
PHYSICAL REVIEW C VOLUME 52, NUMBER 5

Nucleon structure in a relativistic quark model

NOVEMBER 1995

Adam Szczepaniak, Chueng-Ryong Ji, and Stephen R. Cotanch
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695

(Received 3 April 1995 )

We study nucleon structure in the relativistic quark model based on the Bakamjian-Thomas construction of
the Poincare generators for an arbitrary quantization surface. The one body, single particle approximation to the

current operators is used to calculate electromagnetic matrix elements. The Lorentz symmetry breaking result-

ing from such an approximation is fully investigated. The results for the light front and instant quantization

limits are detailed. A suggestion for the resolution of the quark model inability to simultaneously describe the

positive neutron electric form factor, Ge(Q ) at small Q and the negative slope of the neutron to proton
structure function ratio at large x is presented.

PACS number(s): 14.20.Dh, 12.39.Pn, 13.40.Gp

I. INTRODUCTION

The prospects for new precision data from CEBAF re-
cently have led to an increased activity in quark model phe-
nomenology [1]. Even though current interest focuses on
strangeness, high mass baryonic resonances, and exotic state
electroproduction [2], there are still many unresolved issues
in the structure of the low-lying states. The simplest systems,
~, p, N, and 6 still present many challenges to a quark
model analysis. In particular, the following topics remain
open problems: treating nonvalence degrees of freedom, am-

biguities in the quark-quark potential responsible for the cg
binding; and reconciling the simple spin-spin interaction as
the source of ~-p mass splitting with that of chiral symmetry
breaking. The complexity of this is compounded further
when attempts are made to develop a consistent relativistic
quark approach. In this paper we concentrate on this last
issue and present a consistent relativistic description of the
the nucleon as a three-valence-quark bound state. Specifi-
cally we shall construct the nucleon state as an element of
the unitary representation of the Poincare group. The phe-
nomenological description of the nucleon as a few-body
bound state can be extended to fulfill the requirements of
Poincare symmetry by an explicit construction of interaction-
dependent generators of the group. The problem of formulat-
ing relativistic dynamics for a fixed number of particles
originated with the pioneering work of Dirac [3] and has
been extensively studied over the years on both classical and
quantum levels. To find a representation of the Poincare
group the quantization surface is first defined and the gen-
erators are split into an interaction-independent subgroup of
the symmetries of the quantization surface and interaction-
dependent Hamiltonians that describe the evolution of the
system in time defined as the direction perpendicular to the
quantization surface. For a sensible phenomenology a key
requirement is the existence of a set of relative and center of
mass variables such that the generators of the symmetry
group can be written in a macroscopic form representing the
motion of a system as whole with the bound state mass de-
termined by an operator that depends only on the relative
variables. For example, if the microscopic energy operator
expressed in the individual quark momenta p„, position
p„and spin s variables is given by

P =g gm, +p, + V(p, , p, , s),

with V representing the interquark potential, the macroscopic
Hamiltonian should have the form of

P = vP +M (k, , x, , s,'), (1.2)

with P standing for the total bound state momentum and M
being the mass operator depending on the relative variables,
but not on P or the conjugated operator which defines the
position of the center of mass of the bound state. As dis-
cussed in Ref. [4] for given V there is no unique way in
which the relative variables can be defined in terms of the
individual variables so that the energy operator and all re-
maining generators of the Poincare group take this macro-
scopic form. Furthermore the most general relation may de-
pend in the interaction itself. A particular set of relative and
center of mass variables that bring the generators to the mac-
roscopic form has been introduced by Bakamjian and Tho-
mas in Ref. [5] and Gartenhaus and Schwartz in Ref. [6] and
was applied extensively by Osborn [7] and Close and Copely
[7] to derive the low energy sum rules. In this paper we shall
use such a construction, often referred to as the Bakamjian-
Thomas (BT) construction, to derive the Poincare invariant
formulation of the Isgur-Karl quark model for baryons [8,9].
In the last few years many approaches to the nucleon struc-
ture in relativistic quark models have been studied [10—13].
Most of them are, however, based on writing an ansatz for
the wave function such that in the nonrelativistic limit it is an
eigenstate of a nonrelativistic quark model Hamiltonian.
Other models merely try to fit the wave function to few mea-
sured form factors. These approaches do not allow for a
deeper understanding of the relativistic quark dynamics. In
particular there has been a long-standing problem related to
the possibility of a simultaneous description of the negative
neutron charge radius and the negative slope of the neutron
to proton structure function ratio as the Bjorken scaling vari-
able x —+1 [14].As we shall demonstrate these two phenom-
ena have a common dynamical origin and can be understood
without any artificial prescriptions for generating relativistic
nucleon wave functions.
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The paper is organized into five sections. In the next sec-
tion we discuss the Bakamjian-Thomas construction in the
context of the constituent quark model and construct the
nucleon wave function with proper transformation properties
under the Poincare group. We also address ambiguities in the
BT construction arising from possible different quark cou-
pling schemes, cluster separability and relations between the
relativistic wave functions in the BT construction and those
often used in other models. In Sec. III we examine the limi-
tations of the single-particle, free current approximation and
systematically study the effects from Lorentz symmetry
breaking due to this approximation. Generalizing the BT
construction so that the quantization surface and/or frame
dependence can be studied, we connect the canonical, instant
relativistic wave function quantized on the three-dimensional
spacelike surface to the light cone wave function correspond-
ing to a quantization on a light front. We show that there are
domains of validity for the single-particle current approxima-
tion in both instant and light front quantization. The analysis
of the deep inelastic structure functions is also given in Sec.
III. The main findings are summarized in Sec. IV with many
mathematical details relocated to the Appendix.

II. RELATIVISTIC NUCLEON WAVE FUNCTION

A. Bakamjian- Thomas construction

As discussed in Sec. I, for a system of N interacting con-
stituents Poincare algebra cannot be transformed uniquely
from the microscopic multiparticle to a macroscopic single-
particle representation corresponding to a group of transfor-
mations of the entire N particle system. A particular example

P'=Z'=g Z„=g gm.'+p.',

J=g (r„xp,+s, ),

1 s, XpK= g —(r, ,F.,)— (2.1)

Here P and P are the total energy and momentum of the N
particle system, respectively, J are the generators of angular
momentum, and K are the generators of Lorentz boosts. De-
fining relative position x, momentum k, and spin s,'

through the Gartenhaus-Schwartz transformation [6,7] of the
corresponding individual particle variables

of such a transformation is the Bakamjian-Thomas (BT)
[5,7] construction. This has an advantage of directly connect-
ing with nonrelativistic dynamics and is therefore well suited
for formulating a relativistic quark model while preserving
many features of the nonrelativistic approach. The BT con-
struction proceeds as follows. First consider a system of N
noninteracting constituents with masses I, a = 1,. . . , ¹ The
Poincare algebra expressed in terms of the individual particle
variables, position r, , momentum p, and spin s, is given
by a set of operators

