
]

I I I I
l

I I I I
[

I I I I
l

I I I I
[

I I I I
J

I I I I
l

I 1 I I

0 1 2 3 4 5 6 7 8 9 10

FIG. 6. Proton density of 8 in the present model (solid line)
and in a pure harmonic-oscillator shell model (dashed line).

plays a very important role in astrophysical processes and
reaction mechanisms. The long tail of Li is also expected to
give some contribution to the binding mechanism of "Li: It

with

gJI(r) = dr([[+s( Be)Y]j1'I(r)]JM~(r p) I+JM('B)).

(9)

where WJM(A) (A= Be, Li, sB, sLi) is the model wave
function of the corresponding nuclei of spin 1, (, is the spin
function of the proton, and r is the position of the nucleon
with respect to the center of mass of the "core." Similarly,
the two-proton removal amplitudes of C are

g""(r,R) =('P( Be)8(r —p, ) 8'(R —p2) ~W(9C)) = g gP« ~(r, R)[Y, (r) 1', (R)]L,
.~jl ~ l2L

With

g„"ri L(r R) = «"R([[+s('Be)g"]pl'l, (r) 1'~,(R)]L]JM~(r pt) ~(R p2) I'lr JM('C))

where r is the distance between the two nucleons and R is
the distance between the center of mass of the two nucleons
and that of the core and P" is the spin function of the two
protons. The corresponding mirror quantities can be defined
in the same way.

The one-proton removal amplitude of B and the one-
neutron removal amplitude of Li are compared in Fig. 8.
The amplitudes belong to the first nonvanishing partial wave

(l = 1,j= 1).The shapes of the amplitudes are rather similar;
both amplitudes have maxima at about 2.5 fm (the last
nucleon is on the surface of Be and Li). The tail part of the
proton removal amplitude is, however, larger and more
slowly decreasing as a consequence of the tiny proton sepa-
ration energy (0.14 MeV) of sB. The norms of these ampli-
tudes, the one-nucleon spectroscopic factors, are nearly equal
(both are about 1.22).

The largest components of the two-nucleon removal am-
plitudes are drawn in Fig. 9(a) and Fig. 9(b). These compo-
nents belong to zero partial waves (l, =l =2L=O,j= /32)

and the two like nucleons are in a spin singlet state (s = 0).
The two-proton and two-neutron distributions are again quite
similar. There is a broader maximum at r = 2 fm, R = 2.8 fm
(r=1.8 fm, R=2.5 fm) in the two-proton (two-neutron) re-
moval amplitude. This peak roughly corresponds to a picture

where the two nucleons are on the surface of the "core."The
distance between the two nucleons is smaller than the aver-
age distance between the proton and neutron in the deuteron
(which is about 4 fm), but they do not form so compact a
dineutron configuration that we found in the case of He and

He [3].The other maximum is at r=4.7 fm, R=0.8 fm for
C and at r =4.3 fm, R = 1.0 fm in the case of Li. This can

be visualized as two nucleons sitting at the opposite sides of
the core. Because of the Coulomb repulsion, the C is some-
what less tight.

IV. SUMMARY AND DISCUSSION

By using the microscopic multicluster model combined
with the stochastic variational method we studied the

Be- Li, B- Li, and C- Li nuclei. The nuclei are de-
scribed in two-, three-, and four-cluster models comprising
n, t, h, and single-nucleon clusters. The same effective
nucleon-nucleon interaction and model space are used for all
systems. The stochastic variational method worked very
nicely in these multicluster systems. The separation energies
are reasonably reproduced. The calculated point matter radii
are close to the "empirical" values for the Li isotopes, but
for the B and C nuclei exceed them (see Table VI). The
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FIG. 7. Neutron density of Li in the present model (solid line)
and in a pure harmonic-oscillator shell model (dashed line).

most striking disagreement appears in the case of B. Other
theoretical models [9,14,13] also tend to overestimate the
radius (3.03 fm in Ref. [9], 2.74 fm in Ref. [14], 2.88 fm in
Ref. [13]), while their predictions for the quadrupole mo-
ment are nearly correct. At the same time, the calculated
thickness of the proton (neutron) skin of B ( Li) is nearly
the same in cluster models [0.42 fm (0.35 fm) in Ref. [13],
0.49 fm (0.39 fm) in Ref. [14], and 0.49 fm (0.4 fm) in the
present model].

