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Path integral approach to no-Coriolis approximation in heavy-ion collisions
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We use the two time in6uence functional method of the path integral approach in order to reduce
the dimension of the coupled-channels equations for heavy-ion reactions based on the no-Coriolis
approximation. Our method is superior to other methods in that it easily enables us to study the
cases where the initial spin of the colliding particle is not zero. It can also be easily applied to
the cases where the internal degrees of freedom are not necessarily collective coordinates. We also
clarify the underlying assumptions in our approach.

PACS number(s): 25.70.3j, 74.50.+r, 21.10.Re

It is by now well established that heavy-ion fusion re-
actions at energies below the Coulomb barrier are not
such simple processes that can be described in terms
of penetration through a one-d. imensional potential bar-
rier, but rather complicated reactions where internal de-
grees of freedom of colliding nuclei play an essential role
[1]. Therefore they are typical examples of macroscopic
quantum tunneling, which has been a very popular sub-
ject in the past decade in many subBelds of physics and
chemistry [2—4]. One of the major interests in macro-
scopic quantum tunneling is to assess the effects of the
environment on the tunneling rate of a macroscopic d.e-
gree of &eedom. A standard way to tackle this prob-
lem in nuclear physics is to numerically solve the as-
sociated coupled-channels equations. However, the full
coupled. -channels calculations quickly become very intri-
cate if many physical channels are included. This makes
an intuitive understanding of the numerical results quite
hard. For this reason, an approximation named the no-
Coriolis approximation, which is sometimes called the ro-
tating frame approximation, has been introduced [5—11].
It is a sudden tunneling approximation [12] concerning
the centrifugal energy and. it greatly red. uces the num-
ber of coupled channels to be solved. The no-Coriolis
approximation was erst introduced in the Beld of chem-
istry under the name centrifugal sudden approximation
[13—15]. Recently, it has also been applied to the problem
of electron-molecule scattering [16].

The no-Coriolis approximation has been derived by
several different methods. The authors in Refs. 5—8] used
properties of Racah coefficients, and Refs. [9,10 used the
Green's function method. Symmetry considerations us-
ing tidal spin have been used in Ref. [11].The aim of this
paper is to present a new derivation of the no-Coriolis
approximation using the path integral method [17]. This
approach had already been used in Ref. [18],but the an-
gular momentum coupling was not treated explicitly. A
salient point of our derivation is that it enables us to
easily extend to the cases where the initial spin of the
colliding particles is not zero, and where there is a spin-
orbit force in the scattering process. It can also be easily
applied to the cases where the internal degrees of &ee-

where p, is the reduced mass. U(R), Ho((), and V(R, ()
are the bare potential energy for the translational motion,
the internal Hamiltonian, and the coupling Hamiltonian,
respectively. In general the internal degree of freedom
( has a finite spin. We therefore expand the coupling
Hamiltonian in multipoles

A)0 p, =—A

(2)

Here Yq(O) are the spherical harmonics and T~(() are
spherical tensors constructed from the internal coordi-
nate. The sum is taken over all values of A, except for
A = 0 which is already included in U(B).

For a Bxed total angular momentum J and its z com-
ponent M, the expansion basis of the coupled-channels
equations are deBned as

(Q([(nLI) JM) = ) (Lml, Iml
~
JM)YI. , (0)

mi, ,mI

x (p„l, ((),

where I and I are the orbital and the internal angular
momenta, respectively. p I,(() are the wave functions
of the internal motion which obey

If we expand the total wave function with this basis as

dom are not collective coordinates, but the coordinates
of the constituent particles of the colliding system. It also
clarifies the und. erlying assumption of the approximation.

We consider the collision between two nuclei in the
presence of the coupling between the translational mo-
tion, i.e., the relative motion between the centers of mass
of the colliding nuclei, R = (R, O), and a nuclear intrin-
sic motion (. We assume the following Hamiltonian for
this system:

h2
H(R, () = ——V' + U(B) + Ho(() + V(R, (),2p
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uJ
4~(R, () = ) "~' (A(l(nLI) JM),

n, L,I

the coupled-channels equations for u~&1(R) read

h2 d2 L(L+ 1)h
dR2+ 2 R2 +U(R) —@+' I & LI(R)