1 P 1 P
(k, ,x, , s„')= limexp in — K, o (p, ,r, , s, )exp in — K,

~~ oo

(2.2)

the algebra of Poincare generators expressed in terms of k„, x, and s,' has the desired single-particle form

P=P,

J=Rx P+ S, S=g (x.x k.+ s.'),

1 SXP
K= —(R, Q (2.3)

with

.~= gH —P =g co,(k, ) =g V'm, +k, (2.4)

being the invariant mass of the free N constituents. The center of mass position operator R= R(p, , r„,s, ) is given in Ref. [7].
The relative position and momentum variables are constrained by

g m, x=O, Q k, =O, (2.5)

and together with the spin operator, s and the center of mass variables satisfy the canonical commutation relations
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mb ~

[x...k~b] =
E B,b — 8~, [s,', , sjb] = i ejusg, B,b, [R;,P~] =

E BJ,sa g a (2.6)

with all other commutators vanishing. In particular, for the momentum and spin operators the transformation defined in Eq.
(2.2) gives

(2.7)

and

[s,'] =g D' (p, , k, ) ~[s,]),~ D'(p, ,k, )~

[s.]~~ = 2 D'(p" k.)~ [s.'] D'(p. k.) (2.8)

with F, , 8; co„and P given in Eqs. (2.1) and (2.4). For spin-1/2 constituents the Wigner rotations D in Eq. (2.8) are given
by

[(co, + m, ) ( 8'+ ~)+ P k„]6'), + i [a]), [P,k„]D'"(p. k.)k =D(P. k.)k.=
$2((o, +m, )(8'+~)(co,F+P k, +m,~)

[(&.+m. )(&+~)—P P.1~k.+ i[a]k [P P.]
$2(E.+ m. )(8'+ ~)(E.F—P p. + m.~) (2.9)

The expression for x, in terms of the individual variables can be found in Ref. [7].
Interactions are incorporated into the generators through the replacement of the free mass ~=~(k,) by an interaction

dependent operator

,.%(k,)~M =~(k, )+ V. (2.10)

The structure of the Poincare algebra is preserved, provided V is a function of the scalar products of the relative variables, i.e.,
[V,S]=0. The replacement of ~ with M in the single-particle representation of the Poincare algebra preserves the
interaction-free relation between the relative and individual particle variables. This is the essence of the BT construction.

Since physical states belong to a unitary representation of the Poincare group, in the BT construction with N= 3 interacting
constituent quarks the nucleon state can be represented as

dP
~P~, M~, k~, t~)= g [dk, ]( )3 ~ Pp M g t (P,k, , a, , n, ,c,)~P, k, , a„,n, , c,),

0' ll' Cl

(2.1 1)

where the invariant measure is given by

[dk, ]—=f(k, )[dk, ] =f(k, )8 g k, P[ d k, ,
) ~

(2.12)

with the phase space factor

(2(2') ) co, co2cu3
k, )= (2.13)

and ~ and cu, defined in Eq. (2.4). The 8 function represents the momentum constraint given by Eq. (2.5) and assures that
only two of the three relative momenta k are independent. The labels n and c stand for the quark Aavor and color quantum
numbers, respectively, while X~ and tz denote the spin and isospin component of the nucleon. The wave function P in Eq.
(2.11) can furthermore be written as

1

A„M„~„t„(Pk. a. ~. .c.) =(2~)'24&&+~'(P~ —P) &...,.,As„~ ~ (k. ,a. , ~.), (2.14)

with
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Z = v'M„'+P„'. (2.15)

PM is then an eigenstate of the mass operator
N

M/M 1, , (k, , o, , n, )= g [dk,']M(k, , o, , n, ;k„',o,', u,')PM 1, , (k,', o,', a,').
a

(2.16)

The kernel in Eq. (2.16) is the matrix element of M in the quark basis states expressed in the relative variables,

(2m) 28'8(P —P')M(k, , o„, u, ;k„', o,', n,')=(P,k, , o, , n, ~M(x, , k, , 7,)iP', k,', cr,', u„'),

where 7. are the Pauli matrices acting on the isospin u quark indices. Writing this kernel as

M(k, , o, , a, ;k,', o,', n„')=f ' (—k,')MNR(k„, o, , u„;k,', o,', n,')f ' (k„)

(2.17)

(2.18)

and substituting into Eq. (2.16) leads to the following equation for MNR:

MNR1/'rM 1„, (k, , o, , a, ) = g [dk,']NaMNR(k, , o, , na;k„', o.,', n,') 1/rM 1, , (k,', o,', u,'), (2.19)

with

0M'„1, t„=f'"(k.)—AM, 1,,tN(k n. u' ). (2.20)

The normalization of the wave function P follows from the covariant normalization of the states

(P'MN~NrNIPMN&NrN) =(2') 2ENB (P' P) B„N,gN—8', ,N, (2.21)

N —1 N

(P', k,', o,', n,
', ,c'iP, k a, oa, na, c,)=( 2') 2Ã8 (P' —P)f '(k, ) [ 8 (k,' —k, ) g 6 (2.22)

and is given by

f
[dk ]NR l 0M„~, (k.n. , u. ) I

' = I
~a ~a

(2.23)

which is identical to the normalization of a nonrelativistic nucleon function. In order to make further connection with the
nonrelativistic constituent quark model we take MNR to be identical to the quark model Hamiltonian in the center of mass
frame expressed in terms of the relative variables. The simple version of the Isgur-Karl Hamiltonian adopted here is given by
[8,9]

(2.24)
4

MNR=g co(ka)+ g U(x, —xb)+ g (x,—xb) + —(2vr) ' 3g Sa Sbb' (x, xb), —
a a&b „&b 6m a(b

with U representing the difference between the "true" and harmonic oscillator confining potential. The nucleon wave function,
corresponding to the J = 1/2+, I=1/2 ground state, is obtained through diagonalization of the above mass operator in the
harmonic oscillator basis including up to 2' states, co = P /m. In this basis the general solution for the nucleon wave function
can be written as

1 1
cos@[P+$++P g ][cos&go+ sin8$2]+ —sing[(@+/ + P ('+) $2 + (P g

—P g+) r/i2+], (2.25)

with @ and ( being the usual spin-1/2 and isospin-1/2 wave functions,

1 1
4'+ 4'+k (nl n2 n3) X(nl) r1 +2X(n2)X(n3) rX(~N) 4' — 4' —k (nl n2 n3) X(nl)122X(n2)X(o3)((~N)

N N 2
(2.26)
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y(o, ) being the Pauli spinors, and

(2.27)

The normalized, harmonic oscillator orbitals in Eq. (2.25) are given by

tj'fo= 2 exp —
6 2+ (k, —kb)

) i 6 .~b i

&2= 2 X (ka —kb)' —O' Wo.a(b

+2
P2+ =

2 I:2(kl —k2)' —(kl —ks)' —(k2 —k3)'f Wo6

+2
P2 32 — I:(ki —ks)' —(k2 k3) l 0o.

