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Poincare invariant coupled channel model for the pion-nucleon system
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An exactly Poincare invariant front form model for the pion-nucleon system is constructed in the space
spanned by ~B) and ~pB) states where B=N, B,N*, . . . and p, =m, /t, p, . . . . A mass-square operator is
constructed in the form M =MD+ V where Mo is a noninteracting mass operator and V is an interaction.2 2

Assuming that the spin operator is a free spin operator, the most general form for the interaction V is
deduced. A fit to the AN elastic scattering amplitudes for pion laboratory kinetic energies up to 700 MeV is
carried out, under the assumption that the p,B-p, 'B' interactions are separable.

PACS number(s): 24. 10.Jv, 11.80.—m, 13.75.6x, 24. 10.Eq

I. INTRODUCTION

Coupled channel models play an important role in inter-
mediate energy physics, and in fact are essential for treating
systems such as the pion-nucleon system and the nucleon-
nucleon system. Quantum chromodynamics has taught us
that objects such as the 5'(1232) are just as elementary as
the nucleon; so, for example, in the mN system it is impor-
tant to include a ~A channel, while in the NN system it is
important to include the NA channel.

The mN model of Blankleider and Walker [1] assumes
~N and ~A channels, while the model of Bhalerao and Liu
[2] includes these channels as well as an r/N channel. A
multiresonance approach to coupled channel inelastic mN
scattering, based on the K matrix, has been developed by
Manley and Saleski [3].A three channel model has recently
been used by Batinic et al. [4] to fit 7rN elastic scattering
amplitudes, as well as ~N~ re total and differential cross
sections. A manifestly covariant coupled channel model of
the 7rN system has been constructed by Gross and Surya [5].

The excitation of the nucleon to the 6 state has long been
recognized as an important part of the NN interaction [6].
Several authors have constructed coupled channel models of
the NN system that take into account the NA channel, and in
some instances the b, A channel as well [7—9].

Coupled channel models that treat relativity exactly are
not all that common. The rtN model of Gross and Surya [5]
does, since it is manifestly covariant. It is possible to con-
struct exactly Poincare invariant models using the various
forms [10] of relativistic quantum mechanics. An instant
form model of the NNm system, which takes as the elemen-
tary degrees of freedom the N, 6, and m, was formulated
some time ago by Betz and Coester [11],and applied by Betz
and Lee [12].An analytically solvable front form model of
the NNm system is given in the review article of Keister and
Polyzou [13].

Here we will construct an exactly Poincare invariant,
front form model of the pion-nucleon system in the space
spanned by ~B) and

~
p,B) states where B= N, b„,N*, . . . and

p, =~, y,p, . . . . The model we will construct can be called a
free spin model in that we will assume that the relative an-

gular momentum or spin operator g is the same as that of a
noninteracting system. Even though the model will be con-
structed in a specific context, it will become clear that

the procedure used is quite general; and could be used, for
example, to construct an exactly Poincare invariant model of
the NN system in the space spanned by ~NN) and

~
NA)

states.
It should be noted that the model assumption of a nonin-

teracting spin operator g is not in contradiction with the fact
that a front form angular momentum operator J contains in-
teractions. The relation between J, which is the generator of
three-rotations, and g involves the mass operator [13]; so
even in the model presented here J is interacting. There is
some indication [14] that it is possible in general to trans-
form a model with an interacting spin operator to one whose
spin operator is noninteracting, so it might turn out that the
assumption of a noninteracting g is not a model assumption
after all.

The use of the front form in formulating the coupled
channel model is pretty much a question of taste. In fact a
mass operator with the same functional form in the internal
or relative variables could also be developed in the instant
and point forms of relativistic quantum mechanics [13].It is
only when the system treated here is probed or embedded in
a larger system that the differences between the various
forms become important.

