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The nucleon is formulated as a relativistic system of three constituent quarks interacting via a zero-range
two-body force in the null plane, The covariance of the null-plane Faddeev-like equation under kinematical
front-form boosts is discussed. The nucleon wave function is obtained from the numerical solution of the
Faddeev equation in the null plane. The proton electric form factor, obtained from the Faddeev wave function,
reproduces the experimental data for low momentum transfers and qualitatively describes the asymptotic
region.
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I. INTRODUCTION

Relativistic constituent quark models with null-plane
wave functions [1] have received much attention lately.
These wave functions are covariant under kinematical front-
form boosts [2], as a consequence of the stability of the
Fock-state decomposition under such transformations [3].
They include, for example, the boost from the bound-state
center of mass system to a frame in which it has some speci-
fied momentum in the transverse direction [2]. Such a prop-
erty is fundamental for the frame independence of the elec-
tromagnetic form factors of bound-state systems, in the
limited sense of kinematical front-form transformations [4].

In particular, in such a framework, several studies have
addressed nucleon properties, such as electromagnetic form
factors [5—8] and the distribution function [9] with Gaussian
wave functions. These models used constituent quarks as the
relevant degrees of freedom.

We have also seen examples in the literature [10]in which
the spontaneous breaking of chiral syrrunetry originate the
constituent quark. The spontaneous breaking of chiral sym-
metry, which is an essential requirement of low-energy QCD,
has been modeled using the Nambu —Jona-Lasinio (NJL) [11]
contact interaction and applied with sucess to hadronic phe-
nomenology [10]. Confinement is not included in these ef-
fective models. The NJL based models demands two physi-
cal notions: the relativistic constituent quark and a contact
interaction.

Our aim in this work is to test the nucleon structure given
in terms of these two concepts. We present a calculation of
the proton electric form factor [GE(q )] by using the Fad-
deev null plane approach to obtain the three-quark nucleon
wave function. The null plane gives the natural coordinates
to investigate high energy processes [12—14]. The nucleon
null-plane wave function is obtained from the solution of the
Faddeev [15] equation with a zero-range force [16] acting
between the constituent quarks. This is the first application of
the Faddeev equation to the nucleon in the null plane with a
contact interaction [17], in which Gz(q ) is obtained. No
confinement is present in our effective model. The totally
symmetric spatial part of the wave function is obtained nu-

merically in a three-body calculation. We leave out the spin
degrees of freedom in this first dynamical calculation of the

null-plane wave function. We use the covariance of the pro-
ton model under kinematical front-form boosts to calculate
GE(q ), and compare our numerical results with the avali-
able experimental data. Gz(q ) scales with q in the asymp-
totic region and describes the data for low momentum trans-
fers.

This work represents a step in the study of Faddeev
bound-state models of the nucleon in the null plane. The
relativistic spin structure is beyond the scope of our present
work but can be introduced through the Melosh rotation of
the spins as discussed in Ref. [7], which is left for a future
development.

This work is organized as follows. In Sec. II, we review
the null-plane three body model with contact interaction and
in Sec. III, we show explicitly that our model is covariant
under kinematical front-form boosts. In Sec. IV, we construct
the proton electric form-factor from the totally symmetric
part of the three-quark wave function. And in Sec. V, we
present our numerical results and compare it to the data. A
brief discussion of the main findings is presented in the con-
clusion

II. THE MODEL

The three-body Faddeev equation with a pair-contact in-
teraction in the null plane, has been discussed in detail in
Ref. [16] and here we give just a brief discussion.

The null plane is defined by x+ = x +x =0, and the
kinematical momenta for each particle are given by k+ and

k~ . It is usual to introduce the momentum fraction for each
particle in a given system, x = k IP+, where P+ is the
total + momentum component.

The bound-state two-body null-plane wave function for a
constant vertex is given in Ref. [18].The three-quark bound-
state null-plane wave function, for the contact interaction, is
constructed in terms of the Faddeev components of the ver-

tex, v(x, k~), as

V(xt, k)g) + U (x2, k2g) + U(x3, ksg)e'(x), ktJ ', x2, k2J ) =
xtx2x3(M Mo)
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where M„ is the nucleon mass. Each quark has momentum

fraction x, and transverse momentum k,~ (j=1,3), satisfying

x&+x2+x3 = 1 and k&~+ k2~+ k3~ = 0 in the nucleon
center of mass. The free three-quark mass is

Mo
J= 1,3 xJ

(2)

where M is the constituent quark mass.
The vertex component, v, satisfies a Weinberg-type [19]

integral equation. It is derived from the Bethe-Salpeter equa-
tion, after integrating over k (=k —k ) in the internal
momentum loop [16].The subsystem scattering is summed

up to all orders in the Faddeev construction of the three-body
connected kernel equations. This corresponds to summing
the two-body scattering process in the ladder approximation
in our relativistic model. Such an amplitude is obtained after
a renormalization process, in which the physical information

input is the two-body bound-state mass, Md, which corre-
sponds to the diquark mass.

