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The three-nucleon interaction that is implied by the pion and the effective scalar and vector meson exchange
components of the nucleon-nucleon interaction arises from the excitation of intermediate nucleon-antinucleon

pairs. Using several wave-function models we show that this interaction is repulsive, reducing the calculated
binding energy of the trinucleons by about 200—300 keV. The contributions of intermediate N(1440) reso-
nances (and the same meson exchanges) to this three-nucleon interaction are also estimated and shown to be
small.

PACS number(s): 21.30.+y, 21.10.Dr, 21.45.+v, 27.10.+h

I. INTRODUCTION

Although the nuclear three-nucleon interaction (TNI) is
very weak in comparison to the two-nucleon interaction [1],
it nevertheless has been found that the binding energies of
the bound three- and four-nucleon systems cannot be under-
stood without taking into account the attraction caused by the
TNI [2]. The main component of the nuclear TNI is that
associated with two-pion exchange, which includes pion res-
cattering through an intermediate virtual 533 resonance. The
standard model for the two-meson exchange component of
the TNI is the so-called Tucson-Melbourne model, which
also includes p-meson exchange in addition to pion ex-
change [3—5]. It has been found that when realistic models
for the nucleon-nucleon interaction are employed, the
Tucson-Melbourne m-exchange model for the TNI leads to
an overbinding of a few hundred keV in the trinucleons [6]
and of 2—4 MeV in the case of the alpha particle [7]. To
compensate for this overbinding an additional repulsive spin-
independent phenomenological TNI of short range has been
proposed [8]. On the other hand, the Tucson-Melbourne
model (with both m' and p exchange) has recently been
shown to give the correct binding of the trinucleon with the
Tucson-Melbourne meson-baryon-baryon vertex functions
("form factors") [9].These form factors, however, differ in
their short range behavior from those of the (older) realistic
models of the nucleon-nucleon interaction. While this form
factor discrepancy [10] is further studied in the case of the
NN interaction [11], there remains a need for further inves-
tigation of the short-range aspects of the TNI.

There is no known dynamical mechanism that would lead
to a spin-independent short-range TNI. The short-range
three-nucleon interaction that arises from scalar and vector
meson exchanges with an intermediate nucleon-antinucleon
pair were considered in Ref. [12],but were found to be both
insignificantly small and spin dependent (the different nu-

merical results in these references were due to the effect of a
nonlocal term associated with the momentum dependence of
the intermediate antinucleon that was dropped in the former
and retained in the latter). We here consider another set of
related three-nucleon interactions —those that arise from
pion and "effective" scalar and vector meson exchanges and
that involve excitation of intermediate nucleon-antinucleon

pairs and N(1440) resonances (Fig. 1). The presence and
form of the former [Fig. 1(a)] —and more important one of
these interactions —is implied by the pion and scalar and
vector meson exchange components of the nucleon-nucleon
interaction, and can be derived directly from a given com-
plete model for the two-nucleon interaction. The derivation
is especially straightforward if the nucleon-nucleon interac-
tion has explicit scalar and vector meson exchanges with
associated meson-baryon-baryon vertex functions, but the
former TNI can also be constructed from "effective" scalar
and vector meson exchanges obtained from any complete
energy-independent model of the nucleon-nucleon interac-
tion [13].The magnitude of the latter TNI [Fig. 1(b)] is less
certain because of the wide uncertainty in the meson-
nucleon-N(1440) ("Roper resonance") coupling strengths.
Both of these sets of three-nucleon interactions nevertheless
have a very simple form, although spin dependent, and when
combined provide an amount of additional repulsion that ap-
proximately corresponds to that required and hitherto as-
cribed to the purely phenomenological spin-independent
short-range TNI.

FIG. 1. (a) m —short-range exchange three-nucleon interaction
that involves an intermediate nucleon-antinucleon pair, (b)
m —short-range exchange three-nucleon interaction that involves ex-
citation of an intermediate N(1440) resonance. The wavy lines

symbolize scalar and vector meson exchange.
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In Sec. II of this paper we derive the effective vr-scalar
and m-vector meson exchange three-nucleon interactions
which arise from excitation of intermediate nucleon-
antinucleon pairs and show how the potentials which de-
scribe these interactions can be constructed from realistic
models for the nucleon-nucleon interaction. It is this con-
struction method which distinguishes the TNI's of the
present paper from the Brown-Green [1],Tucson-Melbourne
[3—5], Brazil [14], and the Fujita-Miyazawa [15]TNI's (the
last being extensively used in a program of studies with light
nuclear systems [16])The latter TNI's did not attempt such a
tight connection with a nucleon-nucleon interaction but re-
lied on other aspects of hadronic phenomenology for moti-
vation and parameter fixing. In Sec. III we derive the corre-
sponding three-nucleon interactions that arise from
excitation of N(1440) resonances on the intermediate
nucleon and derive the corresponding coupling constants
from the partial decay widths. In Sec. IV we present numeri-
cal results for the contribution to the binding energy of the
trinucleons, which arises from these interactions using oscil-
lator and Malfliet-Tjon [17] wave functions as well as Paris
and Bonn "OBEPQ" [9,18] wave functions. Finally Sec. V
contains a concluding discussion. The partial wave decom-
position of the TNI is described in the Appendix.

II. PION-SCALAR AND -VECTOR MESON EXCHANGE
THREE-NUCLEON INTERACTIONS

To construct the ~-scalar ("cr")-meson three-nucleon in-
teraction that corresponds to the Feynman diagram in Fig.
1(a) we employ the 7rNN and oNN. couplings

(2.1a)

(2.1b)

Here P is the isovector pion and P the isoscalar scalar
meson field and f zz (f ~~/4m=0 08) a. nd g the corre-
sponding coupling constants.