+ ) V~LI;n'L'I, (R)uniL'I' (R) —0, (6)
n', I ',I'

with y~gl. ,g, i, (R) = (JM(nLI)lv(R, ()l(n'L'I') JM).
We have suppressed the index M in V„Li.„ir, I (R), »nce
they are independent of that quantum number. These
coupled-channels equations are solved with the boundary
conditions

u„~,(R) -+ ~ H~ (Rl b„„,bl„i„bl .I, .
J 1 (-)

nLI
R~+"""H'+'(R) (R ~ ~)

nLI

where H&+ (R) and Hl (R) are the outgoing and the
incoming Coulomb waves, respectively. Once the coef-

I'i, I, (&) = ). "' lT.' l l'
n, I,

where k„l = g(2p/h2)(E —e„i). The fusion cross sec-
tion for an unpolarized target is then given by

«-(&) = - &i.l, (E)
(k . 1)2 )- 2I, +1

JI

We now introduce the path integral representation
of the penetration probability for our coupled-channels
problem. Since heavy-ion fusion reactions are processes
where two nuclei approach close to each other, we shall
treat the radial component of the relative motion as the
macroscopic degree of freedom and its angular part and
the internal degrees of freedom as environmental degrees
of freedom. The barrier transmission probability is then
given by [17]

6cients in the asymptotic region T„LI are obtained, the
penetration probability through the Coulomb potential
barrier is given by

&r'„l, (E) = 1'
l

'
l

dT e~'~"l dT ea'~~ ( P2 ) o 0
Ry —+ —oo

x r R ~ V R ~ e~'~"~I'~" ~-'~" ~~@~ R ~, T;R ~, T, (10)

where P, and Py are the classical momenta at the initial
and the final positions R; and Ry, respectively. S,(R, T)
is the action for the translational motion along a path
R(t), and is given by

tal degrees of freedom along a given path R(t). The for-
mal solution of Eq. (13) can be written as

( z, 'n.'
u(R, t) = T exp dt' + Ho(()

0 (2pR t
St, (R, T) = dt

l

—pR(t) —U(R(t)) l
.

p 2 +V(R(t'), 0, () (14)
The effects of the environmental degrees of &eedom are
included in the two time inBuence functional pM, which
is defined by

pM(R(t), T;R(t), T) = ((n;L;I;)JM[u (R(t), T)
xu(R(t), T)l(n;I, I;)JM), (12)

with

~ 0 „L2h2
ih, —u(R, t) =,+ H, (() + V(R, 0, () u(R, t).

Ot 2pR2

u(R, t) is the time evolution operator of the environmen-

where T is the time ordering operator. Hereafter the
time ordering is supposed to be properly treated in all
solutions of u, and we shall not write it explicitly.

We now assume that the angular part of the transla-
tional motion is much slower than the radial motion, and
replace the operator L in Eq. (14) by some c number
A(A + 1) [12]. This is a kind of sudden approximation
and is exact if there is no angular momentum transfer
from the relative motion between heavy ions to nuclear
intrinsic motion. A can be any c number, though one
often takes A to be the total angular momentum J. If
we denote the coordinate representation of 0 by 0' [l2],
we get



288 HAQINO, TAKIGAWA, BALANTEKIN, AND BENNETT

(0'~u(R, T)~(n;L;I;)JM) = exp dt'
I R I 2 + Hp(() + V(R(t'), 0', () ~

, fA(A+1)h2
() )t 2pR t

x ) (L;mr I,mr(JM)Yr„, (0 )[y;r;, ).
mL, )mI

We next make a rotational coordinate transformation in the whole space to the coordinate system where the z
axis is along the direction of the radial vector R' = (R', 0') = (R', 8', P') [9]. We call the new coordinate system the
rotating kame in order to distinguish it &om the space 6xed kame. The operator for this coordinate transformation
is given by

~(yI 8I 0) i3 x(B')/)I

In Eq. (16) ~ is the rotation vector which specifies the direction and the magnitude of the rotation. Note that the
third Euler angle in this rotating kame is zero. Since the time evolution operator u(R, t) [see Eq. (14)] does not
change by rotation in the no-Coriolis approximation, we obtain

(0'~u(R, T)~(n, L;I;)JM) = (0'~'R (P', 8', 0)R(P', 8', 0)u(R, T)'R (P', 8', 0)'R(P', 8', 0) ~((n;L;I;)JM)
= ) 6(R(t), T)(A' = 0~(n, L;I;)JK)D (P', 8', 0)

K

= ) .u(R(t) T)(L'OI'K~ JK)g(2L'+ I)/4~D~M(&' 8' 0) IV -;fr,frc)

(17)

(18)

