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Momentum distribution in nuclear matter and finite nuclei
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A simple method is presented to evaluate the effects of short-range correlations on the momentum distribu-
tion of nucleons in nuclear matter within the framework of the Green's function approach. The method

provides a very efficient representation of the single-particle Green s function for a correlated system. The
reliability of this method is established by comparing its results to those obtained in more elaborate calcula-
tions. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density
is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter

using a local-density approximation. These results are compared to those obtained directly for light nuclei like
16p

PACS number(s): 21.65.+f, 24. 10.Cn, 27.20.+n

I. INTRODUCTION

Realistic nucleon-nucleon (NN) interactions like the phe-
nomenological Reid soft-core potential [1] or one-boson-
exchange (OBE) potentials [2], which are adjusted to fit the
NN scattering data, typically contain rather strong short-
range components. These short-range parts as well as a non-
negligible tensor component are responsible for the fact that
simple mean-field or Hartree-Fock (HF) calculations of
nuclear systems yield very unsatisfactory results. It turns out
that HF calculations using such realistic NN forces may not
even lead to bound nuclei [3]. Therefore, based on these
theoretical considerations it seems obvious that nuclear wave
functions must contain correlations, which are induced by
these short-range and tensor components and cannot be ac-
counted for in the mean-field or HF approximation to the
solution of the many-body problem.

The question is whether there exist experimental observ-
ables which reAect these correlations in an unambiguous
way. In particular it would be nice if one could explore these
correlations in terms of single-nucleon observables since
they are easier to measure as well as to calculate. This leads
to the question of how correlations affect the single-particle
density p(r, r') in the nuclear many-body system. Rather
than discussing this nonlocal representation of the density
matrix, we may consider as well its Wigner transform [4]
f(R,k). Integrating this Wigner distribution over all mo-
menta k yields the local density p(r = r') This loc.al-density
distribution, or to be more precise the corresponding charge
distribution, has been investigated with high precision in
elastic electron scattering experiments [5]. Also the matter
distribution can be analyzed in a rather model-independent
way by means of elastic n scattering and other probes [6].It
seems, however, that these "experimental" charge and mat-
ter distributions can very well be reproduced within a mean-
field approximation for the nuclear wave function.

Integrating the Wigner transform of the one-nucleon den-
sity matrix over all spatial coordinates one obtains the mo-
mentum distribution n(k). For an infinite system, invariant

under local transformations, the mean-field or Hartree-Fock
prediction for this momentum distribution is identical to the
momentum distribution of a free Fermi gas. This means that
all states with momenta less than the Fermi momentum kF
are occupied with a probability n=1, while all states with
momenta k above kF are completely unoccupied (n=0).
Correlations beyond the HF approach modify this momen-
tum distribution in the sense that states with momenta below
kF are partly depleted, whereas states with high momenta are
partly occupied.

From these considerations for the infinite system of
nuclear matter one may expect that correlations beyond HF
will enhance the momentum distribution at high momenta k
also for finite nuclei. This is one reason why modern electron
accelerators have been used to explore the momentum distri-
bution of nucleons in nuclei by means of nucleon knockout,
(e,e')p, experiments [7—9].

Microscopic nuclear structure calculations which account
for the effects of short-range and tensor correlations of real-
istic NN interactions are mainly performed for very light
nuclei [10—13] or infinite nuclear matter [14—21]. From
these results for nuclear matter one then tries to extract the
effects of NN correlations in order to estimate their inhuence
on the momentum distribution of real nuclei using a local-
density approximation (LDA) [22—24].

Recently, there have also been attempts to determine the
momentum distribution in a microscopic calculation consid-
ering directly finite nuclei such as ' 0 [25—27]. It turns out
that the Green's function approach is particularly useful for
these investigations. This method not only provides the total
momentum distribution but also yields detailed information
on the spectral function. This spectral function contains the
information at which excitation of the residual nucleus or,
using the nomenclature of the knockout experiment, at which
missing energy the various components of the momentum
distribution should be observed. These studies predict that
high-momentum components in the momentum distribution
due to short-range correlations should show up preferentially
at large missing energies.
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The comparison of the momentum distributions obtained
within the Green's function approach for ' 0 with corre-
sponding ones for nuclear matter exhibited remarkable dis-
crepancies [27]. Therefore the question arises if these dis-
crepancies demonstrate the limitation of the LDA in
predicting the momentum distribution. As has been argued
already in [27], such a conclusion would be premature since
that comparison was plagued with various inconsistencies
like, e.g. , the following.

(i) The momentum distribution calculated for nuclear mat-
ter using the Green's function approach has been available
only for one specific density, the saturation density of nuclear
matter. This density may be too large to be typical for the
situation of nuclei as small as ' O.

(ii) The result for nuclear matter has been derived from a
self-consistent calculation of the single-particle Green's
function [18] whereas the calculation for the finite system
has been performed considering contributions to the self-
energy of the nucleons up to second order in a nuclear matter
G matrix [27].

(iii) The calculation of the self-energy for the nucleons in
the finite system has been made employing a single-particle
spectrum with a substantial gap at the Fermi surface, whereas
a continuous prescription has been used for nuclear matter.

(iv) The calculation for the finite system was limited to
partial waves with angular momenta l~3. This limitation
may be too severe for the momentum distribution at high
momenta.

(v) While the Reid soft-core potential [1] has been used
for the study of nuclear matter in [18]the OBE potential 8 of
[2] has been employed for the calculation of ' O.