The three-nucleon interaction that corresponds to the
Feynman diagram in Fig. 1(a) is obtained by retaining only
the negative energy part of the fermion propagator for the
intermediate nucleon and adding the term with the pion and
scalar meson couplings in reversed order. In the actual con-
struction of the operator we exploit the fact that the nucleons
are nearly on shell, and use the Dirac equation to simplify
the algebra. In this way a contact term operator arises, which
has to be retained along with the pair term in the three-
nucleon interaction operator. This contact term operator al-
ters the nature of the ~NN coupling from the pseudovector
coupling of Eq. (2.1a) to a chiral rotated representation
which will be discussed later. The resulting three-nucleon
interaction has the simple form

Realistic models for the nucleon-nucleon interaction as,
e.g. , the Bonn [19],Nijmegen [20], and Paris [21]models are
based on meson exchange models, in which the Lorentz
invariant on-shell nucleon-nucleon scattering amplitude
is constructed from phenomenological meson-nucleon
Lagrangians, and then used as an off-shell kernel in a wave
equation. In practice a nonrelativistic "adiabatic" approxi-
mation is also involved [22,23]. The important point is that a
given model for the on-shell amplitude that is extrapolated
off shell in this way automatically implies a model for the

NN~NNNN amplitude as well. This amplitude is the cen-
tral component in the three-nucleon interactions that arise
from excitation of virtual nucleon-antinucleon pairs on the
intermediate nucleon [Fig. 1(a)]. Thus any meson exchange
model for the nucleon-nucleon interaction will by construc-
tion imply the presence of three-nucleon interactions of this

type, which formally can be derived directly from the NN
interaction model without any need for further assumptions.

We shall here consider the m-scalar and m-vector meson
exchange TNI's of this form. An important part of the moti-
vation for this is the recent observation that the off shell
~+N~N+ scalar and m+N~N+ vector amplitudes are
"almost" observable, in that they successfully describe most
of the cross section for the reaction pp —+pp m near thresh-
old [24].Thus the theoretical model for these amplitudes can
be viewed as having a good empirical foundation. In the
derivation of these three-nucleon amplitudes we shall use the
usual phenomenological scalar ("o," "ao") and vector me-
son ("cu," "p") Lagrangians, but in the end will replace the
pure boson exchange interactions by the corresponding "ef-
fective" scalar and vector meson exchange interactions that
form the most important short-range components of the
nucleon-nucleon interaction.

.) (k'. + '.)(k'.+ '.)
+ (permutations) . (2.2)

Here the direction of the meson momenta are taken so that
they point away from the intermediate nucleon, that is indi-
cated by the superscript 2 on the spin and isospin operators.
The symbol "permutations" stands for first adding a term, in
which the nucleon coordinates 1 and 2 are exchanged and
then taking into account the additional (4) terms in which the
intermediate nucleon-nucleon pair is excited on nucleon 1

and 3 in turn.
In order to make this expression for the pion-scalar TNI

consistent with a realistic model for the nucleon-nucleon in-

teraction it is natural to replace the term —g /(k +m ) in
the expression (2.2) by the corresponding general "effec-
tive" isospin independent scalar component vs (k ) of the
nucleon-nucleon interaction, which may be constructed using
the method of Ref. [13]. In a similar way it is natural to
replace the term (f zz/m ) l(k +m ) by the effective
iso spin dependent pseudoscalar exchange potential

v p(k )/4m~ of the nucleon-nucleon interaction. In this way
the short-range modifications —i.e., form factors —of the
simple meson exchange interactions are determined by the
corresponding components of the nucleon-nucleon interac-
tion model.

Specifically, the method of Ref. [13] rewrites a nonrela-
tivistic nucleon-nucleon potential model on the energy shell
in terms of five nonrelativistic spin amplitudes which can be
viewed as nonrelativistic limits of five relativistic Fermi in-
variants. For the construction of the TNI's in this paper we
need the isospin independent (+) and isospin dependent



52 REPULSIVE SHORT-RANGE THREE-NUCLEON INTERACTION 2927

( ) Fermi invariants: scalar (5), pseudoscalar (P), and vec-

tor (V). The Fermi invariant potential coefficients v, (k),
j= S,P, V are obtained as linear combinations of the nonrel-
ativistic components of a given potential. The Fermi invari-
ant potential coefficients v are functions of k only, which
means that the underlying interactions have no energy depen-
dence. The procedure and results for carrying out this pro-
gram for a potential (such as Paris), which has a short-range
behavior determined in coordinate space, are displayed in
[13].If the potential is already expressed in terms of relativ-
istic invariants corresponding to the exchange of scalar, vec-
tor, and pseudoscalar bosons (such as the Bonn or Nijmegen
potentials) the procedure amounts to the replacement (for
example)

tion there will therefore be a strong partial cancellation be-
tween the ~o. and +co three-nucleon interactions, such that
the ~o. typically is the stronger interaction, because of the
somewhat longer (intermediate) range of the effective scalar
meson exchange interaction.

The mp exchange TNI has one component that arises
from the charge component and one that arises from the spa-
tial component. The first one of these has the form

2 ( i2 i 2
gp fmNN .

~ 'kyar~ 'kp
~ 3V

m~( m ) (k +m )(k +m )
z 2 2 2 r r, (2.7)

and the expression for the latter is

(f ~~/m )'
I +k

v p(k ) (f ~~/m )2 (A —m

4m~ k +m I A +k„)
(2.3)

. gp fmNN ~ 'km

m~( m ) (k +m )(k+m)
Xo [2P3+to Xk ]r r Xr . (2.8)

where the meson-nucleon-nucleon vertex (A —m )/
(A„+k ), is of the form chosen for the Bonn OBEPQ po-
tential used in our numerical investigations. In either case,
the short-range behavior of the TNI so constructed is fully
determined by the short-range behavior of the corresponding
nucleon-nucleon interaction, which is the issue at hand.

