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Precise variational solutions are given for problems involving diverse fermionic and bosonic (N=2 —7)-body
systems. The trial wave functions are chosen to be combinations of correlated Gaussians, which are constructed
from products of the single-particle Gaussian wave packets through an integral transformation, thereby facili-
tating fully analytical calculations of the matrix elements. The nonlinear parameters of the trial function are
chosen by a stochastic technique. The method has proved very efficient, virtually exact, and it seems feasible
for any few-body bound-state problems emerging in nuclear or atomic physics.
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I. INTRODUCTION

Few-body problems of interacting particles have vital im-

portance in all branches of physics from hadron to celestial
levels. The main interest in the few-body problems lies in,
e.g. , finding an accurate solution for the system, testing the
equation of motion and the conservation laws and symme-
tries, or looking for unknown interactions governing the sys-
tem.

The investigation of few-nucleon systems interacting via
realistic forces has always been in the center of the interest.
Considerable effort has been exerted to obtain accurate
ground-state properties of the few-nucleon systems with
Faddeev-Yakubovsky (FY) [1—3], variational [4—6], varia-
tional Monte Carlo (VMC) [7,8], and Green's function
Monte Carlo (GFMC) methods [9,10]. Most of these ap-
proaches has focused on three- or four-body problems.

To treat an N-particle system, one needs to cope with a
large number of variables required to specify the wave func-
tion. By using (N —1) relative coordinates to describe the

system, for example, the discretization on a mesh with p
points, or the expansion of the function of the relative motion
between the particles in terms of p suitably chosen functions
leads to p

' mesh points or basis functions, which be-
comes prohibitively large with increasing N. All but the
Monte Carlo methods face this difficulty as the number of
particles increases. The VMC and GFMC methods have
proved to be most successful by being able to go beyond the
four-nucleon problem [11].The secret of the efficiency of the
Monte Carlo methods is the use of an importance sampling
of the most relevant parts of the configuration space. This
fact naturally raises a question: Even if the wave function of
the N-particle system is expanded into an (excessively) large
number of basis functions, can one reduce the problem to a
tractable one by selecting "the most important" basis func-
tions?

The aim of this paper is to present an alternative varia-
tional approach, the stochastic variational method (SVM)
[12,13], by using the correlated Gaussians as basis functions
[14,15]. Examples whose solutions were known before are

used to demonstrate the performance of the method in treat-

ing nuclear as well as Coulomb interactions. To highlight
some new physics, we have also included problems that have
been hitherto unsolved. We give the formulation and some
details of the method of the calculation and show applica-
tions to (N=2 —7)-particle systems.

The variational foundation for the time-independent
Schrodinger equation provides a solid and arbitrarily improv-
able framework for the solution of bound-state problems.
The crucial point of the variational approach is the choice of
the trial function. There are two widely applied strategies: (1)
to select the most appropriate functional form to describe the
short-range as well as long-range correlations and to com-
pute the matrix elements by Monte Carlo technique, or (2) to
use a number, possibly a great number, of simple terms,
which facilitate the analytical calculation of the matrix ele-
ments. We follow the second course by using an expansion
over a correlated Gaussian "basis. "

To solve the N-particle problem, it is of prime importance
to describe the correlation between the particles properly.
The correlation is conveniently represented by a correlation
factor, F= II, ~,f;, [4,5,7,8, 16]. Most calculations have used
this form of F directly to evaluate the matrix elements. Such
calculations are, however, fairly involved beyond the three-
particle system and performed by Monte Carlo integrations.
An alternative way to incorporate the correlation is
to approximate f;, as a linear combination of
Gaussians exp[ —u, ,(r, —r, ) ]. The N-particle basis
function then contains product of these Gaussians:
II,~, exp[ —a;,(r; —r/) ]=exp[ —X,~, ct; (r; r, ) ]. —These
Gaussian functions are widely used in variational calcula-
tions (see, for example, [15,16]).We will apply a more gen-
eral form of the correlated Gaussian functions which allow
for nonzero orbital angular momentum, and will use the
more convenient Jacobi relative coordinates instead of the
relative distance vectors. The correlated Gaussians have an
important advantage. Their Hamiltonian matrix elements can
be analytically calculated in a unified framework, thus en-
abling one to avoid the formidable calculation involving the
correlation factor F.
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The variational approximation, however, may run into dif-
ficulties for the following reasons: (i) if the nonlinear param-
eters specifying the basis functions are varied, it is difficult
to optimize them, (ii) if they are not, then the number of
terms required may be excessively large, and, in both cases,
(iii) the trial function of proper symmetry becomes ex-
tremely involved. For example, conventional methods [6,15]
for the choice of the Gaussian parameters lead to prohibi-
tively large bases for more than three or four particles, which
has limited the applicability of the Gaussian basis to few-
body problems.

One can circumvent the optimization problem including
large number of nonlinear parameters or the diagonalization
of huge matrices by using the SVM. The SVM attempts to
set up the most appropriate basis functions by the following
stepwise procedure: One generates a would-be basis function
by choosing the nonlinear parameters randomly, judges its
utility by the energy gained by including it in the basis, and
either keeps or discards it. One repeats this "trial and error"
procedure until the basis set up leads to convergence. The
original procedure of the SVM, proposed in [12], has re-
cently been developed further and successfully applied to
multicluster descriptions of light exotic nuclei, such as

He= n+ n+ n, He= u+ n+ n+ n+ n, Li= o.+ t+ n+ n,
and 9C=n+3He+p+p [13,17].Learning from these appli-
cations, we have now generalized and refined the method
further to encompass diverse systems emerging in nuclear
and atomic physics.

Besides the large number of nonlinear parameters, the
treatment of the increasing number of partial waves in the
expansion of the wave function would also pose a formidable
task. We propose here an alternative formulation to cope
with this problem. Instead of using the partial wave expan-
sion, the angular dependence of the wave function is repre-
sented by a single solid spherical harmonics whose argument
contains additional variational parameters. This form makes
the calculation of the matrix elements for nonzero orbital
angular momentum much simpler than other methods.

It will be demonstrated that the present method has sev-
eral unique features: It is based on a fully analytical calcula-
tion for most types of interactions and thus ensures high
accuracy and speed. Its calculational scheme is quite univer-
sal and needs no change depending on whether the system
contains nuclear or Coulombic or other interactions. It has no
difficulty in treating the system of particles of unequal
masses. More importantly, the wave function is obtained in a
compact, analytical form and thereby can be readily used in
calculations of physical properties.

As you will see later, the present method has turned out to
be very accurate, and we think it is worthwhile to make the
method and the results easily available and reproducible for
interested readers. We collect all the needed ingredients of
our method in order. Some of the formulas are our original
developments or generalizations of known relations to
N-particle matrix elements, and some others are collected
here to make the paper self-contained. The calculation of the
matrix elements presented here is different from the one of
Refs. [18,19] in many aspects: The motion of the center of
mass is removed from both the Hamiltonian and the wave
function. Two-particle potential matrix elements of arbitrary
radial form factor are evaluated in a unified way by reducing

them to the calculation of appropriate correlation functions
corresponding to the interaction. The calculation of the ma-
trix elements is extended to nonzero orbital angular momen-
tum as well. The symmetrization postulate is imposed on the
wave function at the single-particle level, which provides
several advantages, especially in evaluating the matrix ele-
ments of state-dependent realistic nuclear interactions.

The organization of the paper is as follows. Section II
defines the correlated Gaussian basis functions and gives the
details of the stochastic procedure of selecting the basis set.
Section III contains the method of calculating the matrix
elements. The main steps are the calculation of matrix ele-
ments in Slater determinants (or permanents for bosons) con-
sisting of single-particle Gaussian wave packets, the elimi-
nation of the center-of-mass motion with a very simple
manipulation, and the transformation to the correlated
Gaussian basis. This section also presents the modifications
needed for treating systems of particles of unequal masses.
Section IV presents numerical results for various systems of
particles which interact via nuclear potentials or power-law
potentials. Section V gives a brief summary. In the appendi-
ces the most important auxiliary formulas are collected to
facilitate any future use of the formulation.

II. THE CORRELATED GAUSSIANS
AND THE STOCHASTIC VARIATIONAL METHOD

A. Basis functions

Since the variational method is always limited by the
form chosen as a trial function, the trial function must be
flexible enough to be able to describe the full variety of
correlations between the nucleons, e.g. , the short-range cor-
relation due to the strong repulsive force, the u clustering
typical in some light nuclei, or the long-range correlation at
large distances in light halo nuclei. The correlation between
the nucleons can be described by functions of appropriate
relative coordinates.

Any square-integrable function with angular momentum
lm can be approximated, to any desired accuracy, by a linear
combination of nodeless harmonic-oscillator functions
(Gaussians) of continuous size parameter a:

I'& (r)-e t" ~'" P; (r) with P; (r)=r'Y, (r).

A generalization of this to N-nucleon systems contains a
product of the Gaussians as mentioned in the previous sec-
tion. It is convenient to use a set of the Jacobi coordinates
x=(x, , . . . ,x~, ), instead of N(N 1)/2 relative distan—ce
vectors (r, —r,). An N-nucleon basis function, a so-called
correlated Gaussian, then looks like

P(Ls)JMTM ( ) ~( I ~L( )xs]JM'~TM
(2)

where x, the transpose of x, stands for the row vector com-
prising the Jacobi coordinates. y and M are the spin and
isospin functions. A is an (N 1)X (N —1) positiv—e-definite,
symmetric matrix of nonlinear parameters, specific to each
basis element, and the quadratic form, xAx, involves scalar
products of the Cartesian vectors:
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N —1 N —1

xAX= g g A,,x,"x, .
/= 1 1=1

The operator M is an antisymmetrizer defined by

N!

g sgn(P)P,
N! p

(4)

(c)

where the sum runs over all permutations of the N-nucleon
indices and sgn(P) stands for the parity of the permutation
P. For a system of identical bosons, the antisymmetrizer is
to be replaced with a symmetrizer. For a general case M is to
represent the operator that imposes the proper symmetry on
the wave function.