The outline of the paper is as follows. The basis states for
the ~N model are constructed in Sec. II. As pointed out
above, our vector space consists of both single particle and
two particle states. It is important to specify these states pre-
cisely as the behavior of these states under Poincare trans-
formations plays an essential role in determining the repre-
sentations of the operators that come into play. In Sec. II we
establish the existence of a basis in which the spin operator

g has a simple representation. This simple representation
facilitates the construction of a Poincare invariant model. In
Sec. III a Poincare invariant, mass-square operator is con-
structed in the form M =MD+ V where Mo is a noninter-2 2

acting mass operator and V is the interaction. Assuming that
the space in which the mass operator acts is spanned by ~B)
and

~
p,B) states, and that the spin operator + is a free spin

operator, the most general form for V is deduced. The
Lippmann-Schwinger equations that this model gives rise to
are analyzed in Sec. IV. Section V gives the results of a
separable potential model fit to the ~N elastic scattering am-
plitudes for pion laboratory kinetic energies up to 700 MeV.
Here ~N), ~b), ~7rN),

~ r/N), and ~~A) channels are included.
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In Sec. VI the differences that would arise in developing a
coupled channel model in the instant and point forms are
pointed out, and a discussion of the results and suggestions
for future work are given.

II. BASIS STATES

A Poincare transformation maps the components of a
four-vector from the x frame to the x' frame according to

x' =ax+ b,

U(r) ~s;h;) = y ~s;h )D„,'„(r),
t

(2.9)

Ip~s„h~, pBsBhB)f Ip&s+h~)fIpBSBhB)f, (2.10)

with the total four-momentum of these states given by

where Dt"~(r) is the standard SU(2) matrix representation
for the spin s;.

We define meson-baryon, front form states by

where a is a Lorentz transformation and b is a spacetime
translation. A quantum mechanical state vector in the x frame
is mapped to the x' frame according to

I
0') = U(o.b) I tl ). (2.2)

where U(a, b) is a unitary operator. The set of all (a, b)
forms the Poincare group, while the U(a, b) form a unitary
representation of the group.

Basis states that transform simply when acted on by the
unitary operators U(a, b) can be obtained by starting with
states that transform according to an irreducible representa-
tion of SU(2), and then boosting these so-called rest frame
states [13].We will denote Lorentz boosts by ls(k) where )~.

is a timelike unit vector, and g distinguishes the different
types of boosts. We have in general

pl a= pp+ pa- (2.11)

(~ (q B), 1„B)= lf '(~„B)p„

(eB(gpB)»qpB) —lf ( Xy B)pB ~

(2.12a)

(2.12b)

where the energies are given by

( 1 B) (Q~~B™) eB(q B) (I B™B)
(2.13)

and

We also define relative three-momentum variables q„~ as the
three-momentum of the meson p, in the p,B c.m. frame. We
have

k = ls(l~. )(1,0), (2.3)
~ pB p B f~pB(qpB) (2.14)

k —1. (2.4)
with the invariant total c.m. energy given by

xsi, = l '(X.)x. (2 5)

The so called front fov-m boost (g =f ) is given by [13]

The inverse of l (k) takes us from an arbitrary frame, the x
frame, to a frame which depends on g and X, i.e.,

B(q B) + (p B) ~ (q,B)+ eB(q,B)

Even in the c.m. frame the two particle states (2.10) do
not behave simply under three-rotations. In order to get
states that rotate simply, we introduce the Melosh rotation
[13,15]

x = y2X xf), y xJ y2Ã~xf), +xfgj (2.6) rf, (li. ) =—lf '()~.)l, (1~.), (2.16)

where the components that appear here are light front com-
ponents defined by

where l, (X) is a so-called canonical or rotationless boost
defined by

ct+z, ct zi-
(x~)= x =,x =x,x =y, x

x =k x ~+A. xck~

=(x,xi,x )=(x,x ). (2.7)
X x„'I

X=Xck+I x ) + 0~ +~i (2.17)