In the case of an isospin-1 scalar meson exchange (ao
channel) the TNI that corresponds to the expression (2.2) is

f Ivn
2 1

m~ m ) (k +m )(k, +m, )

X(o k r r +2to P2r'. r X r )/. (24)

Here g, is the aoNN coupling constant and m„and k, the
mass and momentum of the exchanged ao, respectively. In
view of the smallness of the nucleon momenta in the bound
states we shall not consider the nonlocal term in this TNI,
which contains the momentum P2 = (p2+ pz) of the interme-
diate nucleon. In order to make the rrao TNI (2.4) consistent
with the models for the nucleon-nucleon interaction we shall
replace the simple ao exchange interaction in (2.4) by the
corresponding isospin dependent scalar exchange component
of the nucleon-nucleon interaction: g,/(I, +k, )

To construct the ~co TNI we employ the coNN Lagrang-
ian

~= tg.Pr„~ 0, (2.5)

where g„ is the coNN coupling constant in addition to (2.1a).
The resulting TNI potential is

m~~ m ) (k'+m')(k'„+m'„)

+ (permutations). (2.6)

This interaction, which arises from the charge component
of the cu field is similar in form to the mo. TNI (2.2), but has
the opposite sign. As in the case of the two-nucleon interac-

The local part of the ~p exchange three-nucleon interaction
V is referred to as the "~p Kroll-Rudermann interaction"
[5] or the "seagull" [14] in the literature, and has been con-
sidered in the trinucleon before [9,25,26]. In the treatment of
the Tucson-Melbourne TNI (an expansion of the pN~rrN
amplitude) V is small because of a near cancellation be-
tween the intermediate nucleon-antinucleon part and the p
analog Fubini-Furlan-Rossetti contribution to pion photopro-
duction. The isoscalar V corresponds to the remaining lead
term in Eqs. (2.13b) and (2.14a) of [4]. It was estimated in
nuclear matter in [4], derived and then neglected altogether
in the Brazil TNI [14], and is evaluated in the trinucleon for
the first time in the present study. To make the present ex-
pressions for the mao and ~p exchange three-nucleon inter-
actions consistent with the nucleon-nucleon interaction
model we shall replace the bare vector meson interactions

g /(k„+ m ) and g /(k + m ) with the corresponding isos-

pin independent [v~(k„)] and isospin dependent [v~(kp)]
vector exchange components of the nucleon interaction as
suggested in Ref. [13].

We now relate the TNI's just derived to the corresponding
TNI's due to nucleon-antinucleon pairs in the two-pion ex-
change case [3,4], and to the corresponding two-pion ex-
change TNIs which arise from an expansion of a chiral (ef-
fective) Lagrangian in powers of the inverse nucleon mass
[27] or the two-pion exchange TNI's obtained by a chiral
perturbation theory approach [28]. The latter three TNI's are
identical to the order considered in the various expansion
philosophies [27,29]. These sets of potentials depend upon
arbitrary parameters p, and v, just as do two-body relativistic
corrections in the one-pion-exchange potential (OPEP).
Since realistic two-nucleon potentials potentials contain
OPEP a further consistency demanded of a sensible TNI is a
consistency in p, and v between the TNI and the realistic NN
potential with which it is to be used. The parameter v of the
operators of this paper is always v= 1/2, corresponding to no
meson retardation, which is the case with the Bonn and Paris
potentials. The value of p, labels an ambiguity in the relativ-
istic corrections (i.e., from I/m~-expansion methods) to op-
erators involving pion exchange [30]. The same continuous
parameter also acts as a chiral rotation to determine the pseu-
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doscalar (p, =0) or pseudovector (p, =1) content of the
mNN coupling in models of the nucleon-nucleon interaction
or TNI's which obey approximate chiral symmetry [27]. Fix-
ing arbitrarily this parameter means choosing a special rep-
resentation of a unitarily equivalent class of operators. Be-
cause of this unitary equivalence, the observables should not
depend on the value of p, or v, i.e., on the choice of repre-
sentation, provided that all operators and wave functions are
chosen consistently [31].The derivation of the TNI's of Eqs.
(2.2)—(2.7) (and of the nucleon-antinucleon pair term of the
Tucson-Melbourne TNI [3]) corresponds to p, = —1, as does
the one-pion-exchange part of the Bonn OBEPQ [32]. Thus
it is completely consistent to determine the short-range
modifications of the simple meson exchange interactions of
Eqs. (2.2) and (2.6) by the corresponding components of the
Bonn OBEPQ nucleon-nucleon interaction model. The same
replacement procedure with the Paris potential is, however,
more problematic, as the parameter of that potential has been
identified to be p, = 0 [32,33] or to be a different value by
other authors.

Finally, we make qualitative remarks about the order of
the TNI's of this section in a power counting scheme which
has been used to classify two-pion exchange TNI's [29] and
can be connected to the power counting of chiral perturba-
tion theory [34]. Intermediate state nucleon-antinucleon pair
terms generate effective two-pion seagull couplings of order

f ~~/m and of order f ~~/(m m~). These seagulls can be
connected with single pion-nucleus vertices [of order

f ~Jv/m and f ~~/(m m~)] using time-dependent pertur-
bation theory to form physical amplitudes from pion ex-
change [30].It was shown in Ref. [27] that the seagull con-
tribution to the lowest order two-pion exchange TNI involves
only the latter seagull and is therefore [let
fo=f zz/(4m) —0.08] of order (fom /mz) or —100 keV/
triplet, where the latter estimate is made by treating the di-
mensionless (coordinate space) factors as order (1).The two-
pion exchange TNI terms, analogous to the Feynman
diagram of Fig. 1(a), in the Tucson-Melbourne TNI's are
identical to the seagull generated TNI's of Ref. [27]. Careful
calculations [35,9] of the effect of these terms on the triton
binding energy are indeed consistent (to a factor of 2 or 3)
with the power counting estimate of —100 keV/triplet. An
important conclusion of Ref. [27] was that there can be no
TNI terms of order fom~ or -5 MeV/triplet in a consistent
expansion in powers of U /c if one insists on an energy
independent OPEP (such as one finds in many realistic NN
interactions). That is, the sum of TNI terms from the

(f ~~/m ) two-pion seagull is identically zero provided the
OPEP underlying the calculation is energy independent (and
is not zero, as found in the early papers of Ref. [28], if the
OPEP is not energy independent). In particular, there are no
terms of order fomz from nucleon-antinucleon pairs in the
two-pion exchange Tucson-Melbourne TNI. The Tucson-
Melbourne pair terms were obtained from a subtraction pro-
cess [3]which we have determined equivalent to that used to
derive the nucleon-antinucleon pair terms of this section.