In our simplified model, it is important to observe that
Md is also equal to the meson mass, (p, ), since the pole of
the two-body amplitude in the 5 channel corresponds to a
pole in the T channel, as one sees by exchanging an initial
quark by a final one. One should observe that in a confining
model such an identification is not possible, since colorless
mesons are not confined in contrast to colored diquarks. But
in our schematical model, diquarks and mesons are conse-
quences of the nonconfining nature of the interaction. This
should be understood only as the possibility of clustering
inside the nucleon in more realistic models. Even in sophis-
ticated models of the constituent quarks based on the
Nambu —Jona-Lasinio approach, the diquark poles of the two
quark amplitude are present, as a consequence of the contact
interaction [10,20].

In a three quark bound-state system, it is sufficient to
write the two-quark scattering amplitude for M2 (2M,
where Mz is the two-quark subsystem mass [16]:

r(M~) = —i(2~)
M 1

2
——arctan 2

p,

M~

~2 4)

M 1

2
——arctan 2

M~ 4 Mq 4j (3)

The integral equation for v(y, p~), in the nucleon center of mass system, is given by

(yP )=(2 )
( )J (1 )

M
n

t kmax v(x k )
d kJ M2 M2

n 3

where the momentum y, x, p&, and k~ describe the specta-
tor quark states. The virtual two quark subsystem mass is

The kinematical null-plane boost of the nucleon from its
rest frame to a frame where it has a transverse momentum

P« is defined by
pi+ M

M~=(1 —y) M„—
y

2
Pg A = pl+ P„~(M„and A~ = P„~ /M„ (8)

We constrain Mz to assume real values [16], and it follows
that the spectator transverse momentum attains a maximum

value k~'"=g(1 —x)(M„x—M ) .
The mass of the virtual three-quark intermediate state is

The null-plane Faddeev equation in the new frame given
by Eq. (8) is written in terms of the new momentum vari-
ables related to the rest frame ones by Eq. (7). In Eq. (4), the
momentum fraction remains the same, and the transverse
momentum changes,

ki+M pi+M (p+k)i+M
x 1 y x (6) x' =x, y' =y, k~ = k~+ P„~ x, and p'~ =p~+ P„~ y,

III. COVARIANCE UNDER KINEMATICAL FRONT-FORM
BOOSTS

We show below that the null-plane Faddeev equation, Eq.
(4), is covariant under kinematical front-form boosts. There
are seven kinematical boosts, three of which include Lorentz
boosts and are given by [2] v'(x', ki)=v(x, ki-P„i x) (10)

where prime indicates quantities in the new frame. The maxi-
mum transverse momentum also changes according to the
above equations.

The Faddeev component of the vertex in the new frame is
given in terms of the center of mass vertex by

k~ = k~+ A~ k+ (7)

with k'k'' = k,k . The other four kinematical boosts are
three null-plane translations and rotation around the z direc-
tion.

since the transformation in the transverse direction can be
eliminated by changing the integration variables. The mass
of the nucleon, as obtained by the solution of Eq. (4), is the
same in any frame related to the center of mass frame by a
kinematical front-form boost.
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IV. PROTON ELECTRIC FORM FACTOR

The electric form factor is calculated from I+, the "good
component" [12] of the electromagnetic current in the Breit
frame, where the momentum transfer is such that

q+=0 and q~= —
q q, .

in the final proton. The wave-function normalization is such
that Gz(0) = 1 .

The initial and final proton wave functions in the Breit
frame are given in terms of the center-of-mass wave function
according to the boost transformation of the vertex, Eq. (10),

'Il'(x&, k», xz, kQJ )

Gg(q ) = dx$dxpd k]J d kpJ "I' (x],keg ', xg, kp/)

X "Ii'(x),k)J,xq, kqJ ) (12)

where x3 = 1 —x& —xz. The transverse momentum of particle
3 is different for the initial and final wave functions,

qzk'„= — —I „—I,

in the initial proton, and

The transverse proton momenta are P„~=—P„'~=q~/2,
where the superscripts i and f stand for initial and final,
respectively. In this particular frame, the pair-creation contri-
bution to I" is suppressed [13,18,21], and only the constitu-
ent quark component of the wave function remains in the
form-factor calculation, without violating kinematical front-
form boost invariance.