We define single particle, front form states by

~p;s;h;)f= U[lf(li. ;)]~s;h;), i = 7r, g, p, . . . ,N, b„,N*, . . . ,
(2.8a)

where here x, X, and x,z are the usual "time" components
of the four-vectors, e.g. , x =ct. From (2.5) and (2.16) it
follows that the Melosh rotation relates the front form and
canonical rest frames according to

li. ;=p; fm;, m; = + (p, )", (2.8b)
xfi rfc(~)xck . (2.18)

with s; the spin of particle i and h; the z component of this
spin. The state ~s;h, ) is a rest frame state for particle i, and it
is assumed to rotate according to

Following Keister and Polyzou [13] we define a Melosh
rotated, rest frame, two particle state by
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lqpa s h, saba)

Ilf (Xp B)p, s h';lf '(k a)pa, saba)
h h~

(pa sahalg-X (Sa)h, h (pa sahal
h~

(2.25a)

XD," (rf [lf '(X a)X ])

XD, (rf~[lf '(k~a)XB]), (2.19)

(pya qua sphy. sBABIQ 2 g(qya)h h, h'h,
h h~

x(pea, q„a s~h' sBABI

(2.25b)

which can be shown [13,16,17] to rotate according to

U(r)lq~a. s h saha)= X Irqpa sph~ sBAB)
h h~

XD," (r)D, „(r). (2.20)

where

g(q B)=I eIB(iV, xq„a)+S eIB+I eSB, (2.26)

with I; and S; the unit matrix and spin-matrix vector for
particle i, respectively.

In order to calculate matrix elements of operators such as

g we must specify the orthogonality relations for our basis
states. We will assume

The rest frame states (2.19) can be boosted to define the
states

(pa;sahalpa, ;sa~ ha, ) = Baa~(27r) 2PBB (pa pa) 8h h—,

(2.27a)

Ip+B q„a, s~h~, sBAB) = U[if(X—~B)]lq~a, s&A~, SBAB),
(2.21)

(P B 'q B s h sahBIPB sa ha )=o. (2.27b)

which have the four-momentum (2.11), and where we note
that the unit vector X B is given in terms of light front com-
ponents [see (2.7)] by

B('q B)~'(q, a 'q ) ~h h' ~h h' (2.27c)

I I I

p B ', qB,S 'A, SBABlp, a, ,'q B,sp A, , s ha, )P IJ p

= Bp~'Baal(2') 2p~a8' (pea pea)—

~p,B Pp, B ~

p a~+ W B(q B)

2P~B )

Here
W~a(q~a) . (2.22)

6 B(q B)=(2vr) 2co (q a)ea(q a)/W B(q a). (2.28)

In order to make the notation for the one baryon states
consistent with (2.21) we write

I pa 'BAB) IPBsBAB)f— (2.23)

/pa saha) = U[if(1 a)]JIsaha)

and observe that the states (2.21) and (2.23) are labeled by
external quantities, pB and p B, and internal quantities,

q~B, s, h, sB, and hB.
The light front spin operator g acts only on the internal

quantities and can be defined by [18]

The spin operator (2.26) is of course a very familiar form.
It is worth noting that in order to arrive at this result it was
necessary to develop basis states that according to (2.21),
(2.19), and (2.10) are related to the single particle states
in a rather complicated way. This is a general feature of
relativistic quantum mechanics, and rejects the complex
behavior of angular momentum under Lorentz transforma-
tions. In Sec. III we will see that using the basis
(Ipasaha), lpga;q„a, s h~, saba)) facilitates the construc-
tion of a Poincare invariant model for pion-nucleon scatter-
ing which assumes that the spin operator g is given by
(2.25) and (2.26).