2
(2.28)

In the language of the SU(6) spin-liavor group the angles 8 and P specify the magnitudes of the mixture of the ground-state
symmetric 56 representation with the 56 2~ symmetric and 70 2~ mixed symmetric representations, respectively. In the
harmonic oscillator model, U= 0, co,~k, /2m„ the mixing angles, 8, P in Eq. (2.25) are determined by the matrix elements
of the spin-spin interaction whose strength in turn is fitted to the N-5 mass splitting. This leads to 8'-300 MeV and mixing
angles 6I- —20' and @-—14' [9]. More realistic, phenomenological interactions including Coulomb potential at short
distances, linear instead of harmonic oscillator (HO) confinement, and relativistic dispersion relation will change the HO
model parameters

C
I]. We thus allow for the wave function parameters P, m, , 6I, and @ to be varied around their harmonic

oscillator values P- m, -300 MeV.

B. Nucleon wave function in the individual particle basis

In order to calculate current matrix elements it is necessary to express the nucleon wave function in terms of the individual
particle basis states rather then in the basis labeled by the relative and c.m. variables. These transition matrix elements utilize
Eqs. (2.7) and (2.8) and are given by

(p. l .IP k. ~.)=... . (2~)'2&.(p.)~'(p. —p.(k. P))&~ .(k. ,p)
a

N —1

=(2m) 28'8 ~ P—g p, f '(k, ) 1g 83(k, —k, (p, ))Q, ~ (p, ), (2.29)

with

».. .=... . D(p. k.)~. .a
(2.30)

The nucleon state then becomes

f dp
IPNMNl NrN) X H, 2 .32' 0p M ~ t (Pa. l a~a. ca)lpa. ~a.~a.ca)~

a a a 2 ) 2~a
(2.31)

With

0 „„„(p.~" . c.)=X & . .(p.)0 „(k.(p.) ~. .~.)
a

1g „p, ~j Qp, , k„)u(P, o, ) Pp M ), , (P(p, ),k, (p, ),o-, , n, ,c,). (2.32)
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Here u are the free Dirac spinors with the four-vectors p,
and P given by p, = (E,(p, ),p, ), P = (8'(P), P). The rela-
tive variables in P are expressed in terms of the individual
ones through Eq. (2.7) which in particular gives

[(P.—Pb) P]'
(k.—kb)'= —(P.—P )'+ . (2.33)

The important property of the relative variables k in Eq.
(2.7) and the matrix elements in Eq. (2.29) is that they are
symmetric under the permutation of the three quarks. Thus
the nucleon wave function in the individual particle repre-
sentation has the same symmetry as the wave function in the
relative variable representation. The mass operator, however,
and the wave function do not have cluster separability in the
sense that the dynamics of quarks in a two-quark subsystem
depends on the interactions with the third quark (i.e., no
three-body forces). It is possible to construct a mass operator
in the BT formalism that does obey cluster separability. For
that it is necessary, however, to introduce a different set of
relative variables; in fact three sets of two relative variables
each (k, , K,), c= 1,2,3, are required [15]. In each set the
variable k, describes the relative motion of the a and b
quarks in the rest frame of the (ab) subsystem and the vari-
able K, represents the relative motion of the (ab) cluster and
the c quark in the rest frame of the three quarks. In the
presence of interactions the BT construction with the cluster
coupling scheme is defined by an interaction-independent re-
lation between the relative variables introduced above and
the individual particle variables in analogy to the original BT
construction with the "democratic" coupling described in the
previous section [16,17]. This allows one to express relative
variables in each of the three sets in terms of relative vari-

ables of another set or in terms of individual particle vari-
ables or relative variables k„corresponding to the "demo-
cratic" coupling scheme. The details are summarized in the
Appendix. The general expression of the mass operator
which is symmetric under the permutation of the quarks and
has manifestly separable two-quark clusters can also be writ-
ten in a form given by Eq. (2.10) but with interaction poten-
tial satisfying

V= g V, b, ,
perm(abc)

V.„,= gM.'„+K,' —g~.'„+K,',
(2.34)

with

M b ~ b+W b (2.35)

.XA, b being the free mass of the (ab) cluster,

.~,„=gm, + k, + gm „+k„ (2.36)

and W,b= W,b(x, ,k, , s, , sb) representing the interaction be-
tween quarks in the (ab) cluster. Here x, is a position vari-
able conjugated to k, and s„b are the spin variables given in
the Appendix. As already mentioned, since only one of the
three sets of relative variables is independent it is necessary
to specify a particular coupling scheme, say, (ah) c = (12)3,
and the corresponding set of variables (k3, K3) to construct
the representation space of the Poincare algebra. Since the
mass operator with the potential given by Eq. (2.34) has a
complicated structure it is, however, much more difficult to
find the exact mass eigenstates. The nucleon state can be
generally written as

dP 1
N N NN) X [ 3 3] 3 ~ c c c PP M k t ( 3 3 a~ a)l 3~ 3~ ai a~ a)~ (2.37)

where we have used a caret symbol to distinguish between cluster and "democratic" coupling schemes. The norm in Eq. (2.37)
is given in the Appendix. Since there is no simple relation between the mass operator with cluster separability and the
constituent quark model Hamiltonian, there is also no direct connection between the constituent quark model wave functions

and the relativistic wave function P in the cluster coupling scheme. It would appear that a choice

P(k3, K3, o, , n, )~ Q (k, , cr, , u„), (2.38)

with P given by Eq. (2.25), could be used, in the cluster coupling scheme, to represent the nucleon wave function just like
it was used in the "democratic" scheme. However, unlike A1, (p„) the matrix elementsa~a

(2.39)

are not symmetric under the permutation of the three quarks. Thus, the nucleon wave function given by Eq. (2.38) when
expressed in the individual particle basis will not have the desired permutational symmetry. For example, if, as commonly
used, Q is restricted to the ground-state HO wave function given by the first line in Eq. (2.25) with 8= /=0, for the proton
it may be written as

1 1 . 3
PO ~ (++d)4'+EN(~1 ~2 ~3)+(+d+) 2 4'+X (~1 ~2 ~3)+

2
O' —XN(~1 ~2 ~3)

1 3
+ (d1 +) 2 4 +AN(~1 ~ ~2 ~ ~3) 2 4' —kN( ~1 ~2 & ~3) (2.40)
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The overall symmetry in the isospin-spin-orbital indices requires

1 . . 3
9 + x~(~1 « ~2 « ~3) +

2
4' —x~(~1 « ~2 « ~3) 0+x~(~1 «o 3 «o 2)« (2.41)

which is satisfied by the nonrelativistic wave functions given in Eq. (2.26). Transforming to the individual particle basis, in

analogy to Eq. (2.32), p= p(p, , )1.,) is given by Eq. (2.40) with

«t ~1«~(~l «~2 « ~3) A~X~(pa «~1 «~2 « ~3) +X 1k 2, 1«3o 1, «72iT3(P a) 4'~1«~(~1 «~2 « ~3) «

0 ],Op, O"3

(2.42)

and using the explicit form of 0 given in the Appendix it can
be shown that p 1, (p, ;o, o.2, o.3) no longer satisfies Eq.
(2.41). Inspecting Eq. (2.40) it may seem appropriate to in-

dependently use three different tran«sformation matrices,
0', c = 1,2,3, for the three components of the wave function
corresponding to the (uu)s 1u, (ud)s 1u, and (du)s 1u
coupling schemes [11].This transformation is fully symmet-
ric but not unitary and therefore destroys orthogonality and
leads to mixture of states which in the relative variable rep-
resentation would correspond to nucleon excitations. It thus
seems that only the "democratic" coupling scheme, dis-
cussed previously, allows for a systematic construction of the
quark representation for baryon wave functions which may
also be directly related to the nonrelativistic constituent
quark model wave functions.