The function HLM (x) in Eq. (2), which represents the

angular part of the wave function, is a generalization of P'
and can be chosen as a vector-coupled product of solid
spherical harmonics of the Jacobi coordinates

0LML(X) = [[[Pl (Xl)gl2(X2)]Ll~Pl3(X3)]Li23~. . . ]LML.

(5)

Each relative motion has a definite angular momentum in Eq.
(5). It may be important, however, to include several sets of
angular momenta (l i, l2. , lN —i 'Li2, Li23 ) f«a re»-
istic description. The various possible partial wave contribu-
tions increase the basis dimension; moreover, the calculation
of matrix elements for this choice of HLM (x) becomes too

complicated. This choice is apparently inconvenient espe-
cially as the number of nucleons increases. To avoid this, we
propose a different choice as the generalization of P'.

HLM (x) 7KLM (u x) v YLML(v)

N —1

with v= g u;x;. (6)

Only the total orbital angular momentum appears in this ex-
pression and it contains a parameter u= (u, , . . . , uiv i). The
vector u may be considered as a variational parameter and
one may try to minimize the energy functional with respect
to it. It defines a linear combination of the Jacobi coordi-
nates, v, and the wave function of the system is expanded in
terms of its angle v. The minimization amounts to finding
the most suitable angle or a linear combination of angles.
The factor of U

+ plays an important role in improving the
short-range behavior of the wave function. A remarkable ad-
vantage of this form of HLM (x) is that the calculation of

L

matrix elements becomes much simpler than in the former
case because the coupling of (N 1) angular mome—nta is
completely avoided.

The two forms of HLM (x) are in fact closely related to
L

each other. Any of the functions of Eq. (5) may be expressed
in terms of a linear combination of the terms,
v

+
YLM (v), by using some appropriate sets of u values

provided that each term satisfies the condition
2K+L~li+ +lN 1 and contains a monomial of degree
l1+ . +I& 1

—2K —I, in the variables, xi . . ~ xN
Therefore, if one can calculate the matrix elements using

(e)

FIG. 1. Different sets of relative coordinates for a system of six
identical particles.

eLM (x) defined in Eq. (6), then those with the previous

form of HLM (x) can be obtained readily.
L

The correlated Gaussian basis with the function HLM (x)
L

of Eq. (6) has parity ( —1) . To construct a function with

parity ( —1) ', Eq. (6) must be slightly generalized, e.g. , to

OLM (x) [ 7KL(uix) /01(u ~x)]LML

To assure positive definiteness, the matrix A in Eq. (2) is
in general expressed as A = GA ' G, where G is an

(N 1)X (N 1—) orthog—onal matrix containing (N 1)—
X (N —2) /2 parameters and A ' is a diagonal matrix,

(A');, =a,'8;, , including (N 1) positive pa—rameters a,'.
Although no restriction on the parameters of the matrix G is
in principle necessary, it is advisable to avoid too many vari-
ables if possible. The most naive choice would be to take G
as a unit matrix, which is equivalent to using only a single
set of the Jacobi coordinates, and then to try to reach con-
vergence by including higher partial waves successively.
Many examples show [6,17], however, that this does not
work well because the convergence is generally slow and
moreover the computational cost of using high partial waves
is quite expensive.

The matrix G can also be chosen as one of the rotation
matrices that connect the set of the Jacobi coordinates to
other sets of independent relative coordinates. Figures 1(a)—
1(f) show all topologically different sets of independent rela-
tive coordinates for a system of six identical particles. The
set of coordinates in Fig. 1(a) is what we call the set of the
Jacobi coordinates X. A correlation conforming to a specific
set of relative coordinates x' =(x,', . . . ,X~,) can be most
efficiently described by tailoring the form of the basis func-
tion to this set of relative coordinates, that is, by using the
form, exp( —zX, ,'a,'x,' x,'). Since the coordinates x' can
be obtained by an appropriate rotation M of the Jacobi co-
ordinates as x' =Mx, the basis function of such type can be
clearly encompassed in the trial function of Eq. (2) by choos-
ing G =M. The correlated Gaussian basis thereby allows for
various correlations between the nucleons and different
asymptotics at large distances flexibly. Depending on the
character of the problem a more general choice of G might
be necessary.



2ggg 52K. VARGA AN D Y. SUZUKy

B»eiectin g a set of ba,.

~f~;s,)JMTM (x g
Pace, the wave f„

dequately

expand d
unction of th

ne as
e N-nucleon

y spans the s

eon system can

+=X c;4 ~

where c=(ct, . . . ,c
. Th R~ itz variation

o inear variati

es to the 1' d 1

e nedb
a gebraic ei eneigenvalue problem

Me=ED c,

where ~ and ~ r
'

taie
amiltonian and

, respectivel, th

p

of th

~,,=(P, IHIP, ) and ~,,=an ~)=;IP,) (i,j=1,. . . ,

B. St

(10)

ochasstre selection ofn o parameters a
of the eigenvalue

and solution

inear comb eination of th

e wave funct
re different set

aussians

mo
11. Th bl on

h d
th b. ..;. d; ...;...ension one by one. In

the first ste
tate

s ep we select a
do 1, nd k th o t}1 t

generate a new
a gives the lo

s ran-
owest ener

n asis. As
set and calc 1cu ate the en

h

nergy with

1'
asis st

u i ity by the ene ene gy ga ed

an twe discard 't
i t is state t h

t d t 1 th

ot eba sis, other-

e ener
om candid . i

gy converges. The rate of g ce

d
'

r versions I 12 1
g o

za, s in ve
ough not a full optim-

e ativel sm
d

t
large mata nces I 20].

g
est eigenvalue of

To have an

a ue of extremely

n econornica
1 d

1 }1

or settin
fi d

ng up the b

a ue, q. 9 . The full
umtng and i f

)th step of the pro
in act unn

ts i en er
'

its corres
rgies are

(M+ 1)th ste

a ized eigenfunctions
2

k hf orm
in the

0

0 0 p ) IHI k.re+ ) )
l
"l

0

(~-.. IHI+ )

0

0

.-:+i .r: (W.zc'+ & IHI Axe C,x+1

1

(0.x+ t I
p t)

0 (+~l 0~+))
&~+) I+.~~) (0-. —.;+).x + ) I Pw+ )).C~P+ 1

g the Gram-SchmiBy usin
-. by d.fi-n g

ona ization meth d,o, that

(

E, 0 "l("l
,)(+0.rC'+ ) ) i i I kr'i "+ )).

~+ I —,= t(W.~a+ t I+;)(+;I0~+)
(12)

where

q~~ a c,m+1

this generalized eig
ional form

quation can be rn e reduced to the

q, =(+,IH
I .~+)). a=(0.-, r~+) (14)



52 PRECISE SOLUTION OF FEW-BODY PROBLEMS WITH THE 2889

The eigenvalues are easily obtained by finding the roots of
the secular equation V.'(r;) = l2 l 3'

. 2 mao
v(r; —s;)

2' ' (17)

iF.
k(E) —= I (E; E)—(a —E)—g = 0. (15)

/=1 E —E)

This secular equation has (M+ 1) roots
(E', ;i = I, . . . ,~+ I ) fulfilling the inequalities
E'1~E1~E'2-E2 - -E~p-E' 7j'+1. The eigenvectors
are readily obtained after substituting the eigenvalues
IE', ;i =1, . . . ,M~'+1) into Eq. (13). Note that one has to
determine only the lowest eigenvalue E'1 for the admittance
criterion. (sl . sN) =~' j... i."..., (r;) (18)

where r; is the position vector of the nucleon, y&1&2& and
r

M&»2&, are its spin and isospin function. The angular fre-
E

quency co is not a variational parameter and may be taken an
arbitrary constant. The s; parameter or "generator" coordi-
nate will be used in an integral transformation to derive the
matrix elements between the Gaussian basis functions. A
Slater determinant of these Gaussian packets is defined by

III. CALCULATION OF THE MATRIX ELEMENTS

A. Slater determinants of Gaussian wave packets

The ith nucleon with mass I, spin o.; and isospin ~; is to
be put in the single-particle Gaussian wave packet

.(r') g .(r')X(1/2), ~(1/2) (16)

with

In this section we will give the details of the method of
calculating the matrix elements between the basis function of
Eq. (2). The calculation consists of three steps: (a) the cal-
culation of the matrix elements between the Slater determi-
nants of the Gaussian wave-packet single-particle functions,
(b) a transformation from the single-particle coordinate rep-
resentation to the relative and center-of-mass coordinate rep-
resentation, (c) an integral transformation from the Gaussian
wave-packet functions to the correlated Gaussian basis. A
procedure similar to steps (a) and (b) was used to manipulate
algebraically the antisymmetrization operation and the trans-
formation of the coordinates for complex cluster systems
[21]. In step (a) the Slater determinant for the N-nucleon
wave function is constructed by distributing the nucleons at
positions (si, . . . , sN). These position vectors serve as the
generator coordinates. The Slater determinant of the Gauss-
ian wave packets is often used in nuclear theory, e.g. , in
cluster model [21—24] and fermionic or antisymmetrized
molecular dynamics [25,26]. The Hamiltonian matrix ele-
ments are analytically evaluated with the use of technique of
the Slater determinants [27,22], and can be expressed as a
function of the generator coordinates. In step (b) the center-
of-mass motion is completely separated from the intrinsic
motion, and thus the trial wave function acquires the trans-
lational invariance. The separation of the center-of-mass mo-
tion is particularly simple in this formulation. In the last step
(c) the matrix elements expressed in terms of the intrinsic
generator coordinates are transformed to those between the
correlated Gaussian basis functions with a definite angular
momentum. Some of the essential parts of the calculational
scheme is our original development, and some of them is a
generalization of the technique used in the nuclear cluster
model (see, for example, [28]). We also show in Sec. III D
those modifications which are needed to treat the system of
particles of unequal masses.