III. THE MASS OPERATOR

+lpga gya s~h sBAB) U[if(~~B)]Jl qua s h sBAB)
(2.24)

where J is the angular momentum operator, i.e., the genera-
tor of the three-rotations r. According to (2.9) and (2.20) the
rest frame states rotate just as they do in nonrelativistic quan-
tum mechanics; therefore J acts on the states Isaha) and

Iq„a,s h, saba) in the usual way. It follows from this ob-
servation and (2.24) that the spin operator has the represen-
tation

The mass operator is a Casimir operator of the Poincare
group, and as such conunutes with all of the generators of
the group. In light front dynamics the seven generators
P=(P, P', P ), B=(B,, B2), K3, and Js induce Poincare
transformations which map the null plane
x = (cr+ z)/v2 = 0 into itself [13,17,18]. These seven gen-
erators are assumed to be noninteracting. The components of
P are the first three light front components [see (2.7)] of the
four-momentum operator, the three operators B and K3 gen-
erate the front form boosts (2.6), and 13 generates rotations
about the z axis. It can be shown [18,19] that in the basis
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constructed in Sec. II the representatives of the generators P,
8, and E3 are given by U(r) Iq„a,lsj k) = g Iq~a, lsj k')D~', „(r). (3.9)

(p, '~, l
P =(p, '~. I p. . As in (2.21) we can boost the states (3.8) and define

8
(p, '~, IB,= ip—.', (p, '~, l.

~Pc
(3.2a)

8
(P. '~, 1&3=—ip,' o (P. '~.

l

~J c
(3.2b)

M M+V0 (3.3)

with c=B,PB, and na=(saba), u~a=(q~a, s~h~, saba).
We will construct our mass operator in the form

Ip~a qua ls j k)=Uflf(1 a)] Iq~a ls j k) (310)

According to (3.10), (3.8), (2.24), and (3.9) we have

g Ip„B q B.ls.J1)=j(j+I)IP,a.q,a, ls.J1).

g3l pi, a, q~a, ls,Jk) —lsl pi„a, ql, a, ls,JZ).
(3.11)

It now follows from (3.5), (3.6), (3.7), and (3.11) that the
matrix elements of the interaction V are given by

where Mo is the noninteracting mass operator and V is the
interaction. The action of Mo on the basis states constructed
in Sec. II is given by

MolpB sBhB) mBlpB sBhB)

(Pa, sahal ~IPa~, sa ha, )

2PB~ (PB Pa') ~sass ~hah BB' ~

(pisa qua lsd 1sl Vlp,
' 'a ha )

(3.12a)

MOIPya qya, s~h~, saha)

Ill ya(q~a) Ip~a .qua syh p sBhB), (3 4)

= (27r)'2p~pa~'(p pa pa ) ~Js,
—~kh', IJ'pa a (q~a),

(3.12b)

where m~ is the physical mass of baryon B and W„~ is given
by (2.15) and (2.13). It follows trivially from (3.1), (3.2), and
(3.4) that Mo commutes with P, B, and K3. It can easily be
shown

I 16,17] that M commutes with P, B, and IC3 if and
only if the matrix elements of V have the structure

(p~a, q~a, lsj 1 IVIp„' B;q', B, , l's',j '&')

=(2m) 2p ab (p~a p', a, )BJi8),h—i

ls, l's';j 1

(qua. q, ). (3.12c)

(P. '~, II'Ip,
' '~,' ) =(2~)'2P.'~'(P, P,

'
) V(~. , ~-.

' ).
(3.5)

It can also be shown that M commutes with the other four
generators of the Poincare group if and only if it commutes
with the spin operator g I 18,19].We are assuming that g is
the noninteracting spin operator given by (2.25) and (2.26),
which implies that we must have

Ig, v]=0, (3 6)

since Mo commutes with g.
In order to work out the consequences of (3.6) it is con-

venient to work with basis states that are eigenstates of g
and gz. According to (2.25a) the one baryon states are al-
ready such states, i.e.,

MIPB sBhB) mOBIPB sBhB). (3.13)

where mo~ is the "bare" mass of baryon B, then it follows
from (3.3), (3.4), (3.12a), and (2.27a) that

Assuming that the spin operator g is given by (2.25) and
(2.26), Eqs. (3.12a)—(3.12c) define the most general Poincare
invariant interaction that we can have in the model space
sPanned by the vectors gPB;saba), IPB;q a, s h, saba)).