The point-matter root-mean-square radii of Li and C
are smaller than those of Li and B.This can be understood
in a simple shell model picture as a consequence of the clos-
ing of the p3/2 neutron (proton) orbits of Li ( C). The em-
pirical radii were extracted —in a model-dependent
analysis —using the measured interaction cross section data.
To relate the model and the experimental results more di-
rectly, one has to calculate the experimentally observed in-
teraction cross sections, rather than the empirically deter-
mined radii. This can be achieved by the help of the Glauber
theory [31] using the densities and wave functions deter-
mined in the model [32].Such a calculation is planned in the
near future.

The microscopic multicluster model predicts that the neu-
tron skin thickness is about 0.4 fm in Li and Li, while the
proton skin thickness is 0.5 fm in B and C. Comparing to
the neutron skin thickness of 0.8 fm found in He and He
[3], we conclude that these nuclei do not show pronounced
halo structure.

The calculated magnetic and quadrupole moments, except
the magnetic moments of Li and B, are in reasonable
agreement with the available data. An accurate description of
the tail parts of the wave functions of B and C is needed to
calculate their quadrupole moments. The model prediction is
—6.11 e fm for the quadrupole moment of Be and
—5.04 e fm for that of C. These data will be available
experimentally in the near future [5].

Although the neutron halo in Li is not pronounced, the
falloff of the neutron density distribution is much slower
than that of the shell model prediction. We pointed out that
this effect should be taken into account for a complete de-
scription of "Li.
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APPENDIX A

4r +3r,

4r +3r,+r,
Run=

8

We give the detailed form of the trial function of Li in
the (nt)n arrangement as an example. The Jacobi coordi-
nates of the (nt)n arrangement are defined as

(ut)n

where r = —,'(rl+r2+r3+r4), r, = -', (r5+r6+r7), and
r„=r8are the center-of-mass coordinates of n, t, and n. ,
respectively. The wave function belonging to this arrange-
ment and to a particular angular momentum set
[(s(,s2, s3)S,(l(, lq)L] JM reads

~yr(ut) n C(ut)n ~(ut)n g (ut)n (ut)nq
((sl,s2, s3)S,(lt, l7)L]JM ~ IC, ( s, tss2)S3{l ll)L21[ (st, s2, s3)Ss IC(ll, l2)L'(pl ~P2 I]JM)

=g c'I,'", , ),(, , ),.w([[@, @,
' g ],[r, (v'„"'",p', "'")r, (v,"",p',"'")],], &,

where @, and tt,' are the wave functions of the internal

motions of u and t, which are costructed from the simplest
Os harmonic-oscillator shell model configurations. The spins
of the clusters s&=0, s2=1/2, and s3=1/2 are coupled to
the total spin S.

(un)t

( )
4Fu+ I'

n

APPENDIX B

In this appendix we show the relation of the components
of the wave function in different cluster arrangements. The
Jacobi coordinates of the (Lkn)t arrangement have the form

4r +3r,+r„
utn 8

and the wave function of this arrangement is written as

C ",'. . . , M([[@, P,' g ] [I, ( „"',p,
" ')J, ( „"', p

" ')] ],
The Jacobi coordinates of the arrangements (nn)t and (Ott)n are related through the equations

(un)t (ut)n+ (ut)n3
P&

—
P& P27

(un) t (ut)n (ut)n
32 1

2 35 1 5 2

By using these relations and Eq. (1) we can express the Gaussians of the relative motion as

[1 (
(an)t ( n)ta) J (

(un)t (un)t)]

3 2 (un)t 32 2 (un)t (ut)n 2 (un)t 1 2 (un)t (ut)n 2 6 (un)t 64 (un)t (ut)n (ut)n
( n)tqG uI (un)t) 7 kt 35 kz (tl ) "k~ 5 "k2 (I2 ) 7 "kt )75 kz It I2

(3 ) (32
p(ut)n+ (ut)n p {ut)n (ut)n'

) '2(35 ' 5

The above equation shows that the most important consequence of the coordinate transformation is the appearance of a "cross
term" P,

' .P2
' " in the exponential. This term can be expanded into partial waves as
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00 t

ypI
"

p2
"

4 g ~

(
(at)n (at)n) g y ( (at)n) y ( (at)n) z (B2)

where it is the modified spherical Bessel function. The expansion of the product of Gaussians in the (nn)t arrangement
[left-hand side (LHS) of Eq. (Bl)] in terms of products of Gaussians of the (crt) n arrangement, therefore, requires an infinite
summation over the partial waves:

(an)t (an)t)I (
(an)t (an)t)] g ~ [I (

( )" (at)n)l (
( )" (at)n)]
k2 2

1' 2

Besides the infinite sum over the partial waves l,' and I2, a summation over the various Gaussian size parameters
It. '=(ki, k2) is necessary to approximate the Bessel function. A term of the wave function in the (crn)t arrangement,
consequently, can be expressed in the (nt)n arrangement by the infinite sum

~{[[y @ut gn ] [I (
(an)t (an)t) I (

(an)t (an)t) ] ]

(B4)

The expansion coefficients Az (& I )L depend on the size parameters of the Gaussians of the left- and right-hand sides in Eq.