where /r=(o. , r, , . . . , oNTN) is the set of the spin-isospin
quantum numbers of the nucleons. The spins and the isospins
of the nucleons are successively coupled to add up, respec-
tively, to the total spin SM& and isospin TM T of the
N-nucleon system:

XsMs= [[[Xi/2Xi/2]s„Xi/2]s», ]sM,

~TMT [[[~1/2 ~~1/2]T, 2~1/2]T12q~ ]TMT. (19)

To simplify the notation, the intermediate quantum numbers
are suppressed in the following. The wave function in the
"generator coordinate space" with the definite spin and iso-
spin quantum numbers is a linear combination of the Slater
determinants of the Gaussian packets:

@SM TM (sl sN) ~( P (rl ) ' ' 9 (rN) XSM ~TM

CK K S1 &
' ~ ~ PSN (20)

where c is a product of the Clebsch-Gordan coefficients
needed to couple the spin and isospin as defined in Eq. (19).

The Hamiltonian of the N-nucleon system reads as

N 2 N

H=g +g V;, .
L=1 I E«J

(21)

The matrix elements of the Slater determinants can easily be
evaluated using the well-known rules [27,22]. To make this
paper self-contained, we have collected all the needed ingre-
dients in Appendices A, 8, and C. The overlap of the Slater
determinants is found to take the form

(4sMsTM (Si, . . . , SN) l@SMsTM (S I, . . . , S N))

n

( (o) —(1/t2)sA, . s
ll=1

(22)

where A,. is a 2NX 2N real, symmetric matrix and s stands
for the 2N-dimensional row vector comprising the single-
particle generator coordinates, (s, , . . . , SN, S,', . . . , sN). To
simplify the notation, we refer to the set of the vectors
(s,', . . . , sN) alternatively as (sN+, , . . . ,s2N). Note, there-

fore, that the quadratic form, sA~ ~s, reads as
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2N 2N

(A.' ) ks~ sk.
j=l k=1

(23)
and

1 1
1

1

NThe matrix elements of the kinetic energy operator can also
e C''sandA 'sasbe expressed in terms of the same l

N 2

U
—1

0

1
1

N

(28)

O' N ——sA'—s e 1/2 sA s

2 1 (2 2 )
(24)

The matrix elements of any term of the — ytwo-bod interaction
can be expressed as an in egrad t gral of the two-particle correlation
function multip ie y e1' d b th radial form factor, V(r), of the
term V; as below:

N —1
1

N

S' 1 1 the single-particle generator coor inates are trans-imi ary, e
or coordi-formed to the relative and center-of-mass generator

nates:
N

l(J
N

S;=g U;„s„,
k= 1

N

S,'= g U, „s„' (i=1, . . . ,N). (29)
k=1

(p) —(1/2) sA.~ s+d rdrV(r)e '" g C," P;(s, r)e i~

i=1
(25)

The reduced masses corresponding to the transformation U
are given by

where P;(s, r) is a polynomial of s and r, A,r A(") a 2NX2N
symmetric matrix, and d;. r takes the form

m (i=1, . . . ,N 1), and pN=—Nm. (30)k+1

2N

d,"r=g u(, ),s, r.
j=1

(26)
d t of the Gaussian single-particle wave packets can

then be written as a product of Gaussians depen ing on e
relative and center-of-mass coor inates:

The polynomial part reduces to unity, rLP (s r) = 1] in the
case of pure centra orces,1 f but it has a rather simple form for

11. See A en-spin-or i, enso,b't t sor and other interactions as we . pp
T' ' A ' 's C 's, andA, 's, etc. , aredices 8 and C. The C, s, , 's,

obtained wit t e used
'

h th se of mathematical manipulation lan-
guages or Fortran programs. See ppA endix C.

B.Transformation to relative and cen ter-of-mass coordinates

with

Pi&
2h.

(31)

(32)

form theTo eliminate e c1 th enter-of-mass motion, we transfo
single-particle coor ina es1 d t to the relative and center-of-mass

icular set ofcoordinates. For this purpose we choose one particular set o
relative coor ina es,d' t the Jacobi coordinates, which is ex-
pressed in terms od

'
t of the single-particle coordinates r; as

'n E . (31) and noting that the last factor of the prod-By using q. an
which isuct epen s on y ond d 1 on the center-of-mass coordinate, w

symmetric un er t e excd h hange of nucleons, the N-nucleon
wave function can be rewritten as

N

x;= g U ~r~ (i =1, . . . ,N),
k=1

(27)
4 SM TM (Sl ~ ~ ~ SN) WSMsTM&(S1 ~ N 1—. . S "(xN),

S T S T

(33)

where the transformation matrix U is defined by

0

which defines the intrinsic function that depends solely on
the relative coordinates,

1

2
0 +SM TM (Sl ~ ~SN 1)—S T

(xl)~. . . ~ ps (xN 1)XsMs TMT
1

(34)

~ ~

N —1 As will be shown in the next subsection, this function serves
as a generating unc ion of t' of the correlated Gaussian basis.

The Hamiltonian of Eq. (21) can be recast to the re atlve
plus center-of-mass terms as
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I' N 1 —
p2 N i p2

H= g +g V;, + —=H„1+T,
pi ~&j j pN

(35)

where P; is the momentum canonically conjugate to the Jacobi coordinate x;. The matrix elements of the Hamiltonian are then

(@SM,TM (si ~ sN)IHI@'s'M'T'M'(s'i s N)) (+SM TM (Si SN-i)I

xH,.)l+s M, T M,(s'i. s' N- )1)(~ „s"l~ s", )

+ (+SMSTMT(S1 ~ ~SN 1)I—
x +s ' M ' T' M ' (s 1 s N 1))(—v;„I T. (36)

The matrix elements of the Hamiltonian H„1 can be ex-
pressed by integrating over SN

(+SMSTMT(S1 ~ 1SN 1)I—
XHre)l+s'M'T'M'(S 1 S N 1))—

duces to such a simple form as the one in Eq. (38).After the
integration over SN the matrix elements can be expressed in
terms of the Jacobi generator coordinates in the form

(+sMSTM (Sl ~ ~SN 1)l+sMS—TM (S I ~ ~S N 1))—
( 3/2

2m
dS (C, ,(s, , . . . , )I

xHI@s'M'T'M (s 1 s N)) (37)

no

C(0) —(1/2) SB. S
l 'P

l=1
(41)

where use has been made of the single-particle matrix ele-
ments in Appendix A and the formula

dSN—
rw

(S —S' )2
2 )

n

(2n+ 1)!!
2/

3
2~~2

YN/
(38)

Equation (37) shows that the matrix elements between the
intrinsic function can be obtained in a simple way by factor-
izing the SN-dependent terms from the matrix elements in the
single-particle basis: The quadratic forms in Eqs. (22), (24),
and (25), with the help of Eq. (36), should take the form

+SMSTMT(S1 ~. . . ~SN 1)~ ~ ~

N —1 P2
x X Vsx tM (S, , . . . , S ~—,))l

g C" -(N —1)——SB S
ACE 3 1 - 1 - (0)2; ' (2 2 '

)

(42)

sA, s=SB," S+ yN(SN —S'N) (k=o,p). (39)

Here the (2N —2)-element column vector S is an abbrevia-
tion for the set of the Jacobi generator-coordinate vectors

(Si, . . . , SN 1,S'1, . . . , S'N, ). The matrix B," is the

(2N —2) X(2N —2) symmetric matrix defined by dropping
the Nth and 2Nth rows and columns of the matrix TA, T,
where

N

Xg V;, Vz x'r M (S'&, . . . , S x &))i&j 5 T

n P
) drIT(T)~

—"" g C(P)P (S r)e
—(1/2) sB;" s+D; r

l=1

(43)

( U
—1

T=
0

(40)

It is clear from Eq. (36) that the polynomials P;(s, r) and the
vectors d; defined in Eq. (25) can depend only on the relative
generator coordinates. The dependence of the matrix ele-
ments on the center-of-mass variables, SN and SN, can,
therefore, be factorized and the integration in Eq. (37) re-

Here the convention of renumbering the set of the vectors
(S', , . . . , S'N 1) of the ket as (SN, . . . , S2N 2) is used to
simplify the notation and thus S stands for the set of the
vectors (Si, . . . , S2N 2). The vector D; is given by
X 1 D ( ')jSj where the D (;),'s are formed from the ele-

ments of the row vector M&;&T by omitting its ¹hand 2Nth
columns. The column vector W(;) is defined in Eq. (26).
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fKLM(u, X,A) = dtYLM(t)

C. Integral transformation to the correlated Gaussian basis

Here we show how to evaluate the matrix elements in the
correlated Gaussian basis. Let us choose the correlated Gauss-
ians with the form of Eq. (6) and introduce the function

fKLM(u, x,A) = jKLM(u, x)e

where

N —1

QKLM(u, x) = v YLM(v), with v= g ttix; = llx,

(45)

and where u=(u, , . . . , uN 1). Note that u is a set of
(N —1) real numbers, whereas x are the (N 1) Jaco—bi co-
ordinates. The calculation of the matrix elements becomes
simple if one uses a generating function of the correlated
Gaussian. In fact, the following function g is found to be
most convenient to generate the function f:

2yl
0 2y2

0

~ ~ o 2 fg
where SH stands for the set of the generator coordinate vec-
tors (Si, . . . , SN 1). By using the familiar formula of the
n-dimensional Gaussian integration

((2~) }3/2

dxe
—(1/2) xAx+ Tx (1/2)TA 'T

i detA )

The generating function g can be related to the product of
the Gaussians centered around (S;; i = 1, . . . ,N 1—)
through an integral transformation. To show this, we express
the product of the Gaussian wave packets as

( d«r}3/'
r;(„) -(i/2) xrx+xrS„—(1/2) S„rS„

i
(

N 1—
(50)

with an (N 1) X—(N 1) di—agonal matrix

where

( d2K+ L

X 2K+L g(n, t; ux, A)
( dCl j u=O

t = It(=1

—(1/2} xAx+ av t

47r(2n+ I)!
Bnl= n2'n!(2n+2l+1)!! '

(46)

(47)

it is easy to prove the following equation by a direct calcu-
lation

i 3/2
—(1/2) TCT

(4 )' ""det(r —A)

(N 1—
dS (1 )sH0 H 0 jg '(x )

i

(49)

Equation (46) is easily proved by using the simple formula

l

(v t)"=v"1' X B.l X Yi (v)Yi (t)*.
where T=(T1, . . . ,TN 1), and

c=r-'(r —A)r-' g= c-'-r, (54)

For a case where the function OLM (x) of Eq. (7) is needed,
L

the generating function g of Eq. (47) must be generalized to
include another factor n'v'. t'. Since the following deriva-
tion remains essentially unaffected by this generalization, we
will assume Eq. (6) as HLM (x).

N —1

T;=at+ (I'C),, 'u, (i= 1, . . . ,N 1). —
J=1

(55)

By combining Eqs. (46) and (53), the correlated Gaussian
basis is found to be generated from the intrinsic state given
in Eq. (34) by the integral transformation

I

1 ( (dtI)'
{fKLM(u~x~ )XsMs TMT) B (4 )(N —1}/2d t(r A)

d2K+ L

dtYLM(t)
d 2K+L e

( dCl'

d S
—(1/2) sHQSH/2+ MH+ (S S ) (56)

t=l
The matrix elements between the correlated Gaussians are now easily obtained by the integral transformation from those

expressed in terms of the relative generator coordinates S. Using Eq. (56) gives a general formula to calculate a matrix element
for any translation-invariant operator Cr'

(~~(tfKLM(u x A)xsMs~iTMT)I&+I~ tfK L M (u' x A ')xs M ~T Mp)

1 ( (detl ) '} 3/2 r r / d2K+L+2K'+L'

BKLBK I((4m) det(r —A).det(l —A')) J J I da2K+Lda'2K +L'(N —1) dtdt'YLM(t)*YL M (t,'), , e

f

J
dSe (psM TM (S 1 SN 1) I

@I+s'M'T'M'(S 1 . . S—N 1))—
S T ) a=u'=0

t=t'=1
(57)



52 PRECISE SOLUTION OF FEW-BODY PROBLEMS WITH THE 2893

where S=(S&, . . . , Sz, ,S', =Sz, . . . , S'~ i=S2& 2) and
the matrices, C and Q, and the vectors T in Eq. (57), al-
though the same notation is used as in Eqs. (54) and (55), are
extended to include the corresponding primed quantities of
the ket, that is,

(C 0 i

0 C'

As is shown in Eqs. (41)—(43), the S dependence of the
matrix elements is rather simple and the integration over S is
done analytically. Since the variables u, a', t, and t' appear
only through the vector I, those operations with respect to
them as implied in Eq. (57) are performed systematically. An
illustrative example is given in Appendix D. The coupling of
the orbital and spin angular momenta causes no difficulty. It
is very satisfactory aesthetically that matrix elements be-
tween the basis functions with any sets of the relative coor-
dinates can be evaluated in a unified framework without any
extra transformation of the coordinates. The choice of the set
of the relative coordinates amounts to the choice of the ma-
trix A.

m;co

2A.
(i=1, . . . ,N). (59)

The overlap and Hamiltonian matrix elements are obtained
as a function of the generator coordinates,

(si, . . . , sz, s,', . . . , s~), in a form similar to the previous
case. In this general case of unequal masses, the matrix U in
Eq. (28) which defines a set of the Jacobi coordinates must
be generalized to

0

m12 m12
0

m12 N—1 m12. . W —1

m12 . .W m12 W

(60)

where m12. . . , = m1+ m2+ . . + m; . The reduced masses
corresponding to this U are accordingly given, instead of Eq.
(30), by

t'+ 1m 12.
p

m12 . i+1
(i =1, . . . ,N 1), and p~=m, ~ .—.~.

(61)

D. Extension to the system of particles of unequal masses

In this subsection we remark the modifications needed to
treat few-particle systems containing particles of unequal
masses. As you will see, most of the formulation presented in
Secs. III A —III C remains unchanged. Suppose that the
masses of the N particles are m1, m2, . . . ,mz. The width
parameter of the Gaussian wave packet is to be changed to

What is important is to realize that Eq. (31), most crucial in
eliminating the center-of-mass motion, still holds even with
these modifications as

(62)

It is then easy to see that the rest of all the formulas are
exactly the same as the case of equal masses. We can con-
clude that the needed modifications noted above are rather
trivial and simple but still assures the elimination of the
center-of-mass motion. As a simple example of unequal
masses, the system of t+ d+ p, molecule will be considered
in Sec. IV 8.

IV. NUMERICAL RESULTS

This section is devoted to present the solutions of various
(N=2 —7)-body problems by applying the method de-
scribed above. To test the method, different potentials
(Yukawa, Gauss, and Coulomb) have been used for bosonic
and fermionic systems. Some of the examples shown here
have their own physical significance, and some other solu-
tions may be considered as benchmark test and might be
useful in comparison of various few-body methods. One can
expect that, besides the VMC [7,8] and GFMC [9,10], other
methods will also be extended to treat more than (N=4)-
particle systems. As only a few solutions are at present avail-
able for simple potentials, the examples listed here may help
to test other methods.

As was discussed in Sec. II A, there is no restriction on
the choice of the orthogonal matrix G. We have found, how-
ever, that those special rotation matrices which connect dif-
ferent sets of the relative coordinates especially suitable (see
also [17]) and will use them in what follows. This greatly
helps to reduce the number of parameters of G. In the sto-
chastic selection of the basis elements, these special matrices
G and the parameters of the diagonal matrix A' are ran-
domly chosen. The vector u in Eq. (6) is also a variational
parameter. To avoid an excessively large number of varia-
tional parameters we limited u-vector values to those which
are needed to generate the function HIM (x) of Eq. (5) for a

given set of angular momenta. Comparison of our calculation
with others confirms that these limitations have not deterio-
rated the accuracy of the present calculation, that is, our trial
function is flexible enough. In the calculation the sets of
angular momenta (i.e. , the sets of these special u vectors) are
also randomly chosen. The main advantage of using u lies in
the simple and systematic evaluation of the matrix elements
from the point of view of both analytical and numerical cal-
culations. Further test calculations will be needed to explore
the utility of u as a variational parameter.

Because the dependence of the matrix elements on the
variational parameters is known as is shown in Appendix D,
one can organize the numerical calculation involved in the
random search economically. A change of the values of the
parameters does not require a recalculation of the whole ma-
trix element. Once they have been calculated for one set of
values, to calculate them for many more requires virtually no
time. The average computational time is 10 min for a four-
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TABLE I. List of the parameters of the nucleon-nucleon potentials used in this paper. The potential
consists of a few terms; each is expressed as Vg(p, ;,r)(W;+B;P H—;P,+M;P„), where P, P„and
P„are the spin-, isospin-, and space-exchange operators. The form factor f(p, ;,r) is exp( —p, r2) for the
Gaussian potential or exp( —p, r)lr for the Yukawa potential. The potential strength V is in units of MeV aud

the range p, in units of fm for Gaussian or fm ' for Yukawa, respectively. The Majorana mixture M of the

Volokov potential is set to zero in the calculation. The Minnesota potential contains the parameter Q, which

is set to unity in the calculation.

Potential Type V; H;

MT-V

[29j
Volkov

[30j
ATS3

[31]

Yukawa

Gauss

Gauss

Minnesota Gauss

[32j

1 1458.05
2 —578.09
1 144.86
2 —83.34
1 1000.0
2 —326.7
3 —166.0
4 —43.0
5 —23.0
1 200.0
2 —178.0
3 —91.85

3.11

1.55
0.82
1.60
3.0
1.05
0.80
0.60
0.40
1.487
0.639
0.465

1.0
1.0
1.0—M
1.0—M
1.0
0.5
0.5
0.5
0.5
0.5Q

0.25u

0.258

0.0
0.0

0.0
0.0
0.0
0.0
0.0
1.0—0.5B

0.5 —0.25Q

0.5 —0.258

0.0
0.0
0.0
0.0
0.0
0.5
—0.5
0.5
—0.5
0.0
0.25Q
—0.25Q

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5 —0.25Q
—0.5+0.25Q

body and 2 h for a six-body calculation on the VPP500 com-
puter of RIKEN.