The above matrix elements can be further constrained by
assuming that V does not couple states with different pari-
ties. If we let M„and W~ be the intrinsic parities of the p,
meson and the baryon B, respectively, we see that the matrix
elements (3.12a), (3.12b), and (3.12c) vanish unless

(—I)'&~a =Wa, and (—I)'M .Ha
l'=(—1)' H~„H™a,respectively. Also, if we assume that

g I pa, saba) =sa(sa+ 1) I pa ', saba),

g3IPB ~saha) hBIPB ~saha)

If we define new rest frame, meson-baryon states by

(3.7)

2 2
Vaa ~ ——Baa I (moa ma) . —(3.14)

The matrix elements of V in the original basis
(pa;saba), Ipa;q~a, s~h„,saba)) can be obtained by in-
verting (3.8). Using (2.21) and (3.10) we find that

hI
Iqpa ls.J1 )= Iqpa syh saha)de Yi (qua)

h hg
l

hlhs

X(s~sah~halsh, )(lsh&hsIJX), (3.8)

where the ( I ) are Clebsch-Gordan coefficients, then it fol-
lows from (2.20) that these states rotate according to

IP~B ', q a, s h, saba)

Ipea q~a, ls,J k)(lshihsl 'J ")
lh, ,sh, ,

x (s sah hal sh, ) Y ' (@~a), (3.15)
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which when combined with (3.12b), for example, leads to

(ppB 'q„B.s~h~ sBhBI VlpB sB' hB )
/

=(2m) 2p~hb' (p B
—pB, ) V ",' '(q B),

(3.16)

where 0 is any operator of interest. From (4.1) we obtain

2

T;,(z) = V;, + g V;hGo(z) T„,(z).
k=1

(4 4)

According to (2.27a) the projector onto the subspace of
single baryon states can be written in the form

with

I

V ",' (q B)= g Y, '(q B)(s„sBh hB~sh, )
I ~S s

d pa
Al Z IS B ~sBhB) 2 32 0 (PB ~sBhBI

Bhg J 'ir pB

[d PB dPB//(PB)dPBJ ]~ (4.5)

X(lshih, ~sBihB, ) V 'B B,(q~B). (3.17)

e, = —e~, = —(1/v 2)(1,l, 0), eo = (0,0, 1), (3.18)

then we find

O, hj11/, hB
(q N)=

3
NB( /.N), q.N ( NB)h hpl, 1/2

A familiar result is obtained from (3.17) if we consider
the mNN or DNA vertices. Parity and angular momentum
conservation imply that only the I = 1,s =s~, h, = hz terms in
(3.17) survive. If we define complex unit vectors by

which when used in (4.4), along with (3.4), (3.12a), and
(3.14), leads to

2
fPl g

(pB ', sBhB~T12(z) =
2 (PB,sBhB~

Pl Og

X V12[1+Go(z)T22(z)]. (4.6)

Upon putting this into (4.4) with i =j= 2, we find

T22(z) = V22+ W(z)+ [V22+ W(z)]GO(z) T22(z) (4 7)

where

where

B=N, A, (3.19) d pz
W(z) M

J
V21IPB sBhB)

( )3 0( 2
)

1

(SNB)„„=g (1,1/2, h, hN I sBh B)e„, B=N, /h.
h= —1I

I

(3.20)

It can be shown that SNN= cr/v3 —where the components of
cr are the Pauli matrices, and that Sz& is the well known spin
transition matrix associated with the 7rN/h vertex [20].

X (PB sBhBI V12 (4.8)

T22(z) = &22(z) + [1+&22(z) Go(z)] r(z) [1+Go(z) &22(z)],
(4 9)

Equation (4.7) is an operator equation in the meson-baryon
subspace whose formal solution can be obtained by using the
well known two-potential formalism [21], i.e.,

IV. THE LIPPMANN-SCHWINGER EQUATIONS

In order to calculate scattering amplitudes with the inter-
action V it is necessary to solve the equation for the T op-
erator, i.e.,

where t22(z) and v(z) satisfy the equations

t22(z) V22+V22GO(z)t22(z)~

&(z) = W(z) + W(z) G(z) ~(z),

(4.10)