In general, the truncation of the Fock space of the nucleon
wave function to the constituent quark component, in the
null-plane wave function, violates rotational and gauge in-
variance. The generators of rotations around the x and y
directions are of nonkinematical nature in the null plane, and
have off-diagonal matrix elements in the Pock space. The
violation of the gauge condition comes from the fact thatI, the "bad-component" of the current, also has off-
diagonal matrix elements. Our model for the proton wave
function is restricted only to the lowest Fock component, and
is limited in that sense. But the key point in using this wave
function in the calculation of the form factor is the use of the
I+ component of the current. This component is diagonal in
the Fock space for q+ = 0 [14] and no pair creation terms are
present. It is also enough to calculate the matrix elements of
I+ to obtain all the form factors as has been demonstrated by
Chung, Coester, Keister, and Polizou [4]. Only for a two-
body bound state with spin one or higher are there limita-
tions with such a scheme [4,13,22], which is of no relevance
for our present study of the nucleon. At the present level of
our phenomenological model, it only makes sense to calcu-
late matrix elements that are diagonal in the null-plane Fock
space.

The proton electric form factor is obtained from the three-
body bound-state null-plane wave function. The conventions
used for Gz(q ) are those of Ref. [23].As the wave function
is totally symmetric under particle permutation, we can re-
duce the electric form factor to the term in which only par-
ticle 3 absorbs the virtual photon:

P xt, k)J + xt,'xg, kpJ + xp, (13)2 ' 2 r

for the initial and

'Iff(xt, k~J ', xq, kqJ )

~j J x] xp ~pJ
qi x, ', (14)

for the final proton. We observe that Gz(q ) is invariant
under frame transformations related to the Breit frame by
kinematical front-form boosts.

V. RESULTS

Our dynamical null-plane model of the proton wave func-
tion requires two parameters as input, the constituent quark
mass (M) and the meson mass (p,). We restricted M and

p, so that the nucleon mass is 938 MeV. For fixed nucleon
mass, the ratio p, /M is free.

In Table I, we present the results of varying the ratio
p, /M in the model. The quark mass decreases by increasing
p, /M and the binding energy of the quarks in the nucleon
also decreases. The diquark mass varies with p, /M and, for
values around 1.8, it has a maximum corresponding to 695
MeV. The nucleon radius also attains its experimental value
around 1.8, where it has a minimum as a function of p, /M.
Curiously the model fits the experimental radius close to the
minimum possible value of the radius in the model. The
average of the experimental co and p meson masses is 780
MeV.

We present in Table I, the values of the proton eletric form
factor at 1 GeV, in order to study in more detail the gradual
changes with p, /M. Gz presents a maximum as a function of
p, /M, for values around 1.8, This is consistent with the mini-
mum found for the radius. The experimental value for Gz
suggests that for 1.6& p, /M&1. 95, the model produces rea-
sonable agreement with the form factor data. The meson
mass in the model has values of 677~ p, ~695 MeV in this
region, which is consistent with the experimental average
value of 780 MeV. We observe that at the values of p, /M
equal to 1.6 and 1.95, the form-factor is nearly the same, as
shown in Table I. The quark binding energy changes with the
ratio p, /M, as seen in Table I. For the above region of values
of p, /M, the binding energy is within the values of 115
~ 3M —M„~ 331MeV.

We present, in Fig. 1, the electric form-factor calculation
below 2 GeV for three representative values of the ratio
p, /M= 1, 1.8, and 1.95, meaning a strong, average, and
weakly bound meson, respectively. The values 1 and 1.95 are
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TABLE I. Results for the binding energy of the quarks in the nucleon (third column), diquark or meson

masses (fourth column), nucleon radius (fifth column), and form factor (last column) as a function of the ratio

of the meson mass to the quark mass (plM) shown in the first columm. In the second column, we show the

quark masses for a nucleon mass of 938 MeV. The experimental values of the nucleon radius and electric
form factor at 1 GeV [24] are shown in the last two lines.

p, /M

1.0
1.2
1.4
1.6
1.7
1.8
1.9
1.95
Expt.