A. Few-nucleon systems

We have performed model calculations adopting different
central potentials as nucleon-nucleon interaction. Some of
these model problems have already been solved to high ac-
curacy by various methods and therefore we can directly
compare the solutions. The potentials used for comparison of
different methods are (i) the Maliliet-Tjon (MT-V) potential
[29], which has been most extensively used as benchmark
test in few-body calculations, (ii) the Volkov "supersoft"
core potential [30], (iii) the Afnan-Tang S3 (ATS3) potential
[31]which exhibits a strong repulsive core and incorporates
a difference between the spin-singlet and spin-triplet chan-
nels, (iv) and the Minnesota potential [32] which reproduces
the most important low-energy nucleon-nucleon phase shifts.
The Volkov and MT-V potentials are spin independent, while
the ATS3 and Minnesota potentials are spin dependent. The
parameters of the interactions are tabulated in Table I. We
choose A, /m =41.47 MeV fm . The Coulomb interaction is
included only in calculations with the Minnesota potential
where point charges are assumed and e = 1.44 MeV fm.

The spins (and isospins) of the nucleons are coupled
through successive intermediate couplings. The spin cou-
plings up to N=7 nucleons are tabulated in Table II. One
naturally expects and test calculations show that, without
spin-isospin coupling, the energy convergence is much
slower. The number of spin-isospin configurations rapidly
increases with N. In the case of He, for example, assuming
S=O and T=1, the wave function has 5X9=45 spin-
isospin components. The number of components becomes
even higher if the interaction has noncentral spin-orbit, ten-
sor, etc. , parts. The nonlinear parameters are not optimized
with respect to spin-isospin components, but rather, for each
trial choice of the matrix A, we select the spin-isospin com-
ponent that gives the lowest energy. Because the matrix ele-

ments between different spin-isospin components differ only
in linear factors [c in Eq. (20)], the calculation of the matrix
elements of each spin-isospin component of the wave func-
tion requires essentially the same computational effort as that
needed by the calculation for only one component.

Each calculation has been repeated several times starting
from different random points to check the energy conver-
gence. The energy as a function of the number of basis states
is shown in Fig. 2 for the case of Li with the Volkov po-
tential. The energies on different random paths, after a few
initial steps, approach to each other and converge to the final
solution. The energy difference between two random paths as
well as the tangent of the curves give us some information on
the accuracy of the method on a given size of the basis. The
root mean square (rms) radius of the few-nucleon system is
calculated in each step and found to be rapidly convergent to
its final value. By increasing the basis size the results can be
arbitrarily improved when needed.

The number of basis states required to reach energy con-
vergence increases with the number of particles but it de-
pends on the form of the interaction as well. This latter prop-
erty is illustrated in Fig. 3 for the case of the n particle. The
soft-core Volkov potential shows rapid convergence, while
the hard-core ATS3 interaction requires more basis states to
get an accurate solution. The relatively fast convergence for
the MT-V potential of a strong repulsion can be explained by
the simplicity —the spin-independent nature- of this interac-
tion.

In the following we show tables for the ground-state en-
ergies F and point matter rms radii (r )' . The basis dimen-
sion M of the SVM listed in the tables is such that, beyond
it, the energy and the radius do not change in the digits
shown. Table III shows our results (SVM), together with
results of others, for the application of the spin-averaged
MT-V potential [29] to (N=2 —7)-nucleon systems. For
three-body systems, the solution of the Faddeev equation is
known to be the method of choice, but the SVM can easily
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TABLE II. Spin (isospin) couplings of the nucleons. The pos-
sible intermediate spin (isospin) configurations of an N-nucleon
system are listed above the (N 1)—th horizontal line. The spins of a
five-nucleon system, for example, are given by the first ten elements
of the fifth column. The spins of the two-, three-, and four-particle
subsystems of the five-nucleon system is given in the first ten ele-
ments of the 2-3-4 columns.
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FIG. 2. Convergence of the Li energy on different random
paths. The Volkov potential [30] is used.

low geometric progressions. The fact that the basis size
needed in the SVM is much smaller proves the efficiency of
the selection procedure. The results of the VMC calculation
for the five- and six-nucleon systems are also in good agree-
ment with the results of SVM. The MT-V potential has no
exchange term; therefore, unlike the nature, it renders the
five-nucleon system bound, and the nucleus tends to collapse
as the binding energy increases with the number of particles.

The next example is the Volkov potential which, due to its
very soft core, is the most readily solvable case. This simple
potential is widely used in model calculations for light nu-
clei. As one sees in Table IV, the results of SVM agree with
those of other calculations, especially with the one using
hyperspherical harmonics (HH) functions. The number of ba-
sis states needed to reach convergence is remarkably smaller
than in the case of the MT-V potential. Without the Majorana
exchange term (M = 0) this potential also leads to a collaps-
ing system. By setting the Majorana parameter to M =0.6, a
commonly used value to get the correct binding energy, one
may obtain more reasonable energies. The Volkov potential
with M =0.6 does not change the energies of N =2—4 nuclei,
does not bind Li in accordance with the nature, but does
bind the Li ground state (F= —31.82 MeV, (r )" =2.69
fm).

-29.0—

-30.5—
ATS3
Voikov

yield the same accurate energy. As the MT-V potential is a
preferred benchmark test of the few-body calculations, there
are numerous solutions available. Table III includes a few of
the most accurate results. The nice agreement for four-
nucleon case corroborates that the SVM is as accurate as the
direct solution of the FY equations [33], the method of the
Amalgamation of two-body correlations into multiple scat-
tering (ATMS) [4] process or the VMC [34] and GFMC [9]
methods. The basis used in the coupled-rearrangement-
channel Gaussian-basis (CRCG) variational method [6] is
similar to that of the SVM, but the Gaussian parameters fol-
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l

I I I
l

T I I
(

I I I
(

I I I
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FIG. 3. Convergence of the u-particle energy for the potentials
listed in Table I.
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TABLE III. Energies and rms radii of N-nucleon systems interacting via the Malfliet-Tjon potential V
[29].The value of ~ in Tables III—IX denotes the basis dimension beyond which the energies and the radii

of the SVM calculation do not change in the digits shown. (A. /m=41. 47 MeV fm throughout Tables
III—VI).

6 ('He)

7 ('Li)

(L,S)J

(0,1)1+

(0,1/2) 1/2+

(0,0)0+

( 1,1/2)3/2

(0,0)0+

(1,1/2) 3/2

Method

Numerical

SVM
Faddeev [1,2]
ATMS [4]
CHH [5]
GFMC [9]
VMC [34]'
SVM
FY [33]
ATMS [4]
CRCG [6]
GFMC [9]
VMC [34]'
SVM
VMC [34]'
SVM
VMC [34]'
SVM
SVM

F. (MeV)

—0.4107
—0.4107
—8.25273
—8.26
—8.240
—8.26
—8.2689
—8.2527
—31.36
—31.36
—31.357
—31.3
—31.3
—31.360
—42.98
—43.48
—66.34
—66.30
—83.4

(r') '" (fm)

3.743
3.743

1.682

1.682
1.68
1.682

1.40

1.36
1.39
1.4087
1.51
1.51
1.50
1.52
1.68

80

1000

150

500

800
1300

'Calculated with Coulomb potential, the Coulomb contribution then subtracted perturbatively. The potential
strength used in the VMC [34] calculation is V, = 1458.25 and V2 = —578.17 MeV, which is slightly different
from that used in the present calculation.

Another potential that is often used in test calculation is
the ATS3 potential. We have challenged the SVM to get so-
lution for this case because, unlike the Volkov, this spin-
dependent potential has a relatively strong repulsive core
(see Table I). The solution, although on a somewhat larger
basis, can easily be obtained, and it is in good agreement
with those of other methods in the N=3 system as shown in
Table V. We note, however, that the energy of the SVM is
significantly lower than the ones of other methods for the
a particle. This may be due to the strong repulsion of this
potential. For example, the FY calculation [33] agrees with

ours for the MT-V potential, but shows a noticeable differ-
ence in the case of the ATS3 potential. The variational cal-
culation [16]using a correlation factor also misses consider-
able energy for the ATS3 potential. Surprisingly, in spite of
its exchange part, this potential also binds the five-nucleon
system and overbinds the six-nucleon systems very much.

The last example for the few-nucleon system uses the
more realistic Minnesota potential [32], which is a central
interaction of Gaussian form, containing space-, spin-, and
isospin-exchange operators (see Table I). The Minnesota po-
tential has often been used in cluster-model calculations of

TABLE IV. Energies and rms radii of N-nucleon systems interacting via the Volkov potential [30].The
Majorana exchange parameter M is set to zero.

5

6 (6Li)
7 (7Li)

(I.,S)J

(0,1)1+

(0,1/2) 1/2+

(0,0)0+

( 1,1/2) 3/2

(0,1)1

(1,1/2) 3/2

Method

Numerical

SVM
Faddeev [33]
Variational [16]
HH [35]
SVM
FY [33]
Variational [16]
HH [36]
SVM
SVM
SVM
SVM

F. (MeV)

—0.545
—0.545
—8.43
—8.460
—8.4647
—8.46
—30.27
—29.490
—30.3988
—30,42
—43.00
—66.25
—98.75

(r') "~ (fm)

3.44
3.44

1.725

1.73

1.47

1.49
1.59
1.60
1.57

30

50
120
250
400
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TABLE V. Energies and rms radii of N-nucleon systems interacting via the Afnan-Tang S3 potential [31].