(4.11)

where

T(z) = V+ VG0(z)T(z), (4.1)
with

G(z) = Go(z) + Go(z) &22(Z) Go(Z). (4.12)

G,(z) =(z-M', )-', (4.2)

and z is a complex parameter, which when calculating physi-
cal amplitudes becomes z = W +i e. It turns out that in solv-
ing this equation it is convenient to first eliminate the single
baryon channels, and thereby obtain an effective potential
that acts in the subspace of meson-baryon states. To this end
we introduce complementary, orthogonal projection opera-
tors A, and A2, where A, projects onto the subspace spanned
by the single baryon states (2.23), and A2 projects onto the
subspace spanned by the meson-baryon states (2.21) or
(3.10). We define

(p~B q~B ls j kl T(z) lp„' B 'q '
B

l's ' j 'l1. ')

=(27r) 2P„BB (PI B P~, B,)—
X ~„~hh T'„(e~B.e„'.B Z), (4.13)

where

c ={p.,B,l, s), (4.14)

If we write out these equations in the basis for the meson-
baryon subspace, i.e., {~p~ qB~ l Bj1s1.)j, and exploit the
fact that W(z) is a sum of separable terms, we can show that

0;~=A;OA, (4.3) a set of channel labels, and
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T' (q.q "z)=r' (q.q "z)+ X F,B-(q'z)~, „,
/fly rll

TABLE I. States and particle channels of the pion-nucleon sys-
tem.

(J)XI'~„~„,(z) 8, „, F, „,(q;z). (4.15) State Particle channels

The first term on the right hand side of (4.15) is the solution
of the coupled integral equations

P oo

t„,(q, q';z) = V'„,(q, q')+ g V'„„(q,q")

S11

S31

P13 P31

D13

7rN, yN (lqN=O)
~N, ~b (l.,=2)
N, 7rN, mk (I g=1)
vrN

A, mN

7rN, 7' (I g=0.2)

X

(4.16)

while the second term can be obtained by quadratures in-

volving the the solution of (4.16). We have

of the baryon; therefore the index s in (4.14) is redundant.
Also, since for each state in Table I there is a unique value of
l for each meson-baryon channel, we can drop the relative
orbital angular momentum indices. In each state we assume
separable meson-baryon potentials of the form

V &''(q)+ +
~

r' (q q'z)
I

C

X 2 V, z(q)~, s (q')t:z —IV, , (q')]

(J = &a'') (4 17)

V ' ~', ~, (q, q')= V„ (q, q') =h, (q)k„ h(q'), (5.l)

where in all states X2; 2, c =1 labels the mN channel, while
c =2 labels the second meson-baryon channel in the S», S»,
P», and D, 3 states. In (5.1) k„=~1, and the form factors
are assumed to be

and

rU~(z) =[(z-m', ,)a„,-r„,'&,', (z)]-',

where the self-energy matrix Xt'~(z) is given by

lt 2d fl

(4.18)

h.(q) = C.(q~P.)'~l+(q~-, )']'"«1+(q~O,)']", (5.»

where it turns out that the factor [I+(qln, ) ]" is only nec-
essary in the S» state. We also have two vertex functions,
corresponding to the vrNN and ~NA vertices. They are as-
sumed to be

XF, s (q";z) (s~=s~ =j). (4.19)

V~N ~(q) = CN~(ql pNa)I[1+ (ql pNs) ] N~, B= N, A.
(5.3)

The dimensionality of these matrices is equal to the number
of baryons with spin j.

V. NUMERICAL RESULTS

In calculating the pion-nucleon elastic scattering ampli-
tudes we deal with states of well defined total angular mo-
mentum j, isospin i, and parity, labeled in the usual way, i.e.,

X2; 2~, where X=S,P,D, . . . , corresponding to l ~
=0,1,2, . . . . Since the pion is a pseudoscalar particle the
parity is ( —I)'+'~". The states that we will include are
shown in Table I, as well as the particle channels that are
coupled in each state. The quantities in parentheses are the
relative orbital angular momenta in the meson-baryon chan-
nel other than the pion-nucleon channel. We note that in the

D&3 channel there are actually two possible relative orbital
angular momenta. We will retain only the l„&=0 channel.
We also note that if we had included a ~A channel in the S»
state it would have l &=2; therefore there is some justifica-
tion in ignoring it since it is kinematically suppressed.