Finally, we should mention that there also exists models
based on yet another generalization of the nonrelativistic
quark model wave function [12,13].As shown in the Appen-
dix the wave function in the cluster coupling scheme can be
written in terms of free Dirac spinors. Generalized wave
functions are usually constructed by writing

with I &2, I 3 being combinations of the Dirac gamma matri-
ces and the particle momenta such that for p„/m, ~O the
wave function reduces to that of the nonrelativistic quark
model. Because such model wave functions are usually not
eigenstates of a mass operator and often entail a large num-

ber of free parameters, the effectiveness and insight of this
approach are quite limited.

C. Current matrix elements and covariance

Under a Poincare transformation, hadronic states should
transform as elements of a unitary representation while a
matrix element is expected to transform covariantly (i.e.,
consistent with the tensorial rank of the matrix element op-
erator). Covariance under a Lorentz transformation A for a
matrix element of a vector current J~ implies

J (P', P) =(P'~J (0)~P)=A,J'(A 'P', A 'P).
(2.44)

If U(A) are the unitary operators corresponding to the trans-
formation A in the space of physical states ~P), Eq. (2.44)
requires

U '(A) J"(0)U(A) = A~J'(0) (2.45)

or, in infinitesimal form,

[J~,M p]=i[6"Jp(0)—Bp~J (0)], (2.46)

with M being the generators of the Lorentz group. These
conditions are not satisfied by the free field, one-body cur-
rent frequently used to calculate matrix elements and to de-
fine form factors because, as described in a previous subsec-
tion, the generators, M, contain interactions. Thus two-
particle and perhaps even more complex currents must be
included to restore covariance. Consequently, hadronic ma-
trix elements expressed in terms of four-vectors representing
the particle momenta and polarizations will violate covari-
ance. The nonrelativistic expansion of the electromagnetic
currents in the presence of internal interactions has been ex-
tensively studied [4,18]; however, a solution to all orders in
V/I required to maintain covariance is still lacking. Viola-
tion of covariance in the matrix elements of the current will
be manifest through presence of additional terms in Lorentz
decomposition of the matrix elements and in a spurious
physical form factors dependence on particle momenta.
Since the hadronic states, which by definition do not trans-
form covariantly, naturally introduce a separation between
the energy and momentum components of the particle four-
momenta

P~= (E,P) = (n P, P —(n P)n), n, "=(1,0),
(2.47)

it is convenient to allow for the vector n to explicitly appear
in the Lorentz decomposition of matrix elements. Expressing
all four vectors in terms of their longitudinal, parallel to n,
and transverse, perpendicular to n, , components will permit
identifying spurious momentum dependences of the physical
form factors and unphysical form factors as remnant terms
proportional to the vector n in the Lorentz decomposition of
matrix elements. This decomposition also has a deeper geo-
metrical interpretation. The vector n specifies the orientation
of a 3N-dimensional quantization surface in a 4N-
dimensional direct product space which contains world lines
of the N particles. Defining the components of n as in Eq.
(2.47) corresponds to a particular orientation of the quanti-
zation surface or equivalently to a particular choice of the
quantization scheme [19].In such a scheme the wave func-
tions are defined as probability amplitudes depending only
on the ordinary three-momenta and the evolution of the sys-
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tems is determined by the energy operator which transforms
the states in the ordinary Minkowski time. It is, however,
possible to choose other quantization schemes corresponding
to a surface defined by n whose components are different
from those in Eq. (2.47). In general, for an arbitrary n the
construction of the generators of the Poincare group can be
formulated in a fame-independent, quantization-dependent
way. For a vector n defining a spacelike surface with
n ~0 the individual particle momenta are defined as the
transverse pr, and longitudinal pr„(to n) components of
Lorentz four-vectors:

= —(P' —P), and M=M& being the nucleon mass. The
form factors F;, i = 1, , 5 will in general depend not only
on Q but also on the scalar products of the final and initial
nucleon momenta with n. Here the analysis is restricted to
spacelike momentum transfer with q n =0. The elastic ma-
trix element satisfies current conservation and this limits the
number of spurious form factors to three (F;, t = 3, . . . , 5).
Besides Q the only independent scalar product that can be
formed from the vectors q, P and n is X n which implies

n~ n p,P — Ppz p pI.
i i

pl.
(X n)'1

F F (Q2 +2)=F Q2 g2 (3 2)

P.=m. =Pi.(Pr.) +P r. .2 2 2 2 2 (2.48)

Since all transverse four-vectors have only three independent
components these again can be denoted in a three-vector
form, i.e., pz, = (O,p, ). The ten generators P", M, of the
Poincare group are also projected into their longitudinal and
transverse components with the interactions contained in the
longitudinal components only. In this construction the wave
functions will have a frame-independent form but they will
explicitly depend on the vector n. Although the spurious n
dependence of matrix elements results from the Lorentz
symmetry breaking of the current operator, it permits quan-
titatively assessing the extent covariance is violated in a
model calculation and, as detailed in the next section, to
establish a potentially useful model criterion. For fixed val-
ues of external particle momenta P~, sensitivity of observ-
ables to n~ orientation corresponds to sensitivity to different
quantization schemes. However, since all spurious depen-
dence of form factors enters through scalar products of
physical four-vectors with n, an equivalent description of the
Lorentz symmetry breaking can be obtained by fixing the
components of n~ while changing the reference frame. This
corresponds to changing the particle's momentum compo-
nents with the physical scalar products, P; P~ fixed. These
two alternative approaches can in particular be used to show
the equivalence of relativistic quark model calculations in
the light front quantization and in the infinite momentum
frame approach.

n' X~ q
(3 3)

with Q—= VQ, can be used to define the basis. Since n )0
and q n = 0 without loss of generality, n and q may be cho-
sen to define the timelike and one spacelike axis of the co-
ordinate system, respectively,

n~
= (1,0,0,0),

qP—= (0,0, 1,0) . (3.4)

Since X n=X 4&0 and X.q=P' —P =0, the vector/ de-
fines another spacelike direction chosen to be the third axis,