6 ('Li)

(L,S)J"

(0,1)1+

(0,1/2) 1/2+

(0,0)0+

(1,1/2) 3/2

(0,1)1+

Method

Numerical

SVM
Faddeev [33]
Faddeev [37]
GFMC [10]
Variational [16]
SVM
FY [33]
Variational [16]
SVM
SVM
SVM

E (MeV)

—2.216
—2.216
—8.20
—8.765
—8.73
—6.677
—8.753

—28.80
—25.654
—30.37
—44.27
—70.65

(r )" (fm)

1.94
1.94

1.72
1.727
1.67

1.44
1.42
1.48
1.49

40

140
220
400

light nuclei. Table VI shows results with this potential, where
the Coulomb interaction between protons is also included.
All possible spin and isospin configurations are allowed for
and all spherical harmonics that give non-negligible contri-
bution are included in HLM (x). Since the method has proved

L

to be accurate and reliable for other potentials, it is justifiable
to view these results as testing the interaction rather than the
method, and hence the results are compared with experimen-
tal data. The energy and the radius of triton and a particle
converge, with small bases, to realistic values. The Minne-
sota potential, correctly, does not bind the N=5 system, but
it binds He and slightly overbinds Li. The radius of He is
found to be much larger than that of He, consistently with
the halo structure of He [17].It is for the first time that the
Minnesota force is tested without assuming any cluster struc-
ture or restricting the model space by any other bias. The
agreement is surprisingly good not only with experiment but
also with cluster-model calculations for all nuclei [38].

It is interesting to note that none of these simple potentials
binds the four-neutron system. The Volkov potential, for ex-
ample, is so strong that it binds the singlet two-neutron sys-
tem, but it does not allow the neutrons to form a four-neutron
bound state due to the Pauli principle.

As an example for bosonic nuclear few-body system, we
consider the case of structureless n particles interacting via
the state-independent potential,

V(r) = 500 exp[ —(0.7r) ]—130 exp[ —(0.475r) ] (MeV),
(63)

where r is in fm. This potential is taken from Ali-Bodmer s
S-state potential [39].It has a repulsive core which is about
370 MeV high and extends up to 2 fm. The repulsive core
prevents the n particles from collapsing. The results are
compared in Table VII. Our calculation agrees with the
ATMS result for the N=3 and 4 systems.

B. Coulombic systems

The results for the long-range 1(r potential are collected
in this section. The first example is the polyelectric system
(me+, ne ). The possibility that m positrons and n electrons
form a bound system was originally suggested by Wheeler
[40] and this question has been extensively studied since
then. Besides the trivial and analytically solvable m = 1 and
n=1 case, the existence of' the positronium negative ion
(m = l,n = 2) was also predicted by Wheeler [40]. Dozens of

TABLE Vl. Energies and rms radii of N-nucleon systems interacting via the Minnesota potential [32] with
the exchange parameter u = 1. The Coulomb interaction is included (e = 1.44 MeV fm). The experimental

(r )" value is the point charge radius with the proton's finite size corrected.

3 ( H)

4(He)

6 (6He)

( Li)

(L,S)J

(0,1)1+

(0,1/2) 1/2+

(0,0)0

(1,1/2) 3/2

(0,0)0+

(0,1)1+

Method

SVM
Expt.
SVM
Expt.
SVM
Expt.
SVM
Expt.
SVM
Expt.
SVM
Expt.

F. (MeV)

—2.202
—2.224
—8.380
—8.481

—29.937
—28.295
Unbound

Unbound
—30.07
—29.271
—34.59
—31.995

(r )" (fm)

1.952
1.96
1.698
1.57
1.41
1.47

2.44

2.22
2.43

40

60

600

600
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TABLE VEI. Energies and rms radii of N-n systems interacting
via the Ali-Bodmer potential [39] of Eq. (63). The a-particle is
considered to be structureless boson. (fi /M =41 467/. 4MeV
fm .)

Method E (MeV) (r')" (fm)

ATMS [4]
SVM
ATMS [4]
SVM
SVM
SVM

Unbound
—5.18
—5.18

—11.07
—16.22
—20.13

2.43
2.43
2.65
2.65
2.99
3.32

60

150
400
600

works have attempted to solve the e+,e, e Coulombic
three-body problem, continuously refining the accuracy of
the calculated binding energy [41,42]. Despite numerous at-
tempts, no one has obtained bound states for the polyelectric
system of more than four particles. The positronium negative
ion has experimentally been observed [43].

The binding energy of the positronium molecule
(2e+,2e ) was first calculated by Hylleraas and Ore [44].
To date, the positronium molecule has not been directly ob-
served, and this fact intensifies the theoretical interest to
solve this Coulombic four-body problem. This molecule is
short-lived because the electron and positron may annihilate.
Unlike the positronium ion, the positronium molecule is neu-
tral, and therefore the best chance to distinguish it from the
positronium itself is related to their different lifetimes. The
QED formulas to determine the probability of a pair annihi-
lation in the positronium molecule through a k-photon pro-
cess (k=0, 1,2, . . . ) would require a highly accurate wave
function [45].

In Table VIII we compare our results to the most precise
calculations found in the literature. The correlated Gaussian
function without the polynomial part [K=O in Eq. (6)] is
known to poorly represent the Coulomb cusps [18].To im-
prove the cusp properties the trial function with K=0,1,2
polynomials has been used.

As is shown in Table VIII, our calculation reproduces the
first six digits of the variational calculation of Ref. [41] for

the ground state of (2e, e ), and the rms radius also agrees
with it. There are two recent variational calculations [19,46]
for the positronium molecule using the correlated Gaussian
functions. In these works the nonlinear parameters were de-
termined by optimatization. To compare our calculations to
theirs directly, the value of K=O was chosen and the same
basis size (M=300) was used. Our result is slightly better
than the energy obtained by them and this reinforces the
reliability and powerfulness of the random selection of the
nonlinear parameters. The number of nonlinear parameters of
this case is .M~X(4X3)/2= 1800. The complete optimatiza-
tion of the parameters is, of course, superior to the SVM.
Test calculations show that, provided the number of param-
eters is low, that is, a full optimatization is feasible, the op-
timatization finds lower energy. But when the number of
parameters becomes high, the full optimatization becomes
less and less practical partly because it fails to find true mini-
mum and partly because the computation becomes too exces-
sive.

We found no bound states for the (3e,2e ) and
(3e+,3e ) systems. The energy of (3e+,3e ), for example,
converges to the sum of the energy of a dipositronium mol-
ecule and of a positronium (0.515 989 a.u. +0.25 a.u.
=0.765 989 a.u.). Allowing the selection of the parameters
from a larger region increases the rms radius, which is typi-
cal of an unbound state. The system of a negative and a
positive positronium ion thus forms no bound state but dis-
sociates into a dipositroniurn molecule and a positronium.

Calculations for L= 1 state also fails to find a bound sys-
tem. This result entails that the Coulomb force cannot bind
more than four particles out of identical charged fermions
and their antiparticles.

To examine the role of the Pauli principle in preventing
five-electron-positron system from forming bound states, we
repeated the same calculation replacing the fermions by
bosonic equivalents. On a different scale, these systems may
be identified, e.g. , as the systems of vr and m+ with their
strong interaction neglected [47]. Such bosons turn out to
form bound states even for N=5. As is expected, the radius
of the charged boson system decreases as the number of
particles increases. It is interesting to note that the energies
of bosonic and fermionic systems are equal for N= 3 and for

TABLE VIII. Energies and rms radii of electron-positron systems treated as fermions (f) and as bosons
(b). Atomic units are used.

System

(e",e ) b,f
(2e+, e ) b,f

(2e+,2e ) b,f
(3e+,2e ) f
(3e+,2e ) b

(3e+,3e ) f
(3e+,3e ) b

Method

SVM
Exact
SVM
Variational [41]
Faddeev [2]
SVM
Variational [19,46]
SVM
SVM
SVM
SVM
Vari ational [47]

E

—0.25
—0.25
—0.262004
—0.2620050702325
—0.26202
—0.515989
—0.515980
Unbound
—0.5493
Unbound
—0.820
—0.789

2 1/2

1.732
1.732
4.592
4.594

3.608
3.600

3.53

3.42

10

150
700

300
300

1000
200

1000
300

5
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TABLE IX. Energies and rms radii of "self-gravitating" m-particle —n-antiparticle systems (m+, n —);f,
fermions; b, bosons. VLB and VUB stand for the variational lower and upper bounds given in Ref. [49].The
units of the energy and length are G m fi, and G 'm fi, respectively.

System Method 2 1/2

(+,—) b,f
(2+, —) b,f
(2+,2 —) b,f
(3+,2 —) f
(3+,2—) b

(3+,3—) f
(3+,3—) b

SVM
Exact
SVM
Variational I 49]
SVM
VUB (VLB)
SVM
SVM
VUB (VLB)
SVM
SVM
VUB (VLB)

—0.25
—0.25
—1.072
—1.067
—2.791
—1.951
—3.758
—5.732
—4.336
—6.409
—10.215
—8.130

( —3.00)

( —6.25)

( —11.25)

1.732
1.732
1.304

1.027

1.554
0.844

1.621
0.718

10

15

100

200
200

300
300

N= 4. The reason is that the energy minimum belongs to the
same spatial configurations, that is, to a triangular pyramid
for N=4, for example [48].

In Table IX we show results for bosonic and fermionic
systems with a purely attractive Gm /r ("gravitational" ) in-
teraction. An N-body system of identical particles bound to-
gether by attractive pair potentials always collapses in
large-N limit (the binding energy per particle rises with N to
infinity), even if the particles are fermions. Self-gravitating
boson systems have recently attracted some interest t49]. For
these systems, both variational lower and upper bounds are
available. In this case even the five-fermion system is bound.
Thus the lack of bound states in five-electron-positron sys-
tems is a joint effect of the antisymmetry and of the repul-
sion between identical particles.

Finally, we mention an example involving an excited
state. With M=500, the SVM gives the energies of the
ground and first excited states of the t+d+ p, system as
—111.3640 and —100.9121 a.u. , which are, respectively,
compared to —111.364 342 and —100.916 421 a.u. of the
CRCG result [50] with M= 1442, while the configuration-
space Faddeev calculation [2] gives —111.36 a.u. for the
ground state but no information for the excited state.