Since both the vr and y are pseudoscalar particles the total
spin s of the meson-baryon states is the same as s~, the spin

mN ION ~NN (mN) = o.2 2 (1/2) 2 (5.4)

For our fit it turns out that mo&=948.07 MeV, so the differ-
ence between the bare and physical mass is only 0.97%.As a
result of (5.4), the AN elastic scattering amplitude in the P»

The parameters where determined by a least squares fit to
the SAID-SP95 analysis of the pion-nucleon scattering data
[22]. The resulting parameters are given in Table II, while
the phase shifts and inelasticities are shown in Figs. 1—11.
The masses of the particles were taken to be m =138.03
MeV, m~=93892 MeV, m&=m +mz, and m„=5563
MeV. The mass of the 5, which differs from the actual mass
of 1232 MeV, was chosen so as to put the inelastic threshold
at the correct energy in the S», P», and D && channels; while
the rg mass was taken as an adjustable parameter.

In fitting the P» channel the nucleon channel is included
(see Table I), so the second term on the right hand side of
(4.15) makes a contribution with B"=B"'=N In this case.
the self-energy matrix (4.18) is a single function, and the
bare nucleon mass can be eliminated by requiring that



POINCARE INVARIANT COUPLED CHANNEL MODEL FOR THE 2881

TABLE II. Separable potential and vertex function parameters. See Eqs. (5.1)—(5.3).

State C( n, (fm ') P, (fm ') C2 u2(fm ') Pp(fm ') kli X22 KI K2 CNB pNB(fm ) KNB

S3i

2.710
124.6

2.872
31.04
86.08

0.4321
4.414
4.682

11.17
3.072
5.743

17.12
2.930

53.12
0.4081

2.375
9.004

11.93

33.87
7.338

63.21 1.0
1.0
1.0

1.0

—1.0 —1.0
1.0 —1.0

1 1

1 2
2 3 1140
2
2

233.9

1.922

2.566
44.99 3.754 348.6 0.8868 1.076 —1.0 1.0 2 2

channel has a pole when W ~(q) =m~. With the normaliza-
tion determined by (2.27c), (3.8), and (3.10), it turns out that

T w, w[q. q'~ ~(q)l
w~~(q) —&mN

1277m g
2 2

M' ~(q) ™~
(P» channel), (5.5)

where g z~ is the pion-nucleon coupling constant. In fitting
the P» channel the parameters were constrained so that
g»/4m=13. 5, which is a reasonable value for the coupling
constant.

As Table II shows the separable potential (5.1) was not
included in the P33 channel; only the B=A term in (4.8)
contributed in this channel. In carrying out the fit, the param-
eters CNa and PNa in (5.3) were varied; as well as the bare 6
mass, which turned out to be 1291 MeV. In the P33 channel,
as in the P» channel, the self-energy matrix (4.18) is a single
function. For our fit the real part of this function vanishes at
W ~=1232 MeV, which can be interpreted as the physical
mass; so the difference between the bare and physical masses
is 4.8%.A nice feature of the model considered here is that it
is relatively straightforward to analytically continue the P33
elastic amplitude through the elastic right hand cut, which
begins at W„~=m + mN, onto the second Riemann sheet.
By so doing it has been found that the P33 elastic amplitude
has a pole on the unphysical sheet at W ~=1208—i52
MeV.