It is one aim of the present investigation to remove some
of the differences between these calculations of finite nuclei
and infinite nuclear matter. Furthermore, we want to study
the sensitivity of the calculated momentum distributions in
the nuclear systems on the nuclear density, the NN interac-
tion considered, and various other ingredients of the many-
body calculation. For that purpose we have developed a new
very efficient method to calculate the momentum distribution
in nuclear matter using an approximation to the Green's
function method very similar to the one presented in [27] for
finite nuclei. The comparison of results obtained with this
approximation scheme with those resulting from the much
more sophisticated scheme of [18]demonstrates the reliabil-
ity of the method developed here. The efficiency of the new

(c)

FIG. 1. Graphical representation of the Hartree-Fock (a), the
two-particle —one-hole (2plh) (b), and the two-hole —one-particle
contribution (2hlp) (c) to the self-energy of the nucleon.

scheme allows the detailed studies mentioned above.
After this Introduction, Sec. II of this paper describes the

technique to be used for studies of nuclear matter. In particu-
lar we will also present an efficient representation of the
single-particle Green's function, which allows a self-
consistent treatment. In Sec. III we briefIy review the basic
approximations used in the calculation of the momentum dis-
tribution for finite nuclei of [27] and we outline a method to
determine this momentum distribution, in which the mean-
field part is calculated for the finite system but the effects of
correlations are taken from nuclear matter at various densi-
ties, using a LDA. The results of the numerical calculations
are presented in Sec. IV. In this section we discuss the sen-
sitivity of the results in nuclear matter on the various ingre-
dients. Also we compare the predictions of the LDA with
results obtained by the method of [27]. For that purpose we
extended the studies of [27] by considering different interac-
tions and allowing for higher partial waves. The main con-
clusions are summarized in Sec. V.

II. MOMENTUM DISTRIBUTION IN NUCLEAR MATTER

A. Self-energy and Dyson equation

Our calculation of the single-particle Green's function for
nucleons in nuclear matter is based on the definition of the
self-energy of the nucleon, which includes the terms of first
and second order in an effective interaction T; which we
will define below. The expression for the term of first order,
displayed in Fig. 1(a), corresponds to the Hartree-Fock ex-
pression for the single-particle energy of a nucleon with mo-
mentum k in a system of nuclear matter with a Fermi mo-
mentum kF ..

A&F

1

(21+1)(2T+1) O(kF —k)
LSJT Jo

(2 Ik —
kF~ 1 f ]/2 {k+kF)

dq8q2+ — dqq[(kF q) —4q(q —kF)]—
~ »~2 lk —kFI

X W~L (K„;q,q).

n the second part of this equation the matrix elements of W are given using the conventional partial wave representation with
$, J, and T denoting the orbital angular momentum for the relative motion, the spin, the total angular momentum and the

isospin of the two interacting nucleons, respectively. The relative momentum q is diagonal and an average value K„has been
used for the c.m. momentum, which is given by [28]
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The term of second order in the effective interaction with intermediate two-particle —1-hole (2plh) states, displayed in Fig.
1(b), also depends on the energy co of the nucleon under consideration and can be calculated according to

y(2pih)( ) g g ( I IP1 P2)
h(F pi p2)F CO (Epi+ Ep2 Eh)+ l t/

('1/2 ~k
—

kP~ 1 I'1/2 (k+kF)
(2J+1)(2T+1) 8(kF k) — dq8q'+ — dqq[(kF q') —4q(q—kF)]-

LSJT Jo kF1

Q(K...q') ~„(K., 'q. q')'
x dq'q

J 0 ~ &2pih(K. „q,q')+ 1 rj
(3)

The single-particle energies e correspond to the Hartree-Fock approximation for the single-particle energy,

+X("")(q),
q

2m

with I for the mass of the nucleon. In the second part of Eq. (3) we have used the so-called angle-averaged approximation
for the Pauli operator, which is defined by [28]

Q(K, q) = ~

0 if q~ gkF —K,
K +q —k

if gkF K~q~kF+ K-,
2Kq

1 if q~~kF+E.

The other contribution to the second order self-energy with intermediate two-hole —one-particle states (2hlp), displayed in Fig.
1(c), can be calculated in a way very similar to Eq. (3)

(kp~ Qh, , h2)2

p)F h1, h2(F /g1 (&hi + ~h2 ~p) 1 V

P(K,„,q')F ~L, (K„;q,q')
dqW(q) dq'q'

LZ. 'SJT ~ o &0 F2hi, (K...q. q —') 1v— (6)

0 if q~ gkF —K,
k —K —

qP(K, q) =
&

2Kq
if gkF„K2~ q ~kF K, — —

1 if q~kF —K.

The Pauli operator Q, which ensured in Eq. (3) that the sum
over intermediate two-particle states is restricted to states
above the Fermi surface, is replaced by a corresponding op-
erator P to ensure that the intermediate two-hole states are
below the Fermi level:

The definitions of the mean value for the center of mass
momentum, K„, and the weight function W(q) in the inte-
gral of Eq. (6) are a bit more involved than in the case of the
2plh term and are given in the Appendix [29].

After the definition of the self-energy we could now pro-
ceed and calculate the corresponding single-particle Green's
function by solving a Dyson equation of the form [30]

g(k~)g(HF)(k~)+g(HF)(k~)[$(2 pl 11)(k~)

+ X(2h'»(k, ~)]g(k, ~),
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with the single-particle Green's function in the Hartree-Fock
approximation: y(2hlp)(k )

J
(12)

0 (kF —k) 0" (k —kF)g'""'(k, ~ ) = '
. +

CO E'p —l g CU
—6'I, + lg (9)

t „
n(k) = — dco Img(k, cu).