With this background, one can ask of the potentials of
Eqs. (2.2)—(2.7) (i) can they also be identified with an effec-
tive pion-scalar or pion-vector seagull from chiral couplings,
and (ii) are they the lowest leading order TNI's in the power

counting scheme? A conclusive answer requires a detailed
(and tedious) calculation of all TNI terms up to order
V /mz as was done in Ref. [27] for U= V (OPEP). This we
have not done but have some confidence that the answer to
both question is yes. The first TNI derived in this section is
of the schematic form V V /I&, where V is the NN po-
tential from single sigma exchange according to the coupling
(2.1b). This form would be expected from the pion-scalar
seagull derived in [30]

f~ivxg ~(/J 1)-
ro. . V

m~2m~

where we have adapted a term from Eq. (6f) of [30] to our
notation. If the effective chiral coupling were indeed pure
pseudovector (p, = 1), as implied by Eq. (2.1a), the seagull
would disappear. However, the effective chiral coupling of
the TNI of eq. (2.2) corresponds to p, = —1. Now visualize
that the scalar meson of this seagull connects to one nucleon
with coupling g and the pion connects to the other nucleon
with coupling f ~z/m to obtain a TNI of the strength and

structure of Eq. (2.2), including the o. k structure of the
intermediate nucleon. Because of the 1l/mz structure of the
pion-scalar seagull the TNI of Eq. (2.2) is the lowest order of
this type of TNI's which can occur in a U /c expansion.

III. INTERIVIEDIATE N(1440) RESONANCES

Excitation of virtual N(1440) (Roper) resonances on the
intermediate nucleon also contributes a weak but still signifi-
cant ~-scalar and m-vector meson exchange three-nucleon
interaction [Fig. 1(b)]. Naturally a contribution to the m7r
three-nucleon interaction also arises from intermediate
N(1440) excitation, but this is effectively included in the
Tucson-Melbourne TNI, which is based on an off shell ex-
trapolation of the complete mN scattering amplitude.

To construct the mo. and ~co three nucleon interactions
that are associated with intermediate N(1440) resonance ex-
citation we employ the effective Lagrangians

(3.1a)

M aviv+
= g

*i/'„@ f+ H.c (3.1b)

Ivw+='g 0 Y~~ 0+H c. (3.1c)

m* —m~ m (k +m )(/r, +m )

+ (permutation s), (3.2a)

Here P~ denotes the Roper resonance spinor field and
f*,g*, and g„* are the 7rNN*, oNN*, and (ANN* coupling
strengths, N* being an abbreviation for the N(1440). The
expressions for the mo. and ~su TNI potentials that are as-
sociated with intermediate N(1440) excitation can then be
derived in a straightforward way, the results being
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m* —m~ m' (k'+ m') (/ '„+m'„)
(3.2b)

shall introduce the same vertex factors as in the Bonn boson
exchange model OBEPQ for the NN interaction [19] by
means of the substitutions

Here m* is the mass of the N(1440) resonance. It is worth
noting that the terms that depend on the pion momentum

k in these three-nucleon interactions have the same form as
the one-pion exchange interaction between two nucleons.

The mNN* coupling constant f„* may be calculated from
the N*~Nm partial decay width as

1 1 /A' —m'~ '

2 m212

(3.7a)

(3.7b)

f m*m
I (N*~N7r)

4 vr (m*+ m~) p(E~ m~)— (3.3)
(3.7c)

Q2
g m

, I'[N*~N(arm)s „„,]4 7T p (E~+m~)
(3 4)

Here we assume that all of the I=O S-wave part of the
~m continuum can be interpreted as a broad effective o.
meson. The branching ratio for this decay channel is
5—15 %. Assuming m = 410 MeV at the midpoint between
the ~m threshold and kinematical phase space cutoff we ob-
tain

Q2

=0.14~ (3.5)

for I [N*~N(7r 7r)z,„,] = 35 MeV. This value for
g* /4m is expected to have an uncertainty of about a factor
2.

As the N* cannot decay into a ¹ostate, the coupling
constant g„cannot be determined directly from empirical
data. We shall here assume that g~/g„= g*/g as suggested
by the constituent quark model. In the Bonn boson exchange
model OBEPQ for the nucleon-nucleon interaction this ratio
is 1.55 [19].This would then suggest that

Q2' =0.24,
4m

(3.6)

a value with which a substantial uncertainty margin also has
to be associated.

The bare meson exchange potentials in the TNI's (3.2a)
and (3.2b) will be modified at high values of momentum
transfer by shorter-range dynamics in the same way as the
NN interaction. To describe this short-range modification in
a way that is consistent with that of the NN interaction we

Here p is the nucleon momentum and Fz the nucleon energy
in the rest frame of the decaying N*. With the Nm branching
ratio of the total decay width 350 MeV being 60% we obtain
f*/4m =0.031, which is somewhat less than one half of the

corresponding value f ~~/4+=0. 08 for the 7rNN coupling
strength.

The determination of the o.NN* and ~NN* coupling
strength is associated with considerably larger uncertainties.
To obtain an estimate for the 0.NN* coupling constant we
calculate it from the decay width for N*~N(~m)s „„,as

For the form factor mass scale parameters we use the values
A = 1.3 GeV/c, A =A„= 2.0 GeV/c .