(3.5)

with Xl = /X +X =2/M +Q /4+X /4. Finally the com-
ponents of v are given by

The three vectors n, q, and X are linearly independent and
together with

III. ELECTROMAGNETIC STRUCTURE
OF THE NUCLEON

A. Elastic form factors

U~=(0, 1,0,0) . (3.6)

(P'k'iJ+ iPX)=u(P'X')I ~u(P, X)=M&,x,

io~" n~~X~ n~X n. y
I —= y F+ qF2+ F3+, , 2 F

2M z, n j@.nj

X~n y
F5,

~ n
(3 I)

with X"=P' ~+ P", —~r,
~

=2''+ Q'/4, Q2 — q2

In this section the wave function, Eq. (2.32), and the for-
malism outline above are utilized to calculate the static form
factors of the nucleon. Allowing for the vector n~ to explic-
itly appear in the matrix element of the electromagnetic cur-
rent yields the most general form

The form factors can now be extracted from M „,~, M „,~
0 1

and M ~, ~ (M ~, x
= 0 because of current conservation) calcu-3 2

lated for different nucleon spin projections. Since
XL= QL(~g~~), the matrix elements and form factors become
functions of Q and ~X~ alone. The unphysical dependence
on ~X~ will be studied in two limiting cases ~X~ =0 and

~X~ ~~. As seen from the choice of the basis the first case
corresponds to the instant quantization, while the ~X~~~
limit corresponds to an infinite momentum frame limit in
which the initial and final nucleons move with a large veloc-
ity in the third axis. The results obtained in this limit are
equivalent to those of the light cone quantization on the
z+=z +z =0 surface. In terms of the matrix elements

M„,~ the five form factors F; can be determined from
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&' —Q' '
M++=2M 1+ (F)+F5)—2MgF2+ $L+2M — F3+ 2 XI+2M+ F4,

(3.7)

F, +F, F, ~X~

XL+ 2M 2M XL(QL+ 2M) gi(XL+ 2M)
+ F + F

2M 2M ~ X'
"g,+2M ' g, ~

2M(X, ,+2M)

(3.8)

(3.9)

M + Q-'
~ 2M(X~+2M) t

' Xl (QL+2M)
(3.10)

M~ ~ = —i Q[F +tF2], (3.11)

with rg= Q /(4M—). In particular in the ~X~~O limit

2iQ /1\
(3.13)

If the unphysical form factors are ignored, then in the instant
quantization M++ is directly proportional to the nucleon
electric form factor GF=Fi —yF2 while M++&

&
in the in-

finite momentum frame or light cone quantization are pro-
portional to the Pauli and Dirac form factors F&&2&, respec-
tively. However, in general both M++ and M++ receive

M++~2M[F, —r/F2]+(terms with F3, F„, and F5),
(3.12)

while in the ~X~~~ limit

M+, —=M'. ,+M'„2~r~[F, +F,]+0(1),

contributions from the unphysical form factors. It is worth
noting that for spin-0 particles like the pion the matrix ele-
ments of the J+ component do not involve unphysical form
factors. But because, as follows from Eq. (3.13), this does
not happen in general, it cannot be argued that the use of the
J+ component eliminates all spurious contributions. Ignoring
the unphysical form factors, the J+ component alone can be
used to determine F i 2 and subsequently Gz ~. Interestingly,
from Eq. (3.11) it follows that the 1'= v 1 component does
not contain spurious form factors in any quantization. Thus it
also could be used to define GM in infinite momentum frame
as it is done in the instant quantization. In the nonrelativistic
limit of the light cone quantization the two definitions of
GM become equivalent.

Using the wave function given by Eqs. (2.32), (2.25)—
(2.28) for 0= 0 we have varied the quark mass m, the oscil-
lator parameter P, and the mixing angle P between the 56
and 70 SU(6) representations to obtain the best fit to the

I I I I I I I I I I I i I I I I I I I I

00

—0.6

—1.0

0,0 0.2 0.4 0.6 0.8

Q GeV
3..0

—2.0

0.0 0.2 0.4 0.6
GeV

0.8 1.0

FIG. 1. Proton magnetic form factor. The assignment of curves
is explained in the text. FIG. 2. Neutron magnetic form factor.
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proton and neutron electric and magnetic form factors. Re-
striction to 0=0, i.e., elimination of the orbital symmetric
2', 56' contribution, does not change significantly the be-
havior of form factors at momentum transfer Q ~1 GeV .

Higher orbital excitations will become important at larger
momentum transfer but at the same time will require a more
detailed knowledge of the mass operator. The addition of the
mixed symmetric 2' excitations of the 70 representation is
crucial for the proper description of the neutron electric form
factor, Gz at low Q I 20] and also, as will be shown in the
next section, for the right behavior of the neutron to proton
structure function ratio F"(x)IF"(x) in the valence region as
x~1. In Fig. 1 the proton magnetic form factor Gz is shown
for Q ~1 GeV . For quark mass mIc=200 MeV, oscilla-
tor parameter pl c= 400 MeV, and mixing angle
@=—14' the magnetic form factor, as extracted from Eq.
(3.13) in the infinite momentum frame, is represented by the

lower solid line. The upper solid line corresponds to G~M as
calculated in the infinite momentum frame limit from Eq.
(3.11).The doted line shows the results in the instant quan-
tization (IXI =0) with the above values for the quark mass,
p, and p. The dashed line is the instant result with the pa-
rameters mlz= 50 MeV and pl~= 350 MeV obtained as the
best overall fit to proton and neutron electric and magnetic
form factors. Figure 2 displays the results obtained for the
neutron magnetic form factor, GM with the same curve as-
signment as in Fig. 1. As seen from Figs. 1 and 2 only the
use of the J+ component of the current in the light cone limit
leads to a good description of the magnetic form factors for
parameters which roughly agree with those used to fit the
low mass spectrum with the mass operator given by Eq.
(2.24). For @=0 the magnetic moments GMt"'"~(0), derived
from Eq. (3.11) for the instant quantization and from Eq.
(3.13) for the light cone case, are given by the following:

instant,

2M~ 1 ki
GM" (0) = e„„ I dk]NRI po(k ) I F,+I

L, 3z,
ki. ks~

+ed „ I dk]NRpo(k, ) 1—
2E E& E3+ m

~ 3E& E)
(3.14)

light cone:

(m+ k,+)(k, E) + k~,—
I.dk]NRI i)'o(k ) I

2 + + 2
Ei+m k,

+ + 2
k2 (m+ k2 ) + ~ k~ i ki 22k,

(E,+m)k,'
+ + 3

k3(m+k3)+ +ki i kj3
2ki

(E3+m)ks

f (m+ k3+)(ks E)+ —,
' kis-

+e~,.) ldk]NRi)'o(k. )' 2
E3+m ks

k2
k2 (m+k2)+ k~s k~2

2k3—4
(E2+m)k~

+ 1

k, (m+ k, ) + + k~ s k~,
2k3—2

(E,+m)k,'

with

Ldx d ki ]I 0o(x ki )I E g iM( xkz, ) e+,d[dx, d kz ]I i)'lo(x kz )I E gM3(x ki. )

(3.15)

E,= gm k+„EQ E, , k,+ =E,+k', , k~, =(k, , k~), (3.16)

and Po given by the first line in Eq. (2.28). The last two lines
in Eq. (3.15) are explicitly written in terms of the light cone
momenta obtained through a change of variables k', —+x„
given by

and

dx,
[dx,d k, ]=8 g x, —1

)
(3.18)

k, E,(k, )+k',

E X,E,(k, )
(3.17) and with g~] (3) given by the two terms in the parentheses in

the first two lines in Eq. (3.15) respectively.
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FIG. 3. A (dashed line), X (dotted line) magnetic form factors
compared with the neutron magnetic form factor (solid line) in the
instant quantization.

