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Transport models have successfully described many aspects of intermediate energy heavy-ion collision
dynamics. As the energies increase in these models to the ultrarelativistic regime, Lorentz covariance and
causality are not strictly respected. The standard argument is that such effects are not important to final results;
but they have not been seriously considered at high energies. We point out how and why these happen, how
serious of a problem they may be and suggest ways of reducing or eliminating the undesirable effects.

PACS number(s): 25.75.+r, 24.85.+p

I. INTRODUCTION

Experiments like the upcoming nucleus-nucleus collisions
at Brookhaven's Relativistic Heavy Ion Collider will without
doubt open new possibilities to study the properties of
nuclear matter at extreme pressures and temperatures. Of
special interest is the expected phase transition between had-
ronic and quark-gluon matter. The interpretation of these
complex collisions and the possible generation of a quark-
gluon plasma poses a major problem: what are the experi-
mental signatures? In an effort to aid the answering of this
question a theoretical model for the collision processes that
goes beyond a phenomenological description must be devel-
oped. One possible microscopic approach is to extend the
semiclassical transport theory to high-energy physics [1—8].

Simulations of ultrarelativistic heavy ion collisions inevi-
tably involve both soft and hard processes. Below some en-

ergy scale, soft or nonperturbative phenomena necessitate
phenomenological description. Uncertainty is duly noted but
for the foreseeable future a rigorous theory for soft physics is
beyond understanding. However, throughout much of the
collision hard processes dominate which are described by
elementary interactions between quarks, antiquarks and glu-
ons (partons) as essentially semiclassical particles. After par-
ton initialization according to some reasonably chosen
nucleon structure functions, spacetime propagation is accom-
plished by discretizing time into units At, $ p and updating
phase space densities according to relativistic transport equa-
tions including a crucial collision term.

Scattering processes in this theoretical framework are as-
sumed to be nonretarded which, on a microscopic level,
leads to information transport with velocities that can ap-
proach go/7rlb, t„,~, where o. is the parton-parton cross sec-
tion. That is, it can increase without reasonable bound. As
energies for the individual interactions decrease the corre-
sponding cross sections increase. The timestep At„,p is for
reasons of convergence chosen to be less than the parton
mean free paths divided by their velocities: of the order a
few thousandths of a fm/c. Two problems occur immedi-
ately: On a macroscopic level a series of subsequent causal-
ity violating interactions can lead to shock waves propagat-
ing faster than the speed of light. This is clearly unphysical.
On a microscopic level the time ordering of the incoming
and outgoing partons of a scattering process becomes frame
dependent and Lorentz covariance is lost —this also is un-

physical. These two problems are especially serious in ul-
trarelativistic parton cascades since collision rates are high,
and the mean free paths approach the interparticle distance.
Problems arise from describing quantum-dynamical pro-
cesses in a semiclassical picture, and from the demand of
Lorentz invariance in an equal-time-character simulation.
Where is an acceptable compromise? And what does accept-
able mean?

These are the rather technical questions we address in this
study, while in [9] we are more focussing on the physics of
parton cascade codes. Our paper is organized in the follow-
ing way. In Sec. II we describe in some detail the origin of
superluminous information transport on a macroscopic scale
and suggest some first steps to eliminate it. Then in Sec. III
we move toward microscopic physics and provide math-
ematical details for origins of unphysical effects. Whenever
cross sections are finite and action-at-a-distance influences
particle trajectories these problems inevitably arise. Section
IV deals with the resulting frame-of-reference dependence of
the simulation. In Sec. V we describe our version of a parton
cascade implementation. At this stage we have only initial-
ization and temporal development through much of the hard
physics. Later stages including hadronization are ignored
since they are outside the scope of this work. Then in Sec. VI
we compare several different schemes which reduce or elimi-
nate superluminous transport. Methods include simply block-
ing collisions or truncations, scaling the cross sections down-
ward while increasing the number of particles, and
suppressing low-energy collisions. We also consider so-
called wee partons as a different way to define the initial
conditions of the simulation, and point out how much this
scheme affects causality violating mechanisms. Finally, in
Sec. VII we conclude by briefIy summarizing, and by dis-
cussing the outlook for future studies.

II. MACROSCOPIC CAUSALITY VIOLATIONS

Superluminous macroscopic information transport occurs
mainly in the transverse (perpendicular to the beam) direc-
tion. The signal can travel over the diameter of the cross
section cr in a single time step and then continue this propa-
gation from time step to time step. Transverse signal veloci-
ties can therefore reach go./vr/At „,~ over several time steps,
one is reminded of a chain of falling dominoes. The situation
is depicted in Fig. 1 for such a transport.
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Signal ~ CZUstep

FIG. 1. One particle coming from the left scatters with another
particle coming from the right. As part of the model the scattered
particles cannot scatter again in this time step. However, one time
step later that scattered particle from the right scatters with another
particle coming from the right. As a result information from the first
scattering, such as particle momenta and type, has traveled to the
second one. This kind of information transport can continue over
several scattering events.

This is a general problem of all transport codes, and is
worsened because the gluon-gluon cross section becomes
rather large for low energies (instead of vanishing). Along
with the large gluonic cross sections are relatively large
gluon densities which result in very high probabilities for
scattering in subsequent time steps. Therefore information
transport could be supported over relatively large distances
without damping.

In many existing cascade codes first steps for dealing with
the problem of superluminous signals have been taken: Most
of the codes, including ours, allow only one interaction per
particle per time step. This restriction is consequent and
clearly justified since a time step is the shortest scale in the
model. This restriction prevents signals from avalanching
over huge volumes within only one time step.