IV. NUMERICAL ESTIMATES

An explicit calculation of the contribution of the
m-scalar and m-vector exchange TNI to the binding energy
of the trinucleons is necessary to evaluate the importance of
these potentials. The power counting estimates which work
so well for the pair terms of the ~-m exchange TNI fail
completely for these short-range TNI's. They should because
the heavy meson exchange shrinks to a point in the power
counting scheme and is overwhelmed by the hole in the
wave function that heavy meson exchange produces in the
NN force. For example, the power counting argument ap-
plied to the 7r p "Kroll-Ru-derman" term (i.e., the nucleon-
antinucleon pair term) of the Tucson-Melbourne TNI would
give a repulsive contribution of about 25 MeV/triplet. Com-
plete calculations with realistic triton wave functions [9] find
that the true contribution to the triton binding energy is about
0.1 to 0.5 MeV. Even simple S-state triton wave functions
such as a harmonic oscillator or the Malfiiet-Tjon I-III model
wave function alter the power counting estimate by two or-
ders of magnitude to about 0.15—0.2 MeV [5].

We shall first estimate the contribution of the m-scalar and
~-vector exchange TNI to the binding energy of the trinucle-
ons considering only the S-state component of the three-
nucleon bound state wave function using several different
wave-function models. As this wave-function component
gives the dominant contribution to the norm of the wave
function, this will be sufficient to establish the overall mag-
nitude of the matrix elements of the three-nucleon interac-
tions considered. The correction due to the D states are con-
sidered with the aid of realistic triton wave functions.

In the first estimates presented, the orbital part of the
wave function is described by the harmonic oscillator and
three-channel Maliliet-Tjon I-III model wave function [17].
The use of the harmonic oscillator model is motivated by the
fact that the resulting matrix elements can be reduced to
quadrature of very simple expressions, which allows the
qualitative features to be elucidated, and provides good ref-
erence tests for the calculation with wave-function models
that are based on realistic nucleon-nucleon interaction mod-
els —in this case the Paris and Bonn OBEPQ potentials
[19,21]. The harmonic oscillator and three-channel Maliliet-
Tjon III model wave functions do not take into account p-
and d-wave nucleon-nucleon correlations, and therefore the
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results that are obtained with such schematic model wave
functions are a priori only suggestive, although the numeri-
cal values for the matrix elements of the three-nucleon inter-
actions considered here that are obtained with the harmonic
oscillator and MalfIiet-Tjon wave-function models turn out
to be similar to those obtained in the end with the realistic
wave functions.

In the case of a wave function with only a completely
symmetric S-state component the radial matrix element may
be expressed as

dr I dv
(SI V3IS)—(Vs) =

)s s g(7', v)(jbpV3(r, v)gp

(4.1)

H.O. MF I-III

V

V

V „
CV

Tot

0.392
—0.012
—0.301

0.020
0.099

0.457
—0.010
—0.337

0.016
0.126

TABLE I. Matrix elements in MeV of the m-scalar and
m-vector exchange interactions which involve an intermediate
nucleon-antinucleon pair. The three-nucleon interactions are con-
structed from the Bonn boson exchange model OBEPQ for the NN
interaction [19].The matrix elements are obtained with 5-state os-
cillator and MalAiet-Tjon I-III wave functions.

Here Pp is the totally antisymmetric spin-isospin vector and

7 and v are differences of nucleon Jacobi coordinates, which
are related to the meson momenta in the three-nucleon inter-
actions as

(
k = 7'+ —, ka (u U (4.2)

In (4.1) the function g(r, v) is the Fourier transform of the
nucleon density function in coordinate space, which in the
case of the harmonic oscillator model takes the form

—r /2a —3v /sa (4.3)

cr being the oscillator parameter gmtop for which we use the
value 0.60 fm '.

The oscillator model leads to the following expression for
the matrix element of the mtT three-nucleon interaction (2.2)
in H and He:

g (e ~ ~~, , vo JINN —v /2ndv e

3k

Jp 1+m
7r n2 t' kv ~

I3/2gv 3'2
I, 2~2) '

(4.4)

where I3/2 is a modified Bessel function. The corresponding
expression for the matrix element of the mao three-nucleon
interaction (2.4) is obtained by the substitutions g ~g, and
m ~m„and an overall change of sign in the expression
(4.4), if the terms proportional to the total momentum of the
intermediate nucleon in (2.4) are neglected. The sign change
arises from different isospin dependence in (2.2) and (2.4).

The similarity in form between the mo. (2.2) and mcp (2.6)
three-nucleon interactions makes it obvious that the expres-
sion for the matrix element of V„„is given by an expression
of the form (4.4) with g, m replaced by g„and m„, and
with an overall minus sign. The expression for the matrix
element of the 7rp three-nucleon interaction V (2.7) is ob-
tained by the corresponding substitution in (4.4) of
g —+g, m ~m~, but without any change of the overall
sign.

The harmonic oscillator model of a three-body bound
state has special properties which allow a practical imple-

mentation of Eq. (4.1) as shown above. The numerical cal-
culation using the MalAiet-Tjon I-III model calculation was
made with the methods described in Refs. [5,26]. The S-state
wave function that corresponds to the Malfliet-Tjon I-III in-
teraction is given on a mesh over the configuration space
Jacobi variables described in [17]. The calculation of the
matrix elements then reduces to three-dimensional quadra-
ture over the Fourier transforms of the three-nucleon inter-
action potentials given in Secs. II and III above. The numeri-
cal values of the harmonic oscillator and MalfIiet-Tjon
model wave functions turn out to be very similar.

In Table I we give the numerical values for the matrix
elements of the three-nucleon m short-range three-nucleon
interactions that are associated with excitation of intermedi-
ate nucleon-antinucleon pairs. The numerical values have
been given both for the case of the oscillator model wave
function and the S-state wave function that corresponds to
the Mallliet-Tjon (MT) I-III interaction [17].The numbers in
the table correspond to the case when the Bonn boson ex-
change potential model OBEPQ (Table V, [19]) parameter-
ization has been used to construct the "effective" pion (pseu-
doscalar) and scalar and vector exchange potentials as
described in Sec. II above.