FIG. 4. A (dashed line), X (dotted line) magnetic form factors
compared with the neutron magnetic form factor (solid line) in the
light cone quantization.

In the nonrelativistic limit ~k, ~/m~0, Eqs. (3.14), (3.15)
give GM"(0) =M~/m, —2M&/3m for the instant quantiza-

tion while for the light cone case, GM"(0) =3,—2, and is
both nucleon and quark mass independent. In the instant case
the relativistic corrections significantly reduce the nonrela-
tivistic GM (0) and with the typical quark mass and oscilla-
tor parameter lead to magnetic moments 30% smaller than
measured. Even for I=50 MeV, which gives the best over-
all fit to the nucleon electromagnetic properties in the instant
quantization, the magnetic moments are still about 18% too
small. The effects of the mixture with the 70 representation
do not change these results significantly. In Figs. 3 and 4 the
neutron magnetic form factor (solid line) is also compared
with our predictions for the A (dashed line) and X (dotted
line) magnetic form factors in the instant and light cone
quantizations respectively. The effects of the unphysical
form factors are even more significant for the electric form
factors than for the magnetic ones. In Figs. 5 and 6 the elec-
tric form factors are shown. In Fig. 3 the upper solid line is
the ~X~

—+~ result for proton electric form factor G~z, calcu-
lated with F

& 2 form factors extracted from Eqs. (3.7)—(3.11)
i.e., with an explicit account for the possibility of the un-

physical form factors in the matrix element. The lower solid
line is the light cone result as defined by the matrix element
of J+ which in turn include the unphysical form factor F5
but at the same time is consistent with the normalization of
the wave function given by Eq. (2.23). The upper dashed line
is the instant result (with the smaller quark mass) for the
matrix element of J which again include unphysical form
factors but agrees with the wave function normalization. The
lower dashed line is the instant result calculated with the
form factors Ft 2 extracted from Eqs. (3.7)—(3.11). For the
neutron electric form factor in Fig. 6 the solid and dashed
curves leading to G~(0) =0 are given by the J+ and 1

matrix elements in the light cone and instant quantization,
respectively, while the other two curves are obtained after
extracting F& 2 from the five matrix elements. It is clear that
only the matrix elements of the charge components of the
current, n. J=J,J+ for instant and light cone quantization
respectively, lead to sensible results. The negative charge
radius of the neutron given by Gz(Q ))0 at small Q
comes from Wigner rotations in Eq. (2.32) but mostly from
the admixture of the 70 representation. The negative sign,
P- —14 of the mixing angle resulting from the spin-spin
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FIG. 5. Proton electric form factor.
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FIG. 6. Neutron electric form factor.

term in the mass operator is crucial to obtain the correct
behavior. Figure 7 displays the unphysical form factors F34
for the light cone (solid line) and instant (dashed line) limits,
respectively. While the light cone quantization has provided
the correct description of the magnetic moments it also suf-
fers from the largest Lorentz symmetry breaking in the ma-
trix element. It is thus clear that one should not trust the
one-body approximations for all components of the current
in the light cone quantization; however, the results for the
magnetic moments indicate that it may be a good approxi-

FIG. 7. Unphysical form factors in the light cone (solid lines)
and instant (dashed lines) quantizations.

mation for the 1+ component alone. From Fig. 7 it also fol-
lows that at larger momentum transfer the one-body approxi-
mation in the instant quantization may be accurate but, as
already mentioned, a good description of the form factors
may then require a more detailed knowledge of the higher
harmonic oscillator components of the nucleon wave func-
tion. We have also computed the nucleon axial charge. For
the pure 56 representation Gz computed from the n A com-
ponent of the axial current is given by the following:

instant,

5 f (m+Ei) —
—,
' k,

G„(0)= —
l dk]NRI tf o(k ) I 2E +E3 J 2Ei m+Ei (3.19)

light cone,

5 f (m+ k,+) —ki,
GA(0) = —

) l. dk]NRI 0o(ka) I k+2E, +mk,

II,E, (m+k,+) —k,
[dx,d ki„]l ufo(x, , ki„)l (3.20)

This for m = 200 MeV and P= 400 MeV gives G„(0)-1.1 and 1.0 for the instant and light cone quantizations, respectively.
Again the relativistic effects are large and significantly alter the nonrelativistic G„(0)=5/3 limit.

B. Deep inelastic structure functions

The twist-2 nucleon structure function F~z' (x, p, z) that is measured in unpolarized deep inelastic scattering can be defined
in terms of the following matrix elements [21]

1
(P ~Nlrb (0)r (D+)"qp(0)

l
p, &N)p, ~ Ptt +1(MN)"+'. (3.21)
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(3.22)

where q (z ) =q (z,z, z~ —I/p, ) and n is the flavor index. If the quark field operators q;(z ) are quantized on the light
front surface g+ =0 and expanded in terms of creation and annihilation operators, the valence contribution to the structure
functions is given by

1—F2 "(x,p, ) = g e q"'"(x), (3.23)

with q
' (x) denoting the valence quark distributions in the proton and neutron, respectively, and e, being the valence quark

electric charges. The quark distributions are determined from the valence nucleon light cone wave function

f
q"'(x) = + [dx.d'ki. ]l PM„~ (x. .ki. .~. .u. .c.)l'~(x. -x) a

anaCa J
(3.24)

with p and n corresponding to t„=+1/2 and —1/2, respec-
tively. For the soft wave function the integral over transverse
momentum is dominated by p, ~P; thus we can set the inte-
gration limits to be infinite while still computing the low
energy structure functions F2(x, p, -/3). To compare with
experimental data the soft structure functions should be
evolved to the appropriate momentum scale of an experi-
ment, typically of the order of p, —Q —10—20 GeV:

functions P, have to be introduced to match the different
scales [22]. We shall, however, be primarily interested in the
ratio of the nucleon and proton structure functions in the
valence region for which the evolution effects are small and
may be neglected. For the nucleon wave function constructed
in Sec. II with the parameters m=mLc, P=PIC, and
P= —14' obtained from the fits to the electromagnetic form
factors the ratio R""(x)

q.(x.Q)=X P.,
'
— q; (y, / o) (325)

y (y po/

In general the left hand side involves both valence and non-
valence distributions. Perturbative, Altarelli-Parisi evolution
equations may be used (for not too small x) if the starting
distributions q, (y, p, o) are evaluated at p, o high enough to
justify perturbative expansion. This is clearly not the case for
the soft structure functions and phenomenological splitting