(84). Some particular choices of these parameters might suppress most of the terms in the sum, leading to a few dominant

partial waves. The inclusion of the (crn) t arrangement, therefore, amounts to the inclusion of a certain combination of partial
waves of the (nt) n arrangement. In this way, the missing part of the wave function in the (ut) n Jacobi coordinate system (due
to the truncation of higher partial waves in this arrangment) is compensated for by the combination of other arrangements.

[1]K. Varga, Y. Suzuki, and R. G. Lovas, Nucl. Phys. A571, 447
(1994).

[2] V. I. Kukulin and V. M. Krasnopolsky, J. Phys. G 3, 795
(1977).

[3] K. Varga, Y. Suzuki, and Y. Ohbayasi, Phys. Rev. C 50, 189
(1994).

[4] K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995).
[5] K. Matsuta, M. Fukuda, M. Tanigaki, T. Minamisono, Y.

Nojiri, M. Mihara, T. Onishi, T. Yamaguchi, A. Harada, M.
Sasaki, T. Miyake, S. Fukuda, K. Yoshida, A. Ozawa, T. Koba-

yashi, I. Tanihata, J. R. Alonso, G. F. Krebs, and T. J. M.
Symons, contribution to the International Symposium on Phys-

ics of Unstable Nuclei, Niigata, 1994 (unpublished).

[6] Y. Fujiwara and Y. C. Tang, Phys. Rev. C 28, 1869 (1983).
[7] T. Kajino, T. Matsuse, and A. Arima, Nucl. Phys. A413, 323

(1984).
[8] T. Mertelmeier and H. M. Hoffman, Nucl. Phys. A459, 387

(1986).
[9] H. Kitagawa and H. Sagawa, Phys. Lett. 8 299, 1 (1993).

[10]H. Nakada and T. Otsuka, Phys. Rev. C 49, 886 (1994).
[11]Y. Fujiwara and Y. C. Tang, Phys. Rev. C 41, 28 (1990).
[12] D. Baye, P. Descouvemont, and N. K. Timofeyuk, Nucl. Phys.

A577, 624 (1994).
[13]P. Descouvemont and D. Baye, Phys. Lett. 8 292, 235 (1992).
[14]A. Csoto, Phys. Lett. 8 315, 24 (1993).
[15]Y. Tosaka and Y. Suzuki, Nucl. Phys. A512, 46 (1990).
[16]M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J.

Thompson, and J. S. Vaagen, Phys. Rep. 231, 150 (1993).
[17]H. Kameyama, M. Kamimura, and M. Kawai, in Proceedings

of the International Symposium on Structure and Reactions of
Unstable Nuclei, edited by K. Ikeda and Y. Suzuki (World

Scientific, Singapore, 1991).
[18] K. Varga, Comput. Phys. Commun. (to be published).

[19]H. Kamada and W. Glockle, Nucl. Phys. A54S, 205 (1992).
[20] M. Kamimura, Phys. Rev. A 3S, 621 (1988).
[21] A. B. Volkov, Nucl. Phys. 74, 33 (1965).
[22] J. L. Ballot, Z. Phys. A 302, 347 (1981).
[23] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-

ling, Numerical Recipes in Fortran (Cambridge University,

Cambridge, England, 1992), Chap. 10, p. 406.
[24] I. Reichstein and Y. C. Tang, Nucl. Phys. A158, 529 (1970); D.

R. Thompson, M. Lemere, and Y. C. Tang, ibid. A286, 53
(1977).

[25] R. Beck, F. Dickmann, and R. G. Lovas, Ann. Phys. (N.Y.)
173, 1 (1987).

[26] I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K.
Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda, and H. Sato,
Phys. Lett. 8 206, 592 (1988).

[27] H.-G. Voelk and D. Fick, Nucl. Phys A530, 475 (1991).
[28] T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kita-

gawa, M. Fukuda, K. Matsura, Y. Nojiri, S. Takeda, H. Sa-
gawa, and H. Kitagawa, Phys. Rev. Lett. 69, 2058 (1992).

[29] E. Arnold et al. , Z. Phys. A 331, 295 (1988).
[30] F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988).
[31]R. J. Glauber, Lectures in Theoretical Physics (Interscience,

New York, 1959), Vol. 1, p. 315.
[32] Y. Ogawa, K. Yabana, and Y. Suzuki, Nucl. Phys. A543, 722

(1992).




