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Composite nucleons in scalar and vector mean fields
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We emphasize that the composite structure of the nucleon may play quite an important role in nuclear

physics. It is shown that the momentum-dependent repulsive force of second order in the scalar field, which

plays an important role in Dirac phenomenology, can be found in the quark-meson coupling (QMC) model, and

that the properties of nuclear matter are well described through the quark-scalar density in a nucleon and a
self-consistency condition for the scalar field. The difference between theories of pointlike nucleons and

composite ones may be seen in the change of the co-meson mass in nuclear matter if the composite nature of
the nucleon suppresses contributions from nucleon-antinucleon pair creation.

PACS number(s): 12.39.Ba, 21.65.+f, 24.85.+p

It is well known that relativistic theories of nucleons in-
teracting with mesons are very powerful in the treatment of a
wide range of nuclear phenomena (Dirac phenomenology),
most notably the single particle energy levels, nuclear charge
densities, and elastic proton-nucleus scattering observables at
intermediate energies [1—3]. The simplest and earliest ex-
ample is the o.-to model of Walecka [4] [sometimes called
quantum hadrodynamics (QHD) [1]], which consists of
structureless nucleons interacting with each other through
the exchange of the scalar (o.) and the vector (to) mesons.

These typically involve large scalar (5) and vector (V)
potentials of opposite sign, which provide a number of inter-
esting effects —e.g. , a strong momentum dependence of the
optical potential and an enhanced spin-orbit force [1—3,5].
One approach to understanding the physics content of Dirac
phenomenology is to emphasize the role of virtual nucleon-

antinucleon (NN) pair creation. A simple estimate, up to
second order in the scalar field, shows a potential which
contains the effect of couplings to virtual NN-pair states [2]:

cr p (5-V) op p 35,2M~ 2M~ 2M' 2M~

if V= —S. This repulsive, strongly momentum-dependent
term plays an important role in producing nuclear saturation
and in enhancing the spin-orbit coupling in Dirac phenom-
enology. From this point of view, the excitation of virtual

NN pairs (i.e., Z graphs), is a vital ingredient in the success
of this approach.

However, some people have criticized the idea that NN
creation should play such an important role. Brodsky [6] has
argued that the pair creation should be suppressed by form
factors for composite objects. Kiritsis and Seki [7] have
shown that baryon loops are suppressed in the 1/N, expan-
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sion of QCD. Using some tractable models, Cohen [8] has
also emphasized that the composite nature of the nucleon
suppresses the contribution of NN pairs compared with what
is expected in the naive Dirac phenomenology. Furthermore,
Prakash et al. [9]have shown that the composite structure of
the nucleon ought to largely soften the two-loop contribu-
tions [10] in QHD. Then, is Dirac phenomenology in doubt.

Recently Wallace, Gross, and Tjon [11]have pointed out
that scalar and vector interactions, which couple to a com-
posite spin-1/2 system, obey a low-energy theorem which
guarantees the same repulsive second-order interaction as
given in Eq. (1). Later Birse [12] discussed it in a more
general fashion, and showed, without referring to any
nucleon Z graph, that not only can there be a momentum-
dependent, repulsive force [as in Eq. (1)), but one may also
find other types of second-order interaction which depend on
the nucleon structure through various polarizabilities. It is
known that in the case of the soft-photon limit of Compton
scattering [13] and low-energy theorems for rr Ninterac--
tions [14] quark excitations and quark Z graphs conspire to
produce the same results as nucleon Z graphs. As Cohen has
noticed [8], Dirac phenomenology depends only on the pres-
ence of strong scalar and vector potentials in the effective
one-body optical potential, and there is no logical need for
such forms to be associated with the excitation of NN pairs.

The momentum-dependent, repulsive interaction can also
be seen in the quark-meson coupling (QMC) model [15,16].
In this model the properties of nuclear matter are determined
by the self-consistent coupling of scalar and vector mean
fields to the quarks, rather than the nucleons. In a simple
model, where nuclear matter was considered as a collection
of static, nonoverlapping bags, it was shown that a satisfac-
tory description of the bulk properties of nuclear matter
could be obtained. Furthermore, the model seems to provide
a semiquantitative explanation of the Okamoto-Nolen-
Schiffer anomaly [17] when quark mass differences are in-
cluded [18], as well as the nuclear European Muon Collabo-
ration (EMC) effect [19].

In the QMC model the energy of a nucleon with momen-
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turn p interacting with both a. and ~ mean fields in the rest
frame of uniform nuclear matter is given by
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E(p) =g.~+ 4p'+ M~(o)'. (2) 0.4

where o. and co are the mean-field values, Mz is the effective
nucleon mass, which is a function of 6., and the vector field
couples to the conserved baryon current with strength g„.At
low nuclear density M~ can be expanded in terms of the
scalar field as

0.35

0.3

Mz(o)=M&+ o+zn, , o + (3) 0.2

~here MN is the free nucleon mass and o., is the second
derivative of M~ with respect to o.. We can easily see that
the second term on the right-hand side (RHS) of Eq. (3) is a
response function to the external scalar field, and that it is
given by the scalar density of a quark in the nucleon bag:

0.15
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Here g is the coupling constant of the o. field to the
nucleon. [If a correction for spurious center of mass motion
in the bag is taken into account [20], the RHS of Eq. (4) is
modified accordingly [16].] Therefore, since