F2(x) q"„(x)+4qd(x) 1 15rd„R""(x)= = = —+
F2(x) 4q"„(x)+q~d(x) 4 4(4+ rd, )

'

(3.26)

with rd„= rd„(x) =q~d(x)/q"„(x) given by the dashed line in

Fig. 8. The resulting positive slope of R""(x) for large x,
contradictory to the experimental data, can easily be under-
stood. After expressing Eq. (3.24) in terms of the relative
three momenta k, related to x, through Eq. (3.17),

q (x)=
~W~a~a~a

f F. m +k+0
["k)NR~ p I'M„~ ~ (". tr. ~. .&.)l 6 x-

a a
(3.27)

it becomes clear that the quark distributions q(x) are solely
determined by the momentum distribution of the valence
quarks. The interaction-independent relation in the
Bakamjian-Thomas construction, between the individual and
relative particle momenta is equivalent to an interaction-
independent boost. Thus the light cone wave function is
given by a free Lorentz transformation of the rest frame
wave function to the infinite momentum frame. This is
equivalent to the change of variables given by Eq. (3.17).
The quark distributions in the scaling variable x, in the
Bakamjian-Thomas construction, correspond to distributions
of the combination E,(k, ) + k', in the rest frame wave func-
tion. The negative charge radius of the neutron implies that
in the neutron there is an excess of the d quarks over the u at

larger distances. This in turn implies that the neutron wave
function generates a u quark momentum distribution peaking
at larger momentum than the d quark distribution. Since Eq.
(3.27) relates large momenta to large x this also implies that
for the proton the d quark distribution will peak at larger x
than the u quark distribution, thus rd„~1 and therefore in
Eq. (3.26) the ratio will not approach 1/4 as x~ l. This ex-
ample shows the limitation of the Bakamjian-Thomas con-
struction which includes only the free quark kinetic energy in
the boost transformation which relates wave functions in dif-
ferent frames or quantization schemes.

In practice it is possible to model the light cone wave
function so that both dGe(0)/dQ ~0 and R""(x)~1/4 as
x—+1. One such wave function has been proposed in Ref.
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and b, V"= V"„—V~d-75 MeV. If the potential energy contri-
bution to the quark energy is included in Eq. (3.27) so that
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FIG. 8. Neutron to proton structure function ratio.

V"'"= (p, n ~Hq~p, n), (3.28)

where

H (2qr) 3 Sq + Sq 8 (xq xq) (3 29)
q 4q

This gives

1
V", =Ed= ——(Mg —MN)+ O(p ),

1
Vg= E"= ——(Ma —MN) + 0(@ ),d 8 3

(3.30)

[23]. It was obtained through an ad hoc procedure used to
express the individual particle momenta in the nucleon rest
frame wave function where p, =k„by the light cone vari-
ables x, , k, . The results obtained in Ref. [23] are very sen-
sitive to the details of the prescription, in particular whether
the free invariant three-quark mass or the physical nucleon
mass is used to scale the light cone momenta k„+ . Further-
more model wave functions as the one in Ref. [23] will not
in general satisfy the requirements of Poincare symmetry and
an arbitrary prescription does not give physical insight for
the dynamical features which lead to the above mentioned
problem with R"~.

There is a physical reason why a simple boost approxima-
tion cannot properly describe R"". The spin-spin interaction
in Eq. (2.24) responsible for the N amass splitt-ing and the
spatially asymmetric quark wave function give an asymme-
try in the quark spin potential energy which is defined as an
average over the nucleon wave function of the spin-spin in-
teraction of a quark with the spectators,

then because 5U")0 the position of the peaks in the u and
d distributions in the proton may be interchanged with re-
spect to the case when only the kinetic energy E, is used.
There is also an asymmetric contribution from the potential
energy associated with the confining interaction which
should be included in Eq. (3.31). For the pure harmonic os-
cillator model this contribution is by an order of magnitude
smaller than the spin contributions and may be neglected.
The result for the ratio R""(x) with the spin potential energy
taken into account is shown by the solid line in Fig. 8. With
the magnitude of AV~ fixed by the mass operator which
properly splits N and 6 masses and leads to HO configu-
ration mixing that properly describes G~ the structure func-
tion ratio can now also be well reproduced.

IV. SUMMARY AND CONCLUSIONS

We have studied the nucleon structure in the relativistic
quark model based on the BT construction of the Poincare
group with the Isgur-Karl Hamiltonian as the underlying
mass operator in the rest frame. The construction allows for
an arbitrary orientation of the quantization surface and to
study the sensitivity of electromagnetic current matrix ele-
ments to the quantization surface and/or choice of the frame
which arise from the Lorentz symmetry breaking of the
single particle current. These effects are manifested through
an appearance of unphysical form factors and spurious mo-
mentum dependence in the physical form factors that are
both quite sizable. If it is valid that only some components of
the full current should be approximated by the respective
free current components [10], then the J+ component in the
light cone quantization provides good results. In particular,
we have obtained a quantitative description of nucleon elec-
tromagnetic structure at low moments using the wave func-
tion parameters determined from the spectrum fits. The cor-
responding procedure of approximating the J charge
component in the instant quantization is however not suffi-
cient to determine the magnetic form factors. This suggests
in the instant quantization some dynamical effects in the
v J component should be included. Conversely, Lorentz
symmetry violations are found to be more significant in the
light cone quantization. In particular at larger momentum
transfer the single-particle current approximation in the in-
stant quantization seems to be preferred. These findings
should only be cautiously generalized as they may be par-
ticular to the case studied. It is well known that even the
matrix elements of the J+ component in the light cone quan-
tization require dynamical corrections [24]. Finally we have
resolved the deficiency in simultaneously describing the
negative neutron charge radius and the negative slope of
R""(x) for large x. The resolution relies on a proper consid-
eration of the total quark energy which has so far been omit-
ted in previous relativistic constituent quark models which



2752 SZCZEPANIAK, JI, AND COTANCH 52

were based on an ad hoc, Poincare violating, parametrization
of the relativistic nucleon wave function. In our approach it
can be shown that qualitative agreement with data can be
obtained for a quite general wave function while quantitative
agreement can be achieved using a specific 56&70 represen-
tation with the parameters determined from the N —5 mass
splitting.
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APPENDIX

We start by listing the relations between the individual particle variables and the relative variables associated with the
cluster coupling scheme of the BT construction discussed in Sec. II. In the (12)3 coupling corresponding with the relative
variables k3, K3, individual momenta are given by

P12 P ~12P" P12+~(~+@+m '
K3 P (o3

,M(.M+ Q (A 1)

where

k3. K3 C01 2
p1+ p2= K3. (A2)

and

~12 ~1+~2 ~ ~ ~1+~2+ ~3 ~ +12 V~12 3
c- t 2 2

I 2 2 / 2 2
601 2

—
VI i 2+ k3, CO3 —

VI3 + (A3)