7Z' J
(10)

B. Numerical approach

The momentum distribution n(k) can then be calculated
from the imaginary part of the single-particle Green's func-
tion by

This discretization implies in particular that we represent the
singularities of the self-energy in terms of discrete poles
slightly above (2hlp) and below (2plh) the real axes. This
analytic structure of the self-energy is identical to the one
obtained for a finite system within a model space defined in
terms of discrete single-particle states. This means that we
may use the same techniques to determine the features of the
single-particle Green's function as employed, e.g. , in [31,32].
Translating this technique into the present example, this
means that the single-particle Green's function will be de-
fined in the Lehmann representation by

Instead of proceeding along the lines indicated in Eqs.
(8)—(10), we use the fact that in all numerical calculations
the integrals of Eqs. (3) and (6) will be discretized. This
means that Eq. (3) takes the form

N+M+ 1

g(k, co) =
CO CO~~ l FJ

(13)

y(2pth)(k
F, (k)

p(2pl h) + ~

l

while Eq. (6) can be rewritten as

with the sign in front of the infinitesimal imaginary part y
being positive for poles cu above the Fermi energy FF and
negative else. For each k the positions of these poles, co

and the residua, X, can be determined from the solution of
the following eigenvalue problem:

p g(2p1 h)
1 1

Gl X X

Gi

&(2pih)
N

p(2 hip)
(14)

GM 0 p(2h 1 p) Zn, M

n(k) =g 0'(EF o) )X—

which leads to the momentum distribution if we divide by
the single-particle density,

n(k) 3n(k)
n(k) =

p 4vrkF
' (16)

with kF the Fermi momentum of the nuclear matter system.

Note that the dimension of this matrix (N+ M+ 1) as well as
the matrix elements F;, F,. and G, , E refer to the
nomenclature employed in Eqs. (11) and (12), respectively.
Using the representation of the Green's function in Eq. (13)
the occupation probabilities are calculated easily as

C. BAGEL approximation

Using the Lehmann representation of the single-particle
Green's function of Eq. (13) the continua of states of nuclear
matter with one additional nucleon and one hole are repre-
sented in terms of some discrete energies co . Depending on
the accuracy of the discretization on Eqs. (11) and (12) the
number of eigenvalues typically considered in numerical cal-
culations ranges from a few hundred up to a few thousand.
This may be compared to the Hartree-Fock approximation of
Eq. (9), in which the Green's function for a nucleon with
momentum k is represented by just one pole. This number of
pole terms is not a problem as long as one is just interested in
the evaluation of the Green's function or simple observables
as the momentum distribution. The structure of the Green's
function in Eq. (13), however, may be too complicated to be
used in the evaluation of quantities which are defined in
terms of products of these Green's functions. Examples for
such quantities are, e.g. , the various response functions of
nuclear matter or a self-consistent evaluation of the self-
energy, which implies that the self-energies to be used in the
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Dyson equation (8) are calculated in terms of the resulting
Green's functions. For such calculations it may be preferable
to "optimize" the number of pole terms in Eq. (13), which
means trying to find a minimum number of poles, which
yields the same observables than the complete Green's func-
tion.

In order to develop such an efficient representation of the
Green's function we try to apply the so-called "basis gener-
ated by Lanczos" (BAGEL) scheme, which has successfully
been used for the description of finite nuclei in finite model
spaces [31—33]. For that purpose we consider the operator
a which corresponds to a part of the matrix in Eq. (14),

F &(2p&h)

p(2 pl h)
N

(17)

and apply this operator on the single-particle state
l
n) which

in terms of the matrix representation of Eq. (17) is described
by the column vector (1,0, . . . ,0),

~l ~) = ~kl ~)+ ail ~i) (18)

A=
p(2hl p)

1

Gw

&(2h& p)

(19)

where lni) is orthogonal to lu) and the coefficient ai is
chosen so that lni) is normalized. Following the Lanczos
algorithm [34], one can subsequently construct additional
states

l n;), which are all orthogonal to each other. Applying
the Lanczos procedure n times one obtains n basis states of
the 2plh configuration space.

In a similar way we can furthermore construct I basis
states of the 2hlp configuration space by considering the
corresponding submatrix of Eq. (14)

alistic NN interaction is not a very useful approach and it is
not clear whether a perturbation expansion in terms of the
bare NN interaction up to second order, as just outlined, will
be sufficient. Therefore we employ the G matrix, an appro-
priate solution of the Bethe-Goldstone equation for F. The
starting energy Z in the Bethe-Goldstone equation is chosen
according to the Brueckner-Hartree-Fock (BHF) choice for
the self-energy of a nucleon with momentum k below the
Fermi momentum and put to be the average of two single-
particle states below the Fermi energy if k is above the Fermi
momentum. This ensures that G remains real. With this
choice we employ an approach which is very similar to the
one used for finite nuclei in [27], where the self-energy is
also calculated including terms up to second order in a
nuclear matter G matrix.

Using the G matrix for the effective interaction also im-
plies, however, that we have to face a double-counting prob-
lem. The diagram of second order, displayed in Fig. 1(b) is to
some extent already taken into account in the Brueckner-
Hartree-Fock approach for the self-energy displayed in Fig.
1(a). This double counting does not directly effect the calcu-
lation of the momentum distribution. The choice for the start-
ing energy just presented leads to a real self-energy contri-
bution of Eq. (1) without any poles and therefore the
momentum distribution calculated for a self-energy, which
only accounts for this term, remains identical to the HF one.
There is a self-consistency problem, however, with respect to
the energy spectrum refIected in the poles of the Green's
function [see Eq. (13)].If for the moment we ignore the 2hlp
contribution to the self-energy and evaluate the Green's func-
tion according to scheme outlined in Eqs. (13) and (14) for a
nucleon with momentum below kF, we will find one eigen-
state of Eq. (14) with negative energy and a large coefficient
X, the quasihole state, and N eigenvalues at positive ener-
gies. Because of the diagonalization, however, the energy of
the quasihole state, ek""' '", will be substantially below the
corresponding HF energy ek. Therefore we replace the first
element of the matrix in Eq. (14) by

(20)

and reduce the eigenvalue problem of Eq. (14) to the corre-
sponding one in the subspace defined by the basis of the
single-particle state plus the (n+m) basis states generated
by the Lanczos scheme just outlined. The Green's function of
this BAGEL(n, m) approximation is then defined according to
Eq. (13) using the (n+m+ 1) eigenvalues and vectors ob-
tained from the diagonalization of the matrix truncated to the
subspace. It is obvious that the BAGEL(0,0) corresponds to
the HF approximation, while for n approaching N and m
close to M the BAGEL(n, m) approximation for the Green's
function becomes identical to the exact solution of Eqs. (14)
and (13).