The wave functions that are obtained from realistic inter-
action models call for a different calculational method. As
the matrix elements involve the Jacobi coordinates of the
initial and final wave functions separately the momentum
transfer variables in Eq. (4.2) have to be supplemented by
sums of Jacobi variables, which in the case of the harmonic
oscillator model cancel the normalization integral and there-
fore do not need to be considered in Eq. (4.1). Employment
of wave functions that are obtained from momentum space
solutions of the Faddeev equations require a partial wave
decomposition of the TNI [4].At the same time it provides
an alternate way to calculate the matrix element of the ex-
pression (4.4), which will be used to check the numerical
calculation. This partial wave decomposition of the TNIs
above is described in the Appendix A.

The realistic wave functions that were used in the calcu-
lation were calculated by solving Faddeev equations retain-
ing in the two-body t matrix all two-body partial waves with
total angular momentum j~2. Then, the orbital angular mo-
menta include besides the s waves of the schematic interac-
tions such as MT-III, also p, d, and some f waves. The cal-
culation yields Faddeev amplitudes in 18 three-nucleon
partial waves in the jj coupling scheme (i.e., all the three-
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TABLE II. Matrix elements in MeV of the m-o and m-co exchange interactions which involve an inter-
mediate nucleon-antinucleon pair. The three-nucleon interactions are constructed from the Bonn boson ex-
change model OBEPQ for the NN interaction [19].The matrix elements are obtained with components of the
Paris and Bonn (OBEPQ) wave functions that comprise S, D, and even P three-nucleon states. We display
the individual contributions from these components.

Paris OBEPQ

V

V „
Tot

&sl v. ls)
0.409

—0.306
0.103

&sl v3ID)
0.617

—0.484
0.133

&sl v~1»
—0.023

0.020
-0.003

Tot
1.003

—0.770
0.233

&slv Is&

0.689
—0.528

0.161

&sl v31»
0.852

—0.678
0. 1 74

&sl v,
—0.025

0.022
—0.003

Tot
1.516

-1.184
0.332

body partial waves with the quantum numbers of the triton
that can be formed with the above restriction of two-body
channels). From the Faddeev amplitudes the three-body
wave function is calculated in the LS coupling scheme. Even
though the number of channels in the Faddeev amplitudes is
finite, the exact wave function obtained from them has infi-
nitely many three-body channels, as a consequence of the
action of the permutation operators on the Faddeev ampli-
tudes. For the expectation value of the TNI force we truncate
these three-body channels to the most important eight LS
channels. These eight three-body channels are all one can
consider corresponding to the triton quantum numbers if, be-
yond the s waves, the two-body pair or relative orbital an-
gular momentum of the spectator or even both are allowed to
be in a d wave. Because of this truncation, no three-body
channels with two-body p waves are included in the wave
function actually used, although a three-body P-wave contri-
bution is generated by the coupling of the two-body d waves.
Two of these eight channels are pure s-waves, both in the
two-body pair and in the relative orbital angular momentum
of the spectator. The corresponding three-body amplitudes
from these two channels alone differ from the ones obtained
with a two-body t matrix in pure s waves to begin with. This
fact makes the effect of these two channels qualitatively dif-
ferent from its effect in the simple calculations with the
Gaussian and MalAiet-Tjon models: by construction, the
Paris and Bonn three-body wave functions components in
these channels do contain already "correlations" due to
higher partial waves. As for the other six channels, three
build up the triton D-state wave function (by having the
spectator, the pair, and both in a two-body d wave) . Through
the coupling of two-body d waves in both the pair and spec-
tator, the other three channels generate a triton P state and an
additional contribution to the S state. The eight channels to-
gether comprise 94% and 96% of the total norm of the full
wave function, respectively, for the Paris and OBEPQ cases
(in the actual calculation we did not renormalize the trun-
cated wave function to 1).

In Table II we give also for the OBEPQ short-range pa-
rameterization of the TNI's the expectation values for the
Bonn OBEPQ and Paris triton wavefunction models. Table II
displays the m-to and ~-o. exchange force effects only (ac-
cording to Table I they dominate the overall ~-scalar and
m-vector exchange TNI). In the truncation of the wave func-
tion we use, the diagonal expectation values (D

~
V3 ~D) and

(P
~
V3~P) are identically zero, so the dominant correction to

the (S~ V&~S) term is the strong off-diagonal (S~V3~D) cou-
pling induced by the rank-2 spatial tensor component of the

m —short-range three-nucleon interactions. A cancellation ef-
fect between the scalar and vector exchanges lessens the
overall 0-state effect from that of the individual m-cr and
m-co pieces. A comparison with more complete calculations
[36] in progress does not indicate the presence of any more
significant 0-state effects, even in a nonperturbative calcu-
lation. The off-diagonal (S~V&~P) matrix element to the
three-body P state is rather small and the cancellation be-
tween the scalar and vector exchanges is nearly complete.
Table II confirms the trend of repulsion obtained with the
more schematic wave function models used in the calcula-
tions of Table I. It also stresses once more the traditional
extreme results of the OBEPQ potential for the triton binding
energy.

All wave-function models indicate that the S-state matrix
elements of the m —short-range three-nucleon interactions

that are associated with intermediate NN pair excitation are
about 100—300 keV [99 keV, 126 keV, 233 keV, 332 keV,
respectively for the harmonic oscillator (H.O.), MT, Paris
and Bonn model wave functions], when these three nucleon
interactions are constructed so as to be consistent with the
Bonn OBEPQ model for the NN interaction. This 100—300
keV result has a substantial theoretical uncertainty margin
that is due to the remaining uncertainty in the different short-
range behavior of the nucleon-nucleon interactions. This ul-
timately relates to the consistency problem of how to deal
with the ambiguities of a nonrelativistic reduction. To illus-
trate this uncertainty we have also constructed these
m-scalar and ~-vector exchange three-nucleon interactions
from the Paris model for the nucleon-nucleon interaction
[21]. In that potential model the isospin independent scalar
exchange component is much weaker than in other realistic
phenomenological potential models, and is in fact repulsive
at short range [13].As a consequence that matrix element
(V ) calculated with the oscillator wave-function model is
only 0.143 MeV as compared to the corresponding value
0.392 MeV obtained with the TNI consistent with the Bonn
OBEPQ NN potential. Replacing the oscillator wave func-
tion by the Paris wave function reduces the matrix element to
the very small value of 0.067 MeV. This reduction of
(V ) makes the net matrix element of the ~—short-range
three-nucleon interaction attractive, when constructed from
the parametrized Paris potential (=—0.200 MeV for the os-
cillator wave function, or = —0.174 MeV for the Paris wave
function). The difference of almost 0.5 MeV (and a change
of sign) between these two most consistent calculations pre-
sented here (a Bonn wave function and Bonn TNI compared
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3 gagg J mNÃ& ~ —v2/2n2 U