Permutation of the three-quark indices leads to two additional relations between p and the other two sets k„,K, a = 1,2. All
three relations can be used to express k, , K, , a = 1,2, in terms of k3, K3. The momenta p, 2 in Eq. (A2) are obtained by a
product of two free Lorentz boosts applied to the relative variables k3 and —k3, respectively. The first boost transforms
~ k3 to p,'2 corresponding to the momenta of the first two particles in the center of mass of the three particles. The second
boost transforms p12 to p12 corresponding to the momenta in the frame in which the total momentum of the three quarks is
P. Accordingly the spin operators s, in the (12)3 coupling scheme are related to the individual spin operators s, through the
following transformations

[S12]1rk' X [D(P1 2 r P1 2)D(p1 2, k3)] o1r[S1, ]2a or [D(P1,2 r P1,2)D(P1 2, k3)] -,
rr,

r

[S3]year

A Aoo

= g D(P3, —K3)1 -["3]- - (P3, — 3) -
1 (A4)

where the Wigner rotations are now given by

[(~1,2+m12)(&12+~12)+K3 (~k3)]~1 +1[~]1,. [K3 ~k3]
D(P1,2 —k3) 1r.

( ~1,2+I1,2) ( +~12+ ~12)[~ 1,2+12+ 3
' ( —k3) + re 1,2~12]

[(+1 2™1 2) ( +12+~12) 3
' P 1 2] pro + 1[~]1rrT

' [K3 r P1 2]

(+1,2™1,2)(+12+ ~12)(+1,2+12 3
' P1,2™1,2~12)

(A5)

I (+1,2™12)(++~)+'P1,2]~kk+1[~]1rk'[ P12]
( P1,2 r P1,2) k1r.

l2 (+1,2+I1,2) ( ++~)(~1,2++ P P1,2+I1,2~)

[(212+m12)(8'+~)+ —P P', 2]8'1,1, + i[O]&1, [P,P12]

(+1,2+ m1,2)(++ ~)(+1,2@ ' P1,2™1,2~~)
(A6)
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+12 K3 ' ( —k3)
1,2 %PI,2™1,2 ~1,2 ~ ~ E1,2

12 12

P p1,2

and

[(A@3+ m3)(F+.W) —P K3]8x- —i[a]1,- [P,K3] [(E3+m3)(K+M) —P P3]81, -+i[cr]x [-P,P3]
D(P3 —K3)x.=

$2(cu3+m3)(K+~'~)(cu3F —P K3+m3 W') $2(E3+m3)(F+ ~)(E38'—P p3+m ~)
(AS)

The transformation matrix between the quark basis states is given by

I'

(pa, kalP, k3, K3,oa)(2m) 2C'6 P—g p, g,2'(k3)g '(k3, K3) 8 (k3 —k3(pa))8 (K3 —K3(pa))A„- (p„), (A9)
a )

with

a. (Pa) [D(pl ~pl)+(Pl k3)]x a. (D(P2 ~P2)D(P2 ~ k3)]x a. +(P3 K3)x a. (Alo)

and the phase space factors

[2(2') ]co, cu2
' ' [2(2m) ]4 co

(A 1 1)

The three-particle phase space satisfies

d P d P d P - —- d p
[d ksd K3 (2 ) 2g g12(k3)g(k3K3)d k3d K

(2 ) 2g (ka)[d ka]N ('2 ) 2g " (2 )32E (A12)

and the wave function P is given by

f dp
lPlvM~Atvt~) = g [dk3dK3] 3. Pp M x, (P,k3, K3,oa, na, ca)lP, k3, K3 oa cia ca)

Cra naCa

dp„])[,3 P (p. l.n. C.)lp. l. ~. c (A13)

with

A

Pp~M~1 ~t~(pa, ha&a, Ca) = QX a. t/ p~M~l ~t~(P, k3 3 Oa, Cla, Ca) (A14)

and k3, K3, P expressed in terms of p, . In general the wave function p(p, ) can be written in terms of the free Dirac spinors.
In particular for the two-spinor wave function which appears in the ground-state HO contribution to the nucleon wave
function,

1
((+x~(~ )QaX(trl)r172X(tr2)X(tr3)rX(~N)~ (A15)

1

p x (&~) =
~2

X(&l)l %2X(~2)X(~3)((Ills), (A16)

the transformation A gives

j.„(p., ~.) =X.u(I, , ~,)r. „Cu(~, , ~,)'u(&, , ~,)r. , u(p, ~ ), (A17)

where p~= (E, , p, ), P"=(8;P), K= g A + P . The spinors are normalized according to u(p, , ll.,') u(P, , X,) = 2m„B& 1, .

C=i y y is the charge conjugation matrix and the matrices I 12 and I 3& are given by
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m1 —my+ ~» m] —mP —~»
—,12 y5 +,12 y Pl ~ (~ ~ ~ )

P2 ~ (~ ~ ~ )

2
I"+ 3~

—~~~5+ (A18)

The normalization constants are

1 1

~N, N~= —~N, (A19)

with

1

[~12—(m1 —m2) )((~+m3) —.~,2]
(A20)

The expression for /+1, (p, , 11.,) is derived in the following way. Since the wave function p+ corresponds to the quarks
N

(12) coupled to S= 1 state, Eq. (A15) may be written as

4+~„(~.) = —N+X ~(~1,k3, ~1) y' —2 + + +~1+~2+m1™ 2l
CM, (M2, k3, (T2) 6 (M12, 0, k12)

(E12 K3 ~12)~(~3—K3 ~3) y, y3+ ~ ~,r5 ~(~.o.~N)~+~„—m,
(A21)

The first set of parentheses represents the coupling of the one and two quarks to a spin-1 state with zero total momentum, mass

~», and polarization P». The second set of parentheses represents a coupling of a spin-1 particle with momentum Kz and

energy F1&, F1&= yM»+K3 and the third quark to a spin-1/2, nucleon state with mass ~, zero total momentum2

P= (~,0), and spin projection kN. The polarization vectors, e~(E,p, l1.) of a spin-1 particle are given by

e'(M, O, l1.)P'
e (E,P, l1.) =

~'(M, O, Z) P'
e'(E, P, k) = e'(M, O, X)+ P',

M E+M (A22)

and

I

p'(M, O, + 1)= !
—i

2
e'(M, O, —1)=

2
0

e'(M, O,O) =
(0

(A23)

Using the above representation for /+A (cr, ) and the relations
N

D(p' p)1,k &(p ~')=&(p' ~)S(p p')

S( ') S '( ')=A „' ", A, ' =A„,

X ~„(p,l )~.(p 1)= —g„.+ P
(A24)

~here 5 is the Dirac spinor representation of the Lorentz transformation A,

S(p~p')= E'+E/2(EE'+pp'+m ) I+, y y',P P o

F.'+ F (A25)

the expression given in Eq. (A17) can be derived in a straightforward way.
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