D. Effective interaction

At the end of this section we want to define the effective
NN interaction W, used in the definition of the self-energy
above. One possible choice would be of course to replace
T by the bare NN interaction. As has been discussed already
in the Introduction, the HF approximation in terms of a re-

This shift in energy ensures that the quasihole state for a
self-energy with inclusion of only the 2plh term will essen-
tially be identical to the BHF energy. Therefore the double
counting is removed. Note again that this double-counting
problem does not affect the calculation of the momentum
distribution. The energy shift is useful, however, to obtain a
realistic energy spectrum for the poles of the Green's func-
tions.

III. MOMENTUM DISTRIBUTION IN FINITE NUCLEI

A. Direct approach

Also the calculation of the momentum distribution pre-
sented in [26,27] directly for the nucleus ' 0 is based on a
self-energy of the nucleon calculated up to second order in a
nuclear matter G matrix as described by the diagrams of Fig.
1. As a first step one considers the HF contribution to the
self-energy:
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1
g, ", (k, , k', ) = . g (2J+ 1)(2T+ 1)(k,l,j,/t212j2JTIGlkIl&j&n212j2JT).

J l + ~2/2i 2»
(21)

I

aHFl jm) =g IK;ljm)(K;I aHF) l, , (22)

in a complete and orthonormal set of regular basis functions
within a spherical box of radius Rb, which is large as com-
pared to the radius of the nucleus:

The matrix elements of G used in this expression are anti-
symmetrized NN matrix elements calculated in the labora-
tory system. The quantum numbers l; and j; refer to the
orbital and total angular momentum of the single nucleons in
this frame and J and T denote the angular momentum and
isospin of the two-particle states. The matrix elements are
calculated in a mixed representation with n; refemng to the
radial quantum numbers of oscillator bound (hole) states,
whereas the k; denote the absolute value of the momentum
for a free particle state. The summation over the oscillator
quantum numbers is restricted to the states occupied in the
independent particle model of ' O. This Hartree-Fock part of
the self-energy is real and does not depend on the energy.
The HF single-particle wave functions can be obtained by
expanding them,

Using the normalization constants

QRbo„y l l (K/—Rbox)
Na= ~

l ~+2
for l=0,

R box

for l&0,

(25)

the basis functions defined in Eq. (23) are orthogonal and
normalized within the box. The expansion coefficients of Eq.
(22) are obtained by diagonalizing the HF Hamiltonian:

Here and in the following the set of basis states in the box
has been truncated by assuming an appropriate N „.From
the HF wave functions and energies one can construct the HF
approximation to the single-particle Green s function in the
box [compare Eq. (9)], which for the finite nucleus has the
form

@ l/ (r)=(rl& lJm)=&ill(«T)pl& (~q') (23) g'""'(k k ~ ) =
HF) ( HFlk )

CO E'
) ~lg (27)

j/(E;Rb, „)= 0. (24)

In this equation +&/ represent the spherical harmonics in-

cluding the spin degrees of freedom and j& denote the spheri-
cal Bessel functions for the discrete momenta K; which ful-
fill

As an example for the contributions to the self-energy of
second order in G we recall the calculation of the 2plh term.
In the approach of [27] one first calculates the imaginary part
of this self-energy contribution, depending on the energy
Gt),

—1 f f
W,",'"(k, , k,';~)= . g g g k,'dk, k4dk4(2J+1)(2T+1)(k, l,j,n, l2j2JTIGlk3l, j,k4l4j4JT)

J 1+ ~2l2j 2 l3/4j 3j 4 JT

g2 1

X(k3lj33k4l4J4JTIGlktllj tn2l2J2JT) /rfj tLl+ & l j 2m 2mt
' (28)

where the "experimental" single-particle energies E'
I j aren2 212

used for the hole states ( —47 MeV, —21.8 MeV, —15.7
MeV for sl/2 J23/2 and p»2 states, respectively), while the
energies of the particle states are given in terms of the kinetic
energy only. The expression in Eq. (28) still ignores the re-
quirement that the intermediate particle states must be or-
thogonal to the hole states, which are occupied for the
nucleus under consideration. The techniques to incorporate
the orthogonalization of the intermediate plane wave states
to the occupied hole states as discussed in detail by Bor-
romeo et al. [35]have also been used here. The 2hlp contri-
bution to the imaginary part, Wl"' (k&, kI, co), can be calcu-

lated in a similar way (see also [35]).

The choice to assume pure kinetic energies for the particle
states in calculating the imaginary parts of W '"[Eq. (28)]
and W "'~ may not be very realistic for the excitation modes
at low energy. Indeed a sizable imaginary part in W "'I' is
obtained only for energies cu below —40 MeV. As we are
mainly interested, however, in the effects of short-range cor-
relations, which lead to excitations of particle states with
high momentum, the choice seems to be appropriate. A dif-
ferent approach would be required to treat the coupling to the
very low-lying two-particle —one-hole and two-hole —one-
particle states in an adequate way. Attempts at such a treat-
ment can be found in Refs. [36—38].