7T m m~ m y 0 V

JO

k mn—k /2u
k2+ 2 kv 1/2~2&2

(4.5)

The corresponding expression for the matrix element of the
7rco exchange three-nucleon interaction V* (3.2b) can be
obtained simply from (4.5) by means of the substitutions
g*—+g,* . and m —+m„and an accompanying overall sign
change.

The matrix element of the N(1440) intermediate state
7ro. three-nucleon interaction V* (4.5) for the S-state oscil-
lator model for the bound trinucleon states is +0.200 MeV.
Here we have used the parameters m = 530 MeV and

g /4vr = 8.2797 for the mass and (nucleon) coupling con-
stants for the exchanged o. meson as suggested by the Bonn
OBEPQ potential [19], and the short-range form factors
(3.7). The values of the meson-NN* coupling constants are
those derived in Sec. III. The corresponding matrix element
of the 7rcu TNI V* (3.2b) is —0.150 MeV so that the net
contribution of the TNI associated with the N(1440) is re-
pulsive and =0.050 MeV. When the same calculations are
made with the substitution of the Malfliet-Tjon wave func-
tion for the oscillator wave function, the individual contribu-
tions are =+0.065 MeV from V„* and = —0.045 MeV
from V*„, for a total repulsion of =0.020 MeV. For both
these schematic triton wave functions the sum of
~—short-range TNI's produces a small, but non-negligible,
fraction of the repulsive contributions in Table I due to the
TNI associated with intermediate NN pair excitation. For the
more realistic wave functions, including D-state effects, this
fraction becomes very small indeed. The OBEPQ parameter-
ization of the TNI evaluated with the Paris triton wave func-
tion yields only +0.004 MeV. In our most consistent calcu-
lation (Bonn OBEPQ triton wave function and the OBEPQ
parameterization of the TNI), the total repulsion from the
TNI associated with the N(1440) is about one-tenth
(+0.034:+0.332 MeV) of that of the intermediate NN pair
excitation.

With the 5-state oscillator trinucleon model and the semi-
realistic, MalAiet-Tjon NN potential wave function, the com-
bined contribution of all the 7r —short-range TNI's (con-
structed from OBEPQ for the NN interaction) is thus about

to the Paris wave function and Paris TNI) is clearly due to
the weak isospin independent scalar exchange component of
the Paris potential. It may also be due in part to the p, pa-
rameter inconsistency between the derivation of the TNI and
the Paris choice of short-range modification, discussed to-
ward the end of Sec. II.

The TNI's that are associated with N(1440) intermediate
states lead to much smaller binding energy effects than those
just discussed, a fortunate result for our goal of building
TNI s consistent with a given nucleon-nucleon interaction.
For example, with the oscillator model density function (4.3)
the matrix element of the N(1440) intermediate state 7ro.
three-nucleon interaction (3.2a) takes the form

150 keV. More realistic triton wave functions give significant
contributions from the three-body D state. The net result
increases the expectation value from the TNI associated with

intermediate NN pair excitations, and decreases the expecta-
tion value from the TNI associated with the N(1440) to a
negligible amount. The final numbers range from 200 keV to
350 keV, which corresponds to a significant fraction of the
repulsive TNI contribution postulated [8] to explain the bind-
ing energies of the three-nucleon bound states.

The need for a phenomenological TNI such as that of Ref.
[8] is lessened by other mechanisms, not considered there,
which also give a slight repulsive contribution to the triton
binding energy. The repulsive contribution of 200 keV to 350
keV, derived and evaluated in this paper, lies between pertur-
bative estimates of the intermediate NN pair excitations in
the Tucson-Melbourne TNI. That is, the two-pion exchange
pair term gives a repulsion of 200 keV and the "Kroll-
Ruderman" term [V of Eq. (2.7)] gives a repulsion of
about 500 keV. The latter perturbative estimates [9] were
made with a three-nucleon wave function obtained from both
the Bonn OBEPQ NN interaction and the Tucson-Melbourne
TNIs (with the Tucson-Melbourne short-range behavior). Es-
timates of pair excitations made with other realistic NN in-
teractions such as the Paris or Nijmegen ones are, as usual,
much smaller than those with OBEPQ. These pair excitations
are an easily visualized form of relativistic correction [30]
and can thus be qualitatively compared with recent calcula-
tions of another relativistic correction in the triton. This rela-
tivistic correction, which corresponds to an interacting pair
of nucleons whose center of mass is not the nuclear center of
mass, produces -250—300 keV repulsion in two very dif-
ferent calculations [37,38].This effect is comparable in mag-
nitude to either of the pair excitations calculated here.

V. DISCUSSION

The present results demonstrate that the pion-scalar and
pion-vector meson exchange three-nucleon interactions are
important on the general scale of three-nucleon interactions.
At the level of precision attained by calculations with the
present realistic semiphenomenological nucleon-nucleon in-
teractions, which also contain three-nucleon interactions, this
TNI has to be included in the calculation of nuclear binding
energies. The repulsive contribution of this ~—short-range
exchange TNI appears able to explain most of the repulsion
hitherto ascribed to the purely phenomenological spin-
independent TNI of short range, which was introduced to
achieve agreement with the empirical binding energies of the
few-nucleon systems [8].