V. SUMMARY

We have formulated a variational calculation for few-
body systems using the stochastic variational method on the
correlated Gaussian basis. We have demonstrated the versa-
tility of the correlated Gaussians and the efficiency of the
stochastic variation by various numerical examples for
(N= 2 —7)-particle systems. All the details of both formula-
tion and calculational procedure are included to make this
paper self-contained and easily reproducible.

The comparison with other calculations has corroborated
the accuracy and efficiency of the method. In none of the test
cases has the present method proved to be inferior to any of
the alternative methods, and yet the method does not require
excessive computational effort.

The correlation between the particles plays an important
role in describing the few-body system realistically. It has
been taken into account in the framework of the correlated

Gaussian functions. The correlated Gaussians are constructed
from products of the Gaussian wave-packet single-particle
functions through an integral transformation, which has en-
abled us to evaluate the center-of-mass motion free matrix
elements analytically starting from the single-particle level.
The nonlinear parameters of the correlated Gaussians have
been selected by the stochastic variational method with a
trial and error procedure. The success of the method using
the correlated Gaussian basis is probably due to the fact that
none of the Gaussians is indispensable, that is, there are dif-
ferent sets of the Gaussian parameters that represent the
wave function equally well.

The method presented in this paper can be useful to solve
few-body problems in diverse fields of physics such as de-
scription of microclusters, nonrelativistic quark model, and
halo nuclei. Among others, the most important application is
the solution of the nuclear few-body problem, that is, a de-
scription of light nuclei by using realistic nucleon-nucleon
potentials. In this case one has to take into account both
short-range repulsion and higher orbital angular momenta
required by the noncentral components. Our test examples
show that the correlated Gaussian basis function might be a
suitable candidate to cope with these requirements. As is
explained in Appendix B, the evaluation of the matrix ele-
ments for the noncentral potentials poses no serious problem,
and calculations including such potentials for nuclear few-
body systems are under way.

The limitations of the present method are those implied
by the basis size and by the computer memory to store the
matrix elements in the generator coordinate space. The limi-
tations may become excessive as the number of particles
and/or spin and isospin configurations become large.

To extend the method to nuclei of larger mass number in
an approximate way, one can freeze part of the model space
for a group of nucleons (cluster). One can omit, for example,
some of the spin or isospin channels. It might be a good
approximation to consider only those spin channels where
the spins of the like nucleon pairs are coupled to zero. One
can also restrict the intrinsic spatial motion of a cluster by
fixing the nonlinear parameters to some appropriate values.
One can introduce N clusters and place the nucleons of each
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cluster into a common harmonic oscillator well, for example.
The microscopic multicluster model is based on this approxi-
mation. The matrix elements needed in this multicluster
model are given as a special case of those presented in this
paper. In fact, one only needs to choose the single-particle
generator coordinates, (sl, . . . , SA), such that

s„+l=s„+2= . =s„+„(i=I, . . . ,N),
(64)

where n; is the number of nucleons in the ith cluster
(no=0, n, +. +nlrb=A), and needs to couple appropri-
ately the spins and isospins of the nucleons in each cluster to
the spin and isospin of the cluster. The microscopic multi-
cluster model has been successfully applied for description
of the structure of light nuclei (see, for example, [17,22,23]).

Finally, we summarize some merits of our method in the
following.

(i) Fully analytical calculational scheme; this plays a ma-

jor role in the high speed and accuracy of the calculation.
(ii) Universality of the scheme. One needs to introduce no

change, for example, between describing a multinucleon sys-
tem and a Coulombic few-body system. It is easily adaptable
to identical or nonidentical particles, to fermions or bosons
or mixed systems. The masses of particles may be different,
yet no problem with the center-of-mass motion arises.

(iii) No expansion of the interaction is needed, and thus
no problems in partial-wave truncation arise.

(iv) The convergence of the energy is fast. If one needs
just a 2—3-digit estimate of the energy, it is enough to use a
very small basis.

(v) The method is also accurate for excited states, which
are obtained simultaneously with the same diagonalization
(provided their angular momenta and parities are the same as
those of the ground state; but only such excited states may be
problematic).

(vi) The wave function is obtained in a compact, analyti-
cal form. It is then easy to use it in calculations of physical
properties. It is "portable, " reproducible, and easily testable.

(No. 05243102 and No. 06640381) of the Ministry of Edu-
cation, Science and Culture (Japan). K.V. gratefully ac-
knowledges the hospitality of the RIKEN LINAC Laboratory
and the support of the Science and Technology Agency of
Japan, 1994. The authors are grateful for the use of RIKEN's
VPP500 computer which made possible most of the calcula-
tions. Thanks are also due to the support of both Japan So-
ciety for the Promotion of Science and Hungarian Academy
of Sciences, 1994—1995. The authors thank Prof. R. G. Lo-
vas for careful reading of the manuscript and useful sugges-
tions.

APPENDIX A: SINGLE-PARTICLE MATRIX ELEMENTS

l 2/V1P2 P1P2
(Al)

The matrix element of the kinetic energy operator
[T= —(fi l2M)h] reads as

2P1P2 I 2P1P2

x((p"
l
y").

The matrix element of the square radius becomes

(A2)

2
2(v, 'lril ~, ') =

2
3+ (Pisl+ P2s2)

1 2 2 Pi+ V2 ( Vi+ P2

The aim of this appendix is to list the single-particle ma-
trix elements between Gaussian wave packets [Eq. (17)].The
Gaussian packets are generalized in this appendix to have
different width parameters and the expressions are therefore
slightly more general than needed in the formulas of the
main text. These single-particle matrix elements are, how-
ever, required for treating particles of unequal masses, in
which the width parameter p belonging to the particle of
mass m is to be chosen by Eq. (59). The overlap of two
Gaussian wave packets is
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x(v&, ly, ). (A3)
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(Pl+ P3)(P2+ P4) (Pl+ V3)(P2+ P4) P1S1+ P3S3 P2S2+ P4S4)
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' exp +
1 2 3 4 I (Vi+ P2+P3+ P4)VI j Vi+ V2+ V3+ V4 ( Vi+ V3 P2+ V4 i )

x(~" l~")(v" lv").

APPENDIX B:MATRIX ELEMENTS OF THE TWO-BODY POTENTIALS

The scope of this appendix is the calculation of the matrix elements of the different ingredients of the two-nucleon
interaction between Gaussian wave packets. Most of the widely used coordinate-space two-nucleon interactions consist of
central- (0',2), tensor- (0',2), spin-orbit- (0,2), L — (or p ) (0,2) and quadratic spin-orbit- (0,2) type potentials. (We follow
the abbreviated notations c,t, b, q, bb invented by the Urbana-Argonne group [51,52]. The definition of these operators is given
in Table X.) These potential terms might be multiplied by the Tl ' T2 (0',2), o, o2 (0,2), or vi v2 rrl rr2 (0',2) spin-isospin
operators and then one ends up with the general form
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TABLE X. Components of the two-particle interaction matrix elements. The operators Bt' and Cf are defined in Eq. (B2) of Appendix
B. The symbol p specifies the component of the two-body interaction. The following additional notations are introduced: r,&=r, —r2,
p, z=(1/2')(p& —pz), L=r,zXp, z, S=(1/2)(o, +oz), S,z=3(o, r, z) (oz r, z) —o, oz, x=s', —s'z, and (x) = V4zr/3xF, (x).

Definition Coo

24m (2)[o') oz]m

L S 2m
(&)v[xX(o, + o.z)]

L2 2 22—V X
3

16m
v(x) v'[xx x]"'

2»2 $4zrv( —3+ vx ) 16~
v (x)

bb ——v {x (2+ o) oz)

—(x a, )(x oz)}

v (x) (2+ o') . crz)

+ [xX (o, + oz))
1

2
[~1m(x' ~2)+ ozm(x ~))l

vz{[xxx]"'

+ 2[[xx o, ]&')x [xx o;]&))]"))

VJ= g drV"(r) 8(r; —r, —r)O",, (81)

where p =c,c r, co,c nr, t, t. r, b, br, q, q T, qcr, q ro, bb, bb r is the shorthand notation to specify the component and V"(r) is the

corresponding radial form factor. By using Eqs. (16), (17), (A4), (Bl), and after some straightforward transformation, the

matrix element of this interaction can be written as

2

(P,",@,",[V&z(P.. . , P". . .)=g drV"(r) f„(r)~(r) gtt/zl M'~q/z&, yt)/z&~ W~]/zl, r B + g
p l=o I= —l

m I() ~ +/ (+)+/ — X(l/21 ~(l/2) 'X(l/2) '~(l/2) ') (B2)

with

t v 5
'/z

( V~(r) = — exp~~ —vr + v(s, —sz+s,' —sz) r ——(s&
—sz+s,' —sz) (cps ~(/), )((p,

"
~y, , ).

The B and CI, independent of r, are the operators in spin-isospin space and are listed in Table X for the most important

terms (c,t, b, q, bb). The remaining terms can be easily derived by multiplying these operators by the appropriate rr and ~
operators. The function f„(r) has the simple form fz(r) = r z if p=t or tz. , and f„(r)= 1 otherwise.