The real parts of the 2plh and 2hlp terms in the self-
energy can be calculated from the corresponding imaginary
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p r W, ", (kl, kI;co')
V, F'"(kt, kI; o)) =— d co', (29)

where P means a principal value integral. Putting the various
contributions together the correction to the HF self-energy
due to the second order terms can be written

parts by using dispersion relations [14].As an example we
present the dispersion relation for the 2plh part, which is
given by

aX (k k ) =(v' '"—v + v'"' )+ (w' '"+ w'"'&)
(30)

where V, denotes a correction term to account for double
counting between the V '" and ladder contributions already
contained in the HF part of the self-energy [27] (see also
discussion at the end of Sec. II). With this correction to the
self-energy one can solve a Dyson equation for the complete
Green's function [see also Eq. (8)], which corresponds to an
integral equation for finite systems:

f f
glj(kl ~k2 ~~) glj (kl ~k2 ~~ )+ ] k3 dk4 glj (kl ~k3 ~~ )~~lj (k3 ~k41~ ) glj(k41k2 ~~ )

From the imaginary part of this Green's function one can
finally evaluate the momentum distribution according to

where n (k;kF) is the momentum distribution of nuclear mat-
ter according to Eq. (16) calculated for the local Fermi mo-
mentum. The total momentum distribution is then given as

f eF
n(k) = g 2(2j+ 1)

lj j —oo

1
dc@ —Im[gl (k, k;co)]. n'D~(k) =N„.,n"'(k)+ an(k). (36)

(32)

B. Local density approximation

Instead of evaluating the momentum distribution directly
for the finite nucleus one can try to deduce the effects of
correlations on the momentum distribution from the investi-
gation of nuclear matter. As a first step towards such an
approach we consider the local density p (r) and the mo-
mentum distribution n "(k) derived from the solution of the
Hartree-Fock equation (26). Using this density distribution
we can define a local Fermi momentum

Within this local-density approximation we also would like
to estimate the spectral strength which is missing in the cal-
culation according to Eq. (32) due to a restriction in the sum
of that equation to partial waves with orbital angular momen-
tum up to l =L „.For our LDA approximation that restric-
tion would mean to consider contributions to An(k) in Eq.
(35) with

rk sincp- k~vL „(L,„+1), (37)

cp denoting the angle between r and the momentum k. This
means that the integrand in Eq. (35) should be reduced by a
factor

2 HF( )
1/3

kF"'(r) = (33) 2 It /L, „(L „+1)—are sin
77 rk (38)

and evaluate an average occupation number for the states
occupied in the mean-field approach by

4
N,„„= r drp "(r)n(k'F""(r)),

with A the number of nucleons (A =16 in our example of
' 0) and n the occupation number [see Eq. (15)] calculated
for nuclear matter with the local Fermi momentum and av-
eraged over all momenta below this Fermi momentum. With
this average occupation number one can account for the
depletion of the occupation of states occupied in HF approxi-
mation. The high-momentum components originating from
the partial occupation of states above the Fermi momentum
are then evaluated as

IV. RESULTS AND DISCUSSION

A. Nuclear matter

In order to evaluate the momentum distribution for
nuclear matter at a given density p, which may as well be
characterized by the corresponding Fermi momentum kF,
using the method outlined in the previous section, we have to
determine as a first step the spectrum of HF single-particle
energies ej, . In our approach, defining the HF contribution to
the self-energy [see Fig. 1(b)] in terms of the nuclear matter
G matrix, these single-particle energies correspond to the
single-particle energies obtained in the BHF approximation.
For the OBE potential 8 of [2] the BHF single-particle en-
ergies have been parametrized [39] in terms of an effective
mass m* and a constant shift C by

eq= gk +m* —m*+ m+ C. (39)

An(k) =47rk 47rr drO(k kF '(r))n(k;k—F"'(r)),j
(35)

The parameters m* and C as a function of the Fermi mo-
mentum kF are listed in Table II of [39]. It should be men-
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FIG. 2. Momentum distribution in nuclear matter at the empiri-
cal saturation density, kF =1.36 fm '. Results obtained with the
approximations discussed in Sec. II for the OBE potential B (dash-
dotted line) and the Reid soft-core (dashed line) potentials are com-
pared to the results using the Reid potential (solid line "exact") as
derived from the more sophisticated calculations of Ref. [18].

tioned that in our study we have used the so-called nonrela-
tivistic parametrization since in our present study we ignore
all effects of the Dirac BHF approach due to a change of the
Dirac spinors of the nucleons in the nuclear medium. With
this definition of the single-particle spectrum one can evalu-
ate the matrix in Eq. (14) with the renormalization of Eq.
(20), solve the eigenvalue problem of Eq. (14), and deter-
mine the momentum distribution with Eq. (15).

Results for this momentum distribution in nuclear matter
at the empirical saturation density (kF=1.36 fm ) are dis-

Mornenturn k / k&

FIG. 4. The contribution of the quasihole state to the occupation
probability [curves labeled with triangle; see Eq. (40)] and the con-
tinuum contribution as a function of the momentum /'/i', calculated
for the OBE potential B. The dashed lines refer to a E'~riui momen-
tum of nuclear matter of 1.0 fm ', whereas the solid lines are
obtained for kp = 1.35 fm

played in Fig. 2. The momentum distribution deri~ ~d from
the OBE potential (dash-dotted line) is compared to the one
obtained using the Reid soft-core potential employing the
same technique (dashed line). The Reid soft-core potential
predicts stronger effects of correlations in this momentum
distribution. This is characterized by a stronger depletion of
the states with momenta k below the Fermi momentum (the
Reid soft core yields an average occupation of these states of
0.83 while the OBE potential predicts 0.86) as well as larger
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FIG. 3. Occupation probabilities in nuclear matter as a function
of the momentum in units of the Fermi momentum kF. Results
obtained for the OBE potential 8 are shown for various densities
(see description in the figure). The occupation probabilities for mo-
menta below kF are displayed with reference to the axis on the left
side of the figure, while those for k larger kF refer to the logarithmic
scale on the axis at the right side.