M~= Miv —g C~(0) o + —,
' n, o

we find the nucleon energy up to O(o. ) as

Civ(0) Miv a,Miv
E(p)=g„ni+e(p)—g
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(7)

where y is the spin-isospin degeneracy factor, I is the mass
of the o., and pF is the Fermi momentum for the nucleon. If
we set CN=1, the above SCC becomes identical to that of
QHD [16]. Therefore it is quite important to examine this
scalar density in order to understand the difference between
theories of pointlike nucleons and composite ones. In Fig. 1

CA is shown as a function of the nuclear density, pR. (The

where e(p) = gp +M~ . If we replace g C~(0)o. by the
scalar potential 5, the last term in Eq. (6) is indeed the
momentum-dependent repulsive force pointed out by Wal-
lace et al. [11]and Birse [12] [see Eq. (1)].One can see that
such a term appears in any relativistic treatment and that it
arises from the modification of the nucleon mass due to the
scalar field.

In our model the effect of the internal, quark structure of
a nucleon can be completely absorbed into the scalar density
C~(a.). The self-consistency condition (SCC) for the o field
is then given by

FIG. 1. Quark-scalar density for various bag radii (Ro) as a
function of pz . The solid, dotted and dashed curves show Cz for
Ro = 0.6, 0.8, and 1.0 fm, respectively. The quark mass is chosen to
be 5 MeV.

normal nuclear density is denoted by po, and the coupling
constants have been chosen to reproduce the nuclear satura-
tion properties [16].)

Clearly the scalar density Cz(rr) is much less than unity,
and depends strongly on the nuclear density —as pz goes
higher Cz becomes smaller. This is because the small com-
ponent of the quark wave function responds rapidly to the
scalar field. As the scalar density itself is the source of the
o. field this provides a suppression of the o. field at high
density, and hence a new mechanism for the saturation of
nuclear matter where the quark structure plays a vital role.
Of particular interest is the fact that the internal structure of
the nucleon results in a lower value of the incompressibility
of nuclear matter than that obtained in approaches based on
pointlike nucleons —e.g. , as in QHD [1].In fact, our pre-
diction (- 220 MeV) [16] is in agreement with the experi-
mental value once the binding energy and saturation density
are fixed. The effect of the quark structure of the nucleon on
the spin-orbit force in finite nuclei has been discussed in Ref.
[21].

One of the most topical questions which can be addressed
within this model is the change of hadron properties in mat-
ter. In particular, variations in hadron masses have attracted
wide interest [22—27]. It is therefore very interesting to com-
pare the prediction of the co-meson mass in matter by QHD
[25,26] with that by the QMC model [27]. In the latter, if we
suppose that the ~ meson is also described by the MIT bag
model in the scalar mean field (i.e., the effect of the compos-
iteness of the ni meson is taken into account as well), the
effective cu-meson mass m"„atlow density is given (as in the
nucleon case) by

m"„=m„—'-, g C„(0)o.,
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where I„is the free mass of ru and C (o) is the quark-
scalar density in the tu meson. Equation (8) means that the
co-meson mass in matter decreases as pz grows:
(m"„/m )= 1 —0.09(pit/po) [27]. On the other hand, in

QHD the co-meson mass at low density is given by [26]

1Q, gmA
m m„+„2m 6am (9)

where 0 =g„pz/Mz is the classical plasma frequency. The
second term on the RHS of Eq. (9) comes from the density-
dependent part of the co-meson propagator in random-phase
approximation, which, as reported by Chin [28], leads to an
increase in the mass. The third term, which gives a strong,
attractive contribution, is due to vacuum polarization. Fi-
nally, the sum of both of these effects gives a decrease of the
mass. In QHD the contribution of vacuum polarization, i.e.,

NN pair creation, is essential [26] to reproduce the mass
reduction predicted by the QCD sum rules [24,29].

We emphasize that the origins of the mass reduction in
QHD and the QMC model are completely different. As no-
ticed by some people [6—8], if in a modified version of QHD
one included the effect of nucleon substructure in suppress-
ing the contribution of vacuum polarization the co mass
would be mainly given by the first and second terms of Eq.
(9) and would increase in matter. In fact, it is proven that
vertex corrections are quite important in QHD and that such
corrections dramatically reduce the vacuum contributions in

comparison with those calculated with bare vertices in two-
loop calculations [9,10]. This means that in the two-loop
case the nucleons are dressed with meson clouds or, more
generally, they have structure, and that this compositeness
suppresses vacuum contributions from NN loops.

In conclusion, we have argued that the composite struc-
ture of the nucleon may play quite an important role in
nuclear physics. The momentum-dependent repulsive force
of second order in the scalar field, which plays an important
role in Dirac phenomenology, can be found in any relativistic
model of composite nucleons involving scalar and vector
mean fields. In the QMC model the properties of nuclear
matter can be well reproduced through the quark-scalar den-
sity in the nucleon and the self-consistency condition for the
scalar field. We have pointed out that theories of pointlike
nucleons may be distinguishable from those involving the
internal structure of the nucleon (and other hadrons) through
the behavior of the ~-meson mass in matter. In particular, if
NN pair creation were strongly suppressed by the substruc-
ture of the nucleon itself, one might even find an increase of
the co-meson mass. This is quite the opposite of the behavior
found in models of composite nucleons, such as the QMC
model. Clearly it would be extremely valuable to have some
experimental guidance on this matter.
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