VI. DISCUSSIQN

The simplicity of the momentum space integral equations
given in Sec. IV, as well as the quality of the fits obtained
with the separable potential model, indicate that the mass
operator defined by (3.3), (3.4), (3.8), and (3.12) provides a
reasonable framework for treating a coupled channel system
such as the pion-nucleon system. This mass operator has
been developed in the context of the front form of relativistic
quantum mechanics. In specifying the internal part of the
mass operator it is not necessary to make a commitment to a
particular form of relativistic quantum mechanics, where by
internal we are referring, e.g. , to the factor V(a, , n, , ) in

(3.5). However, in establishing the exact Poincare invariance
of the model it is necessary to specify the relation between
the rest frames, in which the internal part of the mass opera-
tor is specified, and an arbitrary frame. This relation involves
specifying, in addition to the mass, three external variables
which make it possible to determine the total four-
momentum of the system. In the front form the external vari-
ables are taken to be the first three front form components
[see (2.7)] of the four-momentum, i.e., p=(p, p', p ). In the
instant form the external variables are the total three-
momentum p, while in the point form they are the velocities
p/m. The external variables are kinematic and conserved in
the respective forms of relativistic quantum mechanics. This
is reflected, e.g. , in the b' function in (3.5). The choice of a
form also entails a choice of the Lorentz boost that is used to
relate the rest frame quantities to an arbitrary frame. As we
have seen the front form employs the front form boost de-
fined by (2.6). The instant and point forms use the canonical
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boost (2.17). Thus, even though it is possible to assume the
same dependence on the relative momentum variables, i.e.,

the q's, in all of the forms, we see that according to (2.12a)
and (2.12b) the relation of the q's to the single particle mo-
mentum is not the same in every form. By looking at (2.24)
we see that the spin operator +is also form dependent, since
in the instant and point forms the front form boost lf is
replaced by the canonical boost l, . The spin operators asso-
ciated with the various forms are related by Melosh rotations
[13].As pointed out in Sec. I, these differences come into
play when the two particle system is probed or part of a
larger system.

As also pointed out in Sec. I, even though we have devel-
oped a Poincare invariant coupled channel model in the con-
text of the pion-nucleon system, the method used can obvi-
ously be applied in a broader context. The ~N model itself
can be extended to incorporate other mesons, e.g. , p(770),
co(783), and K. The method can also be applied directly to
the NN system, which makes it possible to construct Poin-
care invariant coupled channel models involving the NN,
NA, and AA channels.

A natural question arises in regard to the type of model
formulated here. Given that the most general interaction con-
sistent with Poincare invariance and the assumption of a free
spin operator is defined by equations such as (3.12a)—
(3.12c), how are the remaining arbitrary functions to be de-
termined? Of course there are other invariances (parity, isos-
pin, strangeness, etc.) that must be taken into account;
however even after this is done there is still arbitrariness.
There seem to be only two alternatives; either be content
with purely phenomenological forms, as was done here, or
take guidance from field theory.

The manifestly covariant model of the pion-nucleon sys-
tem developed by Gross and Surya [5] takes much of its
input from Lorentz invariant field theory vertices. Other au-
thors have also used quantum field theory as a starting point
for models of the pion-nucleon system [23—25j. In general,
in obtaining interactions from quantum field theory for use in
instant or front form models it is necessary to use truncations
that destroy the exact Poincare invariance of the field theory.
The author has developed methods that correct for this
[16,17,26,27], which makes it possible to construct exactly
Poincare invariant models that take their input from quantum
field theory. With these methods the relation between the
basis states which are used to formulate the exactly Poincare
invariant model and the elementary direct product states
plays an essential role. For the front form, this relation is
given, e.g. , by (2.21), (2.19), and (2.10). The elementary di-
rect product states (2.10) correspond to the Fock space basis
states of the quantum field that provides the underlying
model for the interactions. These techniques have already led
to a reasonable front form, one boson exchange model of the
nucleon-nucleon system, which only includes the NN chan-
nel [17], as well as to a simple instant form model of the
pion-nucleon system [27]. These models are being extended
to include coupling to other particle channels. The specific
model developed here is also being extended to include a
photon-nucleon channel, which will make it possible to con-
struct a Poinca'e invariant model of pion photoproduction.

This work was supported in part by National Science
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