FIG. 5. Energy spectra for nuclear rnatter with Fermi mornen-
tum kF = 1 fm ' (dashed curves) and kF = 1.35 fm ' (solid lines)
as a function of momentum. The left part of the figure exhibits the
HF single-particle energies (curves labeled with triangles) and Eqh
the energies of the quasihole states. In the right part the mean values
r3 of the continuum part of the momentum distribution [see Eq.
(42)] are displayed.
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Nqq(k) =g O(EF co )O(Eq„(k)+ 1.5 —co —)

XH(o) —E „(k)+1.5)X (40)

For momenta k larger than the Fermi momentum the eigen-
value of the state with maximal expansion coefficient X
occurs at energies above the Fermi energy EF and therefore
we do not obtain any quasihole strength for those momenta.
The quasihole strength Nqp is shown in Fig. 4 as a function

probability at higher momenta (for k= 4 fm the density
which is obtained for the Reid potential is by more than a
factor 2 larger as the one deduced from the OBE potential).
This is in agreement with the observation that the modern
OBE potentials are "softer" and contain a weaker tensor
force as is also reflected in the D-state probability calculated
for the deuteron [2].

Figure 2 also shows the prediction for the momentum
distribution of nuclear matter obtained for the Reid soft-core
potential using the much more sophisticated techniques of
[18]. The good agreement of our approach, in which the
self-energy is calculated in a perturbative scheme, including
terms up to second order in G, with the one of [18],where
the particle-particle hole-hole ladders are taken into account
to all order using a self-consistent single-particle Greens
function, gives us some confidence that the present approach
provides reliable information for systematic studies in
nuclear matter as well as finite nuclei.

The sensitivity of the calculated momentum distribution
on the nuclear density is demonstrated in Fig. 3. In order to
allow a direct comparison this figure does not show the mo-
mentum distribution but the occupation of the single-particle
states as a function of the momentum k in units of the Fermi
momentum (k/kF). The results for the occupation of states
below the Fermi momentum (k/kF=1) are shown with re-
spect to the linear scale on the left axis, while the occupation
of states with momenta larger than kF are shown with respect
to the logarithmic scale on the axis at the right hand side.
One observes that the calculated occupations are rather in-
sensitive to density of the nuclear system. Only for very
small densities (kF=0.8 fm ', which corresponds to roughly
20% of the empirical saturation density) does one find occu-
pation probabilities which are considerably smaller. This
might be an indication of the instability of homogeneous
nuclear matter at such small densities [23,24].

In order to explore the density dependence a bit more in
detail, we have separated the contributions to the single-
particle density into a quasihole contribution and a con-
tinuum contribution. For momenta k below the Fermi mo-
mentum a large contribution to the momentum distribution of
Eq. (15) originates from one eigenstate n with a maximal
coefficient X and an eigenvalue co which we identify as
the quasihole energy Eq„(k). In particular at small momenta
(k=0.2kF) one also finds that a few states around the quasi-
hole energy exhibit large coefficients X and therefore con-
tribute significantly to the sum in Eq. (15). We define the
quasihole strength to be the contribution of all terms in Eq.
(15) which originate from an eigenstate of Eq. (14) with an
eigenvalue within an interval of length 3 MeV around the
quasihole energy E'qb'.

of the ratio k/kF for two densities (lines labeled with tri-
angles). The remaining contributions to the sum in Eq. (15)
will be called the continuum contribution to the occupation
probability or momentum distribution.

From the inspection of the results displayed in Fig. 4 one
finds that the quasihole contribution to the occupation prob-
ability increases drastically with the momentum while the
continuum contribution decreases in a corresponding way. A
typical ratio of the quasihole versus continuum contribution
is 0.6 for small momenta but as large as 10 for momenta
close to the Fermi momentum. This means that the energy
distribution of the single-particle strength is highly localized
at the quasihole energy for states with momenta close to kF
whereas one observes a broad distribution and fragmentation
of the strength for small momenta, i.e., deeply bound hole
states.

The continuum contribution to the occupation probability
decreases monotonically with increasing momentum and is a
rather smooth function even at the Fermi momentum. This
implies that the gap in the momentum distribution exhibited,
e.g. , in Fig. 2 at k=kF originates simply from the fact that
the quasihole contribution vanishes since the energy of the
corresponding state gets larger than the Fermi energy. It is
worth noting that about 70% of the single-particle strength is
located in the quasihole contribution. Two-thirds of the re-
maining continuum contribution occurs at momenta below
the Fermi momentum and only one-third of the continuum
contribution, which means slightly more than 10% of the
total strength occurs at momenta above kF .

From the single-particle Green's function we also deter-
mine the mean value of the energy for the spectral distribu-
tion at a given momentum,

ca(k) =

1 «F
dcocu Img(k, co)

srJ

n(k)
(41)

1
co(k) = g co O(EF o) )X—

n(k)
(42)

with the occupation number n calculated following Eq. (15).
The summation in this equation can be truncated as dis-
cussed above to determine the mean value for the energy
resulting from the continuum part of the momentum distri-
bution.

Such mean values are presented in the right part of Fig. 5.
One finds that these mean values for the continuum are more
negative than the corresponding HF single-particle energies
or the energies of the quasihole states, which are shown in
the left part of Fig. 5 (note the different scales on the axes).
Particularly at large momenta, above kF where the con-
tinuum part represents the total momentum distribution,
these mean values co(k) are very attractive. This implies that
these high-momentum components of the momentum distri-
bution occur predominantly at large excitation energies of
the residual nuclear system, which corresponds to large miss-

or translated into the tools we are using in our numerical
treatment,
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FIG. 7. Occupation probabilities in nuclear matter at kF=1.35
fm ' calculated in various BAGEL(n, m) approximations are com-
pared to the result obtained with the complete Lehmann represen-
tation of the single-particle Green's function.

does not affect the high-momentum components very much
but only the occupation probability around kF .

0.7
0.0 0.5 1.0 1.5 2.0 2,5 3.0

10-4

Momentum k / kF

FIG. 6. Occupation probabilities in nuclear matter at kF=1.35
fm ' using various modifications of the BHF single-particle spec-
trum.

ing energies in knock out experiments. This result for nuclear
matter confirms the observations made for finite systems in
[26,27].