The numerical values of the matrix elements of the
~—short-range three-nucleon interactions presented here
show that the occurrence of cancellations decreases some-
what the importance of the three-nucleon D state in the ef-
fect of the TNI, but it remains important. A comparison with
more complete calculations [36] corroborates our conclusion.

The most uncertain in magnitude of the three-nucleon in-
teractions considered here is that associated with the excita-
tion of intermediate N(1440) resonances. The main uncer-
tainty in this interaction is due to the unknown
cuNN*(1440) coupling constant. Fortunately, this interaction
has much smaller effects on the triton binding energy than
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the interaction due to nucleon-antinucleon pair terms which
can be directly related to realistic NN interactions in the
manner shown here.
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APPENDIX: PARTIAL WAVE DECOMPOSITION

While the calculations that employ the semirealistic
Gaussian and MalAiet-Tjon wave functions provide results
that are qualitatively indicative, present state-of-the-art three-
nucleon calculations have provided several examples of deli-
cate cancellations that may be missed by schematic wave-
function models. This motivated a calculation based on more
realistic wave functions, such as the ones obtained with the
Paris and Bonn OBEPQ potentials (in Refs. [9,18]). These
two potentials lead to quite different answers for the binding
energy of the triton, and different probabilities for the S and
D state components of the wave function.

The expectation value of the TNI can be calculated by
means of Eq. (4.1). Although this equation is general, it re-

quires the knowledge of g(2, v). Since this last function is
not directly supplied by any standard Faddeev code, it de-
mands extra computational effort. The algorithm that is usu-
ally employed with realistic interaction models is to evaluate
the matrix element of the TNI in the partial wave decom-
posed basis used in the wave-function calculation. The par-
tial wave decomposition has been presented in a fairly gen-
eral way in Ref. [3].We here review its main steps, keeping
the notation close to the one introduced in that work.

In the LS coupling scheme the notation for the partial
wave decomposed wave function is

(a. k )(o' k )= k k g /2k+I

X[o(1)Xo(2)]"Yt&(k,k ).
(A 1)

Here the Y»(k„,k ) function stands for the two (coupled)
spherical harmonics, which depend separately on the mo-
menta of each meson, i.e.,

[y'xy']"= g C'" y' (k )y' (k ).
ml, m~

(A2)

After expressing the exchanged meson momenta in terms of
the Jacobi coordinates p, q (for the initial three-nucleon

state) and p', q' (for the final three-nucleon state),

k.= (p —p') —
2 (q —q')

k.=(p —p')+
2 (q —q').

the function Y» (k, k ) can be decomposed in coupled
spherical harmonics of simpler arguments:

~pqn)2= ~pq, [(l)i)L(sl/2)S]JJ, , (tl/2)TT, )p,

where the index 2 specifies the particle that is taken to be the

spectator in the definition of (p, q). To calculate the TNI
matrix element in this basis, we start by separating explicitly
the spin dependence of the TNI from the orbital one. For this
purpose the TNI is decomposed in spherical components and
consequently in spherical harmonics. Subsequently closed
form quadrature over the angular arguments of these spheri-
cal harmonics is performed. This requires expansion in Leg-
endre polynomials of the angle dependence of the form fac-
tors and propagators. These expansions (in three angles) are
done numerically, through a Gaussian mesh of at least 20
points for each angle.

To illustrate the technique we consider the intermediate
NN 7r oTN-I. .For this particular case we have (leaving out
the trivial isospin dependence),

Y'„(k.,k.) = 3
~1+"2 1 s1+~2 1

( —1)' F(l,rt, r2)F(l, s&, s2)

( 1) 2 2~p —p 1 I~q —
q ~

2 2

X
k„k t1fg

f~ tq k],

where

F(a,b, c) = (2a+ I)!
(2b) '(2c) '

Denote by f,(k, ) the product of the propagator of meson a by the two NNa couplings, including the form factor function that

is introduced at the vertices. The momentum k depends on three angles: the angle between p —p' and q
—q', whose cosine

is x&, the angle between p and p', the cosine of which is xz, and the angle between q and q', the cosine of which is x&.
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To prepare the angular integrations we can start by doing a decomposition in Legendre polynomials in the angular variable
X].

2li+1f (k )f (k )=2
2 gI, (lp p—'I lq q—'l)pl, (x1) (A4)

The two additional Legendre polynomial decompositions —in x2 and x3 —involve the function g, (Ip —p
'
I, I q

—q' I) of

Eq. (A4) as well as powers of Ip
—p'I and Iq

—q'I, originated by contracting the function Y«(p —p', q —q') from Eq. (A3)
with P, from Eq. (A4). The final result of the three decompositions is

1

fl l1
dx 1 dx2 dx3pl (x I ) Pt, (x2)Pi, (x3) lp p

'
I

' "
I q q

'
I

' "f (&-)f.(k.)
J —1 3 —1 3 —1

(AS)

Using Eq. (Al), each term of the Xk, V, gives for the orbital part of the matrix element,

t3 t4 l(

2 t2 tj k
((I'X')L'M'I V l(lk)LM) = k LC„MM, ( —)"+'+ g ( —)"+" "I,l2ls g t, t2tst4$, ','„' ' 4

I l I2l3 t
$ t2t3t4

with

'l l'

, L L'

t3'
t)1]t3 t2 lt4
ppp ppp 4t l ll'(p p ) 4't l kk'(q q )

k,
(A6)

and

bf bf J d c a
b d(k, &') = 2 F(~,f~,fz)k 'k' '( —) 'C„,"C„',

f, +f,=a 1 2
(A7)

( l I
~2+~2

1 2 "1+"2 ~ 1+ 2 1

I I I 2 1

1 2 I, I,&. . . , , PP q 9'

, tI t2 k,
(AS)

(ct't = rt + st', n2 = r2+ S2).
Applying the Wigner-Eckart theorem, we extract from Eq. (A6) the orbital reduced matrix element, which ultimately we

reconnect to the spin one, generating the desired final result.
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