(19)

where DrcM is Wigner s D function and the time evolution operator in the rotating kame u(R, T) is defined as

u (R, T) = exp dt' ~, — + Hp(() + V(R(t'), 0 = 0, () ~

, t('A(A+ l)h
p ( 2pR

p dt', , + H (() + ) g(» + 1)/4 f~(R(t'))Tap((), (A(A+ l)h'
2pR tI 2

A&O

In order to obtain Eq. (19) we used

X(y', 8', 0)[n') = in' = o)

and

(2o)

(22)

(0' = 0
i Yr,f, ) =

The two time influence functional then becomes

2L;+1
4 mL, O- (23)

pet(R(t), T;R(t), T) = f etntt'dtt dd'((n;I;I', )IM(nt(R(t), T)~It')(It ~n(R(t)T)~(n, L;I)IM, )

= ). 2
J'

1
l(L'OI'Kl JK) I'(~-.r, rc lu'(R(t), T)u(R(t), T) I V -,r, rc).

2I;+ 1

(24)

(25)

In obtaining Eq. (25) kom Eq. (24) we used the orthogonality of the D function

f sin8d8dPD&, ~($, 8, 0)D&r(tr($, 8t0) = hz K .2J+ 1

The time evolution operator in the rotating kame u(R(t), t) obeys

(26)

0
ih —u(R, t) =

Ot

A(A+ 1)A2
+ Hp (() + ) g(2A + 1)/47r f/ (R)Tgp (() u(R, t) .

2pR2
A)0

(27)

Equation (27) shows that the z component of the internal spin mr is conserved in the no-Coriolis approximation. Since
the wave functions with different values of ml never couple to each other during the reaction process, the dimension
of the coupled-channels equations is drastically reduced. The efFective Hamiltonian in Eq. (27) has the same form as
that in the system where the internal spin is zero. The effects of the 6nite intrinsic spin enters only through a scaling
factor g(2A + 1)/4m of the coupling strength.
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From Eqs. (9), (10), and (25), the fusion cross section in the no-Coriolis approximation finally becomes

—(i/h) E'T

Rf —+ —oo

x 17[A(t)] 17[A(t)] &*~")['{" ' '{" 'j(p„, , [-'(B(t),T) (B(t),T)[p.. . ). (28)

If the initial value of the internal spin is zero, the ini-
tial angular momentum for the relative motion I, equals
J, and the summation in Eq. (28) becomes simple. The
fusion cross section in that case can be calculated by
treating as though the relative motion couples to a spin-
less mode of excitation except for the scaling factor
g(2A+ 1)/4' mentioned above. If the initial spin of
the internal motion is finite, the inHuence functional is
obtained by first calculating it for a fixed K-quantum
number, and then by taking sum with the weight follow-

ing Clebsch-Gordan coeKcients.
Before closing the paper, we wish to comment on

the applicability of the no-Coriolis approximation. It is
known that the no-Coriolis approximation cannot be ap-
plied when a long-range force, such as the Coulomb in-
teraction, is involved [16,19—21]. Heavy-ion fusion reac-
tions are governed by the behavior of the wave functions
in the small region near the Coulomb barrier. The no-
Coriolis approximation is, therefore, considered to be a
good approximation. On the other hand, if one is inter-
ested in the angular distributions of elastic and inelas-
tic scattering, the no-Coriolis approximation fails to give
the correct scattering phase shifts. In order to cure the
problems in such cases, a prescription of renormalizing
the coupling strength has been proposed by several au-
thors [19—21]. The way of renormalization is, however,
not unique and this problem is still unsettled.

In summary, we used the path integral method to refor-
mulate the coupled-channels problems in the no-Coriolis
approximation. We first ignored the change of the cen-

I

trifugal potential due to an intrinsic excitation. We then
introduced a rotational coordinate transformation into
the coordinate system where the z axis is along the di-
rection of the radial vector of the relative motion. We
have thus shown that the fusion cross section can be cal-
culated by treating nuclear intrinsic motions as though
they do not carry a finite angular momentum. The finite
multipolarity of nuclear intrinsic excitation appears as a
scaling factor in the coupling strength. Though these re-
sults have already been obtained by diferent methods,
the advantages of our path integral formulation are that
we can easily apply the same technique to cases where
the initial internal spin is not zero, and also where the
internal angular momentum is not the spin but the or-
bital angular momentum. The efFect of transfer reactions
on heavy-ion fusion reactions is one such problem [22].
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