In the left part of Fig. 5 the BHF single-particle energies
(lines labeled with triangles) are compared to the energies

Eqh of the quasihole energies. One can see that the inclusion
of the 2hlp terms of Fig. 1(c) yields a repulsive contribution
to the quasihole energy. This is especially true for states with
momenta well below the Fermi momentum. This means that
the removal energy for nucleon knockout experiments excit-
ing states with large spectroscopic factor should be much
smaller for these deeply bound states than predicted in BHF
calculations.

As a last point in this subsection we would like to explore
the sensitivity of the calculated momentum distribution on
the HF single-particle spectrum. For that purpose we have
modified the effective mass parameter m* in the parametri-
zation of Eq. (39) from the BHF value of m* =623 MeV [39]
at kF = 1.35 fm ' by ~ 100 MeV. From the upper part of
Fig. 6 one can see that a reduction of the effective mass-
i.e., the single-particle energy shows a stronger momentum
dependence —yields a reduction of the correlation effect.
This reduction of the correlations is indicated by an enhance-
ment of the occupation of states with k~kF and a reduction
of the high-momentum components. Another modification of
the HF single-particle spectrum can be obtained by introduc-
ing a gap between the energies of particle and hole states. As
one can observe from the lower part of Fig. 6 such a gap

B. BAGEL approximation

In order to investigate the efficiency of the BAGEL ap-
proximation introduced in the previous section for the repre-
sentation of the single-particle Green s function in terms of a
few poles we have evaluated the momentum distribution
of nuclear matter considering various combinations
BAGEL(n, m) for the number of basis states n in the 2plh and
m in the 2hlp part of the eigenvalue problem, Eq. (14). Re-
sults for a few examples are displayed in Fig. 7.

One finds that a very good approximation for the high-
momentum components is obtained already with a very
small number of basis states. The occupation probabilities
for k)kF are reproduced in quite a satisfactory way in the
simplest approximation BAGEL(1, 1) and the results become
indistinguishable from the exact results if we use any ap-
proximation with n, m larger than 1. The convergence of the
BAGEL approximation towards the exact result with increas-
ing n, m is not as good for the occupation of states below
kF . A larger number of pole terms is required in particular to
reproduce the decrease of the occupation number with k get-
ting close to kF .

Of course it is still a very efficient approximation to re-
duce the number of poles in the Lehmann representation of
the single-particle Green's function of Eq. (13) from a few
hundred obtained by an optimized discretization of the
integrals in Eqs. (3) and (6) to n + m + 1 = 2 1 in the
BAGEL(15,5) approximation, but a closer inspection may help
us to reduce the number of terms even more.

Analyzing the basis states which are generated by the
BAGEL approach in the 2plh part of the Hilbert space by
applying a of Eq. (17) according to the Lanczos scheme, one
observes that states are generated with very large eigenvalue
co but negligible amplitude X . It requires some iteration
steps to generate a few states with lower energy and a non-
negligible coefficient. This generation of basis states with
extreme energies is of course a feature of the Lanczos ap-
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pation probabilities for various partial waves. These probabilities
are obtained by integrating the partial wave contributions in Eq.
(32) ignoring the degeneracy factors 2(2j+1). For states with
l~ 1 the contributions from the quasihole (nq") and the continuum
part (n') of the spectral function are listed separately. Results have
been obtained using the OBE potential B and the Reid soft-core
potential.
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FIG. 8. Momentum distribution for ' 0 in the p»2 partial wave
[see Eq. (32)]. The distributions are normalized such that

fdkn(k) = 1 if one orbit would be occupied. The three parts of the
figure display the quasihole contribution, the continuum contribu-
tion, and the sum of these two (total) as obtained for the OBE B
(solid lines) and the Reid soft-core (dashed lines) potentials.

proach, which is not optimal for our present purpose. The
situation is better for the generation of basis states in the
2hlp sector, as the eigenvalues of A [see Eq. (17)] are more
limited.

From this discussion we see that the BAGEL approxima-
tion for the Green's function can be made more efficient by
either ignoring the contributions of those poles in the Leh-
mann representation of Eq. (13), which show very small co-
efficients X, or replacing the Lanczos algorithm generating
the basis states by one, which preferably generates eigen-
states close to the Fermi energy.

C. Finite nuclei

As a first example for the momentum distribution calcu-
lated directly for the finite nucleus ' 0 using the method
described in [27] and briefiy reviewed in Sec. III A, we
present in Fig. 8 as a typical example the momentum distri-
bution obtained for a p&/2 partial wave. This refers to the
corresponding contribution to the sum in Eq. (32) without
the factor 2(2j+ 1) for degeneracy of these states. As in [27]
we split the momentum distribution into a quasihole contri-
bution, which should be observed if the (A —1) nucleus re-
mains in its ground state, and a continuum part rejecting the
momentum distribution observed at larger missing energies.

The results obtained for the Reid soft-core potential [I]
(dashed lines) are rather similar to those evaluated for the
OBE potential 8 of [2] (solid lines). However, there are
some characteristic differences which can also be observed
in the other partial waves: The quasihole contribution evalu-
ated for the Reid potential exhibits a maximum at smaller
momenta and drops faster with increasing momentum. This
rejects the fact that nuclear structure calculations like BHF
yield less binding energy and a larger radius using the Reid
soft-core potential as compared to the OBE model for the
NN interaction. The continuum part, on the other side, ex-
hibits larger contributions at high momenta using the Reid
potential. Following the arguments present in the Introduc-
tion of this paper, this would be an indication that the Reid
potential predicts "stronger" correlations.