M (MeV)

519
488
457
423
406
386
364
351

3M —M„(MeV)

619
526
433
331
280
220
154
115

p, (MeV)

519
586
640
677
690
695
692
683
780

r„(fm)

1.05
0.95
0.88
0.82
0.81
0.80
0.81
0.84

0.81 ~ 0.04'
0.862 + 0.012

Gz(q = 1GeV )

0.050
0.090
0.129
0.161
0.172
0.177
0.172
0.161

0.179 ~ 0.006

'Reference [25].
Reference [26].

at the extremes of the interval for p, /M and 1.8 gives the
minimum radius. The results for p, /M =1.6 are close to those
of p, /M =1.95 in this region of momentum transfers. Com-
parision with the data [24] below 2 GeV suggests that the
model prefers the values of p, /M of about 1.6 and 1.95. The
meson masses, in Table I, corresponding to these values are
677 MeV and 683 MeV, in reasonable agreement with the
experimental meson mass.

The values of q"Gz(q ) for squared momentum transfers
below 6 GeV are compared with the experimental data of
Ref. [24] in Fig. 2, for several values of p, /M. To illustrate
the change of the electric form factor with p, /M, we choose
values ranging from 1 to 1.95. The form factor increases with

plM and for values above 1.6, q GE(q ) lies within the
curves for 1.95 and 1.8. We observe a qualitative agreement
with the avaliable data, for p, /M between 1.6 and 1.95 . The
model shows a slight increase for q ) 4 GeV and it
saturates at the values of 0.33, 0.33, and 0.26, for p, /M =

1.6, 1.8, and 1.95, respectively. The nonconfining nature of
our wave function is the reason for the flatness of the product

q Gz(q ) at high q . Models of the nucleon with confine-
ment yield a form factor which decreases quickly in the as-
ymptotic region [6], or they obtain a good agreement with
the asymptotic data at the expense of a small constituent
quark mass [7].

We compare our results with calculations in the Faddeev-
Nambu —Jona-Lasinio approach [20]. These works obtained
the binding energy of the constituents quarks in the nucleon.
The values found for the binding energies were from 200
MeV to about 400 MeV. We conclude from the calculation of
the proton electric form factor, that values of p, /M = 1.6 and
1.95 are favored by the low-energy data. This interval corre-
sponds to binding energies between 115 and 331 MeV of the
quarks in the nucleon. It is interesting that our result has an
overlap with these previous calculations [20].

VI. CONCLUSIONS

1.0

0.8

We have developed a simple three-body model of the
nucleon wave function in the nuH plane, in which the main

0.6

~ 0.4

0.4—

0.2

S.o o.'4 0.8 1.2 1.6 2.0
q (GeV )

0.2

FIG. 1. Proton electric form factor for q ( 2 GeV . Con-
stituent quark masses (M) and meson masses (p, ) have been varied
in the calculations, while the nucleon mass was kept fixed at 938
MeV. M = 519 MeV with p, = 519 MeV (short-dashed line); M =
386 MeV with p, = 695 MeV (dashed line) and M = 350.6 MeV
with p, = 683.6 MeV (solid line). Experimental data from Ref.
[24].

0'00
2

q (Gev )

FIG. 2. Proton q Gz{q ) for q ( 6 GeV . The solid line is
the result for p,/M=1. 95 and the dashed line for p, /M=1. 8. The
short dashed lines with increasing values of q Gz(q ) have

p, /M = 1, 1.2, 1.4, and 1.6, respectively.
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physical ingredients are the constituent quarks and a contact
interaction among them. We construct the null-plane Fad-
deev wave function of the proton from the values of the
diquark and quark masses, the only inputs in our model.

We obtained the electric proton form factor, which is well
described below 1 GeV for a reasonable meson mass, which
we identified with the average p and co meson masses. En the
asymptotic region a qualitative agreement with experimental
data is found. We have disconsidered the spin degree of free-
dom in the dynamical calculation. Nonetheless, the data for
the proton electric form factor prefers binding energies of the
constituent quarks in the interval between 115 MeV and 331
MeV, overlapping with the range of values from recent
Faddeev —Nambu —Jona-Lasinio calculations [20]. The sim-
plification of not including spin does not hinder us from

obtaining meaningful physical results. Our results show that
the explicit confinement of the constituent quarks is not of
importance for the proton wave function once the constituent
quarks are bound in the proton. This schematic dynamical
model gives encouraging results and will be worth general-
izing in the future to include the relativistic quark spin in the
null plane.
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