The calculation of matrix elements of the operators appearing in Table X in the spin part is easily done with the Clebsch-
Gordan coefficient. They are given below by suppressing the spin function g&»z) (m;= —,'o.;),

l

(m m )~ zooz~mImz) =3(—1) 8' ~ ~ ( mI zlm] —mI~ zmt)(z mz lmz —mg zmz), (B4)
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(m)mz~[CTt X CT2] 1mlm2) 3 ~, + — ' — '(2m 1 1m 1 m112m 1)(2m2 Imz m21 2 m2)

X(1 m&
—mI lmz —

mz~ 2m), (B5)

1

(mimzl[xX (~i+ trz)]'"lmImz) = u& 2 (x), (I qi Iqzl lm)(~, , (zmI Iqzl zm t)+ ~, , (zmz Iqzl zmz))m2, m 1'

(B6)

(mlmzl(x 'tr. ) trim+ (x rrl) trzmlm1mz) 3 (( 1) ' z8'm
m -m'(x)m' m +(—1) ' & Bm m m'( x)~'

X ( —,'mI lmt —mI~ —,'m~)(z mz lmz —mg —,
'

mz), (B7)

( m/m ~z( xcr[)(x crz)~mImz)=3 ( —1) ' + ' (X),„(x) (zmI Imt —mI~zm])(zmz Imz —myzmz),
(B8)

(m&mz~[[xX rr&] X[XXo&] ] ~mImz) =3 (zmI Im& —mI~ zm&)(zmz Imz —mz~zmz)

ql q2
—1

(»q (x) (I q&+mi mI Iqz+mz mal 2m)

X(1 q, Imt —mII lq, +m, —m,')(1 q, lm, —
mal lq, +m, —m,'). (B9)

Here x is a three-dimensional vector and (x) stands for its spherical component $4zr/3x Y& (x).

APPENDIX C: MATRIX ELEMENTS OF SLATER DETERMINANTS

In this appendix we brieily outline the calculation of the matrix elements between Slater determinants of Eq. (18) and show
their concrete functional form, that is, the dependence on the generator coordinates s. We assume that the width parameter of
the Gaussian wave packet is chosen to be the same for all nucleons. The overlap of two Slater determinants is equal to the
determinant of the matrix of the single-particle overlaps:

(P (s, s~)~P, (s', sJ'v))=det(Bj (Cl)

where

B;,= (V.'. , I V, ~ ) (i,i = I. . .&).
J

(C2)

By using the definition of the determinant, this can be rewritten as

(0.(si, , s~) I@.(s't ~,s&)) = X sgn(P)(~,"...,, l~,". . . )
Pl Pl pw pw

(C3)

where (p& p~) is the permutation P of the set (1 N). Substituting the overlap of the single-particle overlaps of Eq. (Al)
into Eq. (C3) yields an explicit formula for the overlap of the Slater determinants:

N!

(P„(si, sw) I 0 (s', , . . . , s~)) = g Cpe
P

(C4)

where the matrix A p is defined by

( p), =(~p)x+;,w+, =»;, (~p);,w+, =(&p)w+, ,;= —», p (I-~ Z-&) (C5)

Cp=sgn(P)8 6', , 8
1 P I 1 P 1

N P~ N P~
(C6)

The orthogonality of the spin-isospin functions greatly reduces the number of terms in the summation over P.
The matrix element of the kinetic energy operator is
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N N N

X (4.(si ~ s~)IT;I@.('i. '~)) =X X (~:,...,.ITI~,
" ., )( —I)'"det(B").

E,
= 1

(C7)

where B" is obtained by omitting the ith row and the jth column of the matrix B defined in Eq. (C2). The substitution of the
single-particle overlaps and the single-particle matrix elements of the kinetic energy operator enables us to obtain

N N!
(

g (P (si, . . . , xS)IT;IP (s'i, . . . , Sw))= g Cp N —sAp—s—e (C8)

Note that the coefficients Cp and the matrices A p in Eqs. (C4) and (C8) are the same. The manipulation similar to this leads
us to the matrix element of the square radius as

1" i3 1
(@ (s, , . . . , s~)lr, IP (s', , . . . , S~))= g Cp N —sA—ps+—vss e

E. = 1 2p p i2
(C9)

As is explained in Appendix B, the matrix element of any two-body interaction between the Slater determinants may be
reduced to the following:

N

(@ (si, . . . , siv)l B(r;—r, —r)O",,lp (s'i, . . . , sz)).
i&j

(C10)

The matrix element of Eq. (C10) is called the correlation function of type p evaluated between the Slater determinants. The
calculation of this matrix element can be done with the use of the basic two-body matrix elements of Appendix 8 and the

single-particle overlaps. We will show, as an example, the case of 0; = 1, i.e., Wigner-type 8'-function two-body interaction
(p=c). Then we have

N N

(y,",q&,",
I
8'(r, —r, —r)l y. . .q&. . .)( —1)'+'" +' det(B" '),

i&j k, l=1
(C 1 1)

where B' ' is obtained by omitting the ith and jth rows and the kth and lth columns of the matrix B. By substituting the
explicit formula of the ingredients, we arrive at the same form as given in Eq. (25):

N
( ) 3(2 N! N

g (P (s, , . . . , S~)I8(r, —r, —r)IP (s', , . . . ,S~))= — e "" g Cpg e
i&j 4 ~l p i&j

(C12)

with

dp = P(s; sj+ sN+p sN+p )(ij} (C13)

The coefficients Cp and the matrices A p are the same as those that appear in Eq. (C4). The matrix Btpji is defined by

(kl) = (ii), (jj ),(N+ p, ,N+ p;), (N+ p, N+ pj),

(i,N+p;), (j,N+p ),

(kl) = (ij ),(i,N+ p ),(j,N+ p;), (N+ p;,N+ p ),
(C14)

0 otherwise.

APPENDIX D: EVALUATION OF THE OVERLAP OF THE CORRELATED GAUSSIANS

In this appendix we derive the overlap of the basis functions, defined in Eqs. (2) and (6), to illustrate the calculation of the
matrix elements through the operations prescribed in Eq. (57). For the sake of simplicity we work out the case of overlap only,
but the matrix elements of the kinetic and the potential energy are not much more involved either and these matrix elements
can be calculated by repeating the steps detailed here.

In Eq. (57) the matrix element of an operator D between the correlated Gaussians are derived from the matrix elements
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between the Gaussian packets by applying suitably chosen operations. In the case of &=1, upon substituting the matrix
elements in the generator coordinate space I Eq. (41)], Eq. (57) reads as

(M(fKLM(u, x,A)xsMswTMr))IM(fKiLiMi(u', x,A')xsiM~MziMPi)

) n=u'=o
t=f =1

(.) l
dtdtr y (t) 4 y (tt ) e

—!1/2)TCT dSe
—(1/2)SQS+TSQ C(o) —!1/2!SB,. S

1,
dLt"dn'' i=1

(D 1)

with

+=2K+L, K' =2K'+L', (D2)

where a constant factor is omitted for a moment. By integrating over the generator coordinates S with the use of Eq. (52), one
readily obtains

( A(fKLM(u, x,A)XSMs~TMr 1IM~tfK'L'M'(u', x,A ) XstM'~r' MP)

( d++ + ~ ( (2 )(2/v 2l

y (t) g y (t )
. g C(o! p;a +p, n +q;au't t', (D3)

J ~
~ L™ Idudu'"/ 1

' Idet(B+Q)) ) = =o'

where, by using Eqs. (54) and (55), we introduced the abbreviations

1
N —1

1
2N —2

p;= X w, l:—(B,"+Q) ' C],kwk. —S,'= —X w,'I:(B,"+Q) ' C],kwk ~-
2j,k=1 2j k=N

N—1 2N —2

q;= g g w, I(BI'l+Q) ' —C],„wk,
j=1 k=N

(D4)

with

N —1 2N —2

w„= g (I C)/„'u&, w„'= g (I C')k, 'u,',
j=1 j=N

in order to emphasize the u and u' dependence of the resulting expression. The differentiation with respect to n and n' can
be promptly given by expanding the exponential functions into power series:

j!j'!k! (2j+k —/1)! (2j '+k K')!—
and therefore, after putting a= n' =0, the calculation of Eq. (D3) can be continued as

(MtfKLM(u, x,A)XsM, ~TMTHM(fK''L'M'(u', x,A )Xs'M™rlMp~)

where the summation over k runs from 0 to max(K, K ) for those values that fulfill ( —1)"+ = 1 and ( —1) + = 1.
The last step, the integration over the angles of t and t', can be accomplished by applying Eq. (49) to express the scalar

product t- t', and then we get the final expression:

(~(fKLM (u~ x~A )XSMs~TM r) I ~(fK L ' M ' (u ~ x~A )Xs ' M ™T'M p )

1 / (detI ) I
3/2

BKLB» L ~
(47r) ' det(I' —A)det(I —A')

f

t

"o
/ (2qr)2/v

—2 ) 3/2

x C&'
~ det(BI l+ Q) )

(K k)/2 ~ (K' —k)/2

I! I I!p!
(Dg)
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where the constant term previously suppressed is also in-

cluded. The orthogonality of the matrix element in the spin
and isospin quantum numbers is implicitly contained in the
coefficients C(') .

The calculation of the matrix elements in the way de-
scribed above is very simple. This fact becomes especially
evident if one compares the work described above to the
formidable task of the calculation of the matrix elements in
the case where the function HIM (x) is decomposed into par-

L

tial waves of the relative coordinates as in Eq. (5). In fact, in
that latter case one has to integrate over the angles of the
relative coordinates and one has to cope with complicated

angular momentum algebra. We note, however, that the cal-
culation of the matrix element of the latter type poses no
problem if the function HLM (x) of Eq. (5) is expressed as a

linear combination of the terms of Eq. (6) with appropriate
u-vectors.

All the matrix elements can be given in a similar closed
analytic form and the numerical evaluation of the matrix
elements as a function of the nonlinear parameters is there-
fore straightforward. The values a = 2K+ L and
~'=2E'+L' are usually small in practical cases and the
summation over k is limited to just a few terms in Eq. (D8).
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