P 3/2

I 1/2

d 5/2

d3/2

f7@

j5(2

g 9/2

g 7/2

0.780
0.914
0.898

0.157
0.042
0.046
0.022
0.027
0.008
0.013
0.002
0.004

0.778
0.896
0.896

0.117
0.040
0.047
0.018
0.024
0.014
0.019
0.004
0.007

Another indicator for the importance of NN correlations
are the occupation probabilities for the various partial waves
as they are listed in Table I. These occupation probabilities
are obtained by a momentum integration of the various par-
tial wave contributions in Eq. (32). Again we distinguish
between quasihole and continuum contribution for the partial
waves with l ~ 1 and compare the results for the two models
of the NN interaction. The results presented here for the
OBE potential deviate slightly from those presented in [27]
as we have increased the interval for the energy integration
in Eq. (32) in our present study. It is interesting to note that
the occupation probabilities are quite similar for both inter-
actions for the orbits with angular momentum l»2 with
slightly larger values for the OBE potential. For the partial
waves with larger l, however, the Reid potential predicts
occupation probabilities which are significantly larger than
those for the OBE potential. This difference seems to be due
to the stronger tensor component contained in the Reid po-
tential.

Multiplying the occupation probabilities of Table I with
the degeneracy factors 2(2j+1) one finds that 2.05 (2.09,
using Reid) "nucleons" out of the 16 for ' 0 are represented
by the continuum part of the momentum distribution. The
total nucleon numbers, including the quasihole part, are
16.07 and 15.96 for the OBE and Reid potentials, respec-
tively. This means that the particle-number-violating features
of our present approach lacking a self-consistent treatment of
the single-particle Green's function are not very strong t30].

The continuum part of the total momentum distribution
including partial waves with l~4 in the summation of Eq.
(32) is displayed in the left part of Fig. 9. Again we can
observe the characteristic differences obtained for the two
interactions: While the OBE potential yields a momentum
distribution which is slightly larger at small momenta, the
Reid potential predicts contributions which are larger by al-
most a factor of 2 at large momenta. This is in complete
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weakly but in a rather characteristic way on the interaction
used. The stronger tensor and short-range components of the
Reid soft-core potential yield a larger single-particle strength
at high momenta and large missing energies as compared to
the OBE potential B of [2]. For momenta around 3.5 fm
the momentum distribution derived from the Reid interaction
is larger by a factor 2 in nuclear matter as well as finite
nuclei.

(iv) The momentum distribution calculated for finite nu-
clei is rather sensitive to a truncation in a partial wave ex-
pansion. Orbits with angular momenta l larger than 4 should
be taken into account to obtain stable results at momenta
k= 4fm

(v) A local-density approximation, in which the high-
momentum components in the single-particle density are de-
rived from the study of correlations in nuclear matter, yields
a very good agreement with corresponding studies for finite
nuclei, if the effects due to truncations in the partial wave
expansion are considered.

(vi) The numerical scheme developed for the solution of
the Dyson equation in nuclear matter leads to a very efficient
representation of the single-particle Green s function in
terms of a few "characteristic" poles in the Lehmann repre-
sentation. This BAGEL approximation could be very useful,
e.g. , in studies of nuclear response functions beyond the HF
and random phase approximations.
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APPENDIX

This appendix lists the expressions [29] for the weighting function W(q) and the average c.m. momentum K„which have
been used in the calculation of the 2hlp contribution to the nucleon self-energy according to Eq. (6). For that purpose we
distinguish four different cases of the momentum k for which the self-energy shall be evaluated:

(a) 0~k~ —,
' kF,

(b) —,
' kF(k(kF,

(c) kF~k&3kF,

(d) 3kF~k~~ (Al)

Case (a):

—,
' ((k+ q)'+ [-,' (k'+kF) —q']'")

for (kF —k) ~ q ~ —,
' (k+ kF),

(k —kF) + q(q+ k)

K„(q,k) =
&

—,
' [(q+ k) —(q —k)']

2kq

-' [(k )' —(q —k)']
—,
'

(kF —k —
q )+kq

for —,
' (k+kF) ~q~(kF k), —

for (kF k) ~ q ~ (k+ kF—),

(A2)

q( 4 (k kF)+q(q+k)) —for —,
'

(kF k)~q~ —,
' (kF+—k),

Case (b):

W(q) = & q(2kq)

, q( —,
'

(kF —k —q ) + kq)

for —,
' (k F+ k) —q —(kF —k),

for (k F k) ~ q ~ (kF+ k). —
(A3)

—,
' ((k+ q)'+ [-,' (k'+ k'„) —q']»'~

for —,
'

(kF —k) ~ q ~ (kF —k),
(k —kF) + q(q+ k)

—,
' (k,' —[-,' (k'+ k', ) —q']"' [K„k,q) = t (k —k2) + 1/2

-' [(k )' —(q —k)']
—,
'

(kF —k —
q )+kq

for (kF —k) ~q~ —,
' (k+ kF),

for (k+ kF) ~q» (k+ kF),

(A4)
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q( —' (k —kF)+ q(q+ k)) for -' (kF k—)~q~(kF —k),

~(q) = ~ k —,
'

(kF —k')+ q'— for (kF k) ~ q ~ ~z (kF+ k) (A5)

k( —,
'

(kF —k —
q )+kq) for —,

' (kF+k)~q~(kF+k).

Case (c):

XC„(k,q) = ~

—,
'

(kF k q— )+—kq
for —, (k+kF) ~q~(k+kF),

i (k3 [i (k2+k2) 2)3/2)
for g-,' (k —kF)(k+ kF) ~ q ~ —,

' (k+ kF),
(kF —k )+ I/2q

q(-,' (k' —k')+ —,
'

q j for g-,' (k kF)(k—+kF)~q~ p (kF+k),
w(q) = '

q(-,' (k' —k' —q')+kqj for —,
' (kF+k)~q~(kF+k)

(A7)

Case (d):

l [(k )'-lq-kl')
for (k —k )~q-(k+kF),

—,
' (kF —k —

q )+kq
(A8)

II/(q) =(q( —,
'

(kF k' q')—+kq-) «r (k —kF)-q-( F+ ). (A9)
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