A second restriction implemented in many codes is the

"closest approach" criterion. For a scattering process it de-
mands in addition to "spatial distance within total cross sec-
tion" also "the two particles have reached their point of clos-
est approach assuming their current trajectories. " Usually
one would look at ~x"x„with x being the four-vector dis-
tance between the two particles involved, and demand that
this quantity is minimal. As the two particles' positions are
taken in the same time step this quantity reduces to the spa-
tial distance squared. Even though this looks like a Lorentz-
invariant criterion, it is not, since the conceptual necessity of
taking both particles' position at the beginning of a time step
(i.e., with vanishing time separation in the lab frame) is a
non-Lorentz invariant restriction; see Sec. IV. Nevertheless,
the "closest approach" restriction prevents causality violat-
ing signal transport in the longitudinal (parallel to the beam)
direction, but unfortunately has no effect on the transverse
direction.

To demonstrate those causality violating shock waves, the
parton cascade simulation of a 100 GeV/nucleon ( p,Au) col-
lision was run with different constant cross sections and
5-wave scattering. Figure 2 shows the distance of scattering
events from the beam axis versus the simulation time for
different cross sections. While during the initial stages of the
collisions the outmost scattering events occur at distances
larger than those allowed by causality arguments, the infor-
mation transport soon appears to be damped. It turns out that
this phenomenon is not —as one would expect —mainly
due to a dropping of the collision rate, but rather to a form of
random walk: only a fraction of the individual signal propa-
gations lead outwards, others have the opposite effect, which
results in an effective damping. In fact it turns out that the
expectation value of the distance of scattering events from
the beam axis is roughly proportional to the square root of
the simulation time, which is a characteristic feature of
random-walk mechanisms; compare the top panels of Fig. 2.
This mechanism is a valid description until the cross sections
are so large that the parton distribution basically appears
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FIG. 2. Distance d of scattering events versus
simulation time at constant cross sections of
o.= 0.1, 0.2, and 0.5 fm . The solid line indicates
the distance that could be reached by a signal that
travels with the speed of light. One can clearly
see the outwards traveling shock wave and how it
gets damped out with time. For the smaller cross
sections the causality violation is rather small and

only present in the initial stages of the interac-
tion. One should note that for realistic energy-
dependent cross sections the initial scattering
events take place with a lower cross section than
the later ones because the c.m. energy is much
higher. In the lower right panel the maximum dis-
tance d,, of scattering events from the beam
axis is plotted versus the cross section o.. The
horizontal line indicates a distance that during the
simulation time could only be reached with the
speed of light.
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solid, in that limit the information travels outwards propor-
tional to the simulation time; see the panel for o.=0.5 fm .

By the nature of random walks, the information expands
fastest in the initial phase of the collision. With realistic
energy-dependent cross sections, however, those initial scat-
tering events happen at lower cross sections than the ones in
the later stages due to the higher c.m. energy, which partly
suppresses this initial outburst. Overall for o.=0.2 fm the
causality violations are still rather moderate, for 0.5 fm the
effect becomes dominant.

Figure 2 also shows the maximum distance of scattering
events from the beam axis as they occurred for different
cross sections. As it turns out, this value depends linearly on
the cross section for an extended range, beyond o.=0.4
fm the outmost scattering events occur at a distance that can
only be reached with superluminous signal velocities.

III. MICROSCOPIC CAUSALITY VIOLATIONS

In addition to macroscopic causality violations such as
superluminous shock waves, both the nonretarded interac-
tions and the model inherent propagation of the whole par-
ticle configuration from one time step to the next lead to
causality violations on the level of elementary scattering pro-
cesses.

A Lorentz-invariant simulation of parton scattering would
require a truly four-dimensional configuration space, in
which an interaction can be established between any space-
time point of one parton's trajectory and any other space-
time point on another parton's trajectory. In the framework of
classical fields, the scattering of two particles would be rep-
resented by their continuous change of trajectory in the re-
tarded field of the respective other particle.

The actual realization of scattering events in the simula-
tion only agrees in a certain limit with this model, namely if
the two partons are coming from infinity with infinite rapid-
ity and opposite directions: with increasing rapidity, in the
lab frame the fields are distorted to pancakes with an orien-
tation perpendicular to the trajectory, reducing the dominant
part of the interaction between the particles to a shorter and
shorter region along their trajectories. In the limit of infinite
rapidity, the interaction between two partons traveling with a
nonvanishing impact parameter in opposite directions would
be reduced to a momentary interaction at the point of their
closest approach, making them change their trajectories at
equal times. This interaction would take place at a spacelike
distance equal to the impact parameter —why does this not
violate causality? The reason is, that the parton's field pan-
cake —even though it is traveling along with its present
position —is built up from contributions out of the parton s

past, the respective other parton does not scatter from the
field generated at the first parton's present position, but from
a field component that was generated along the first parton's
trajectory at a lightlike distance.

This limit agrees both with the claim of Refs. [2,3] that
the interaction distance should be spacelike, because other-
wise an interaction would infIuence the absolute past of one
of the partons, and with the actual realization of scattering
processes in the simulation: in the framework of a 3+1 di-
mensional transport simulation the distance of the testpar-
ticles is by the model itself determined to be spacelike. This

is because the information available at the beginning of a
time step is no more than the points of the trajectories on a
certain x,y, z hyperplane, as well as the corresponding mo-
mentum four-vectors of the particles, also only at that time
coordinate. The lightcone of any one particle extends both
before and after that hyperplane, but has no extension into
that hyperplane itself, causing all other particles present in
the simulation to have a spacelike distance from it.

But this limit soon loses its applicability: Staying in the
model of interactions between the partons due to classical
fields, as already pointed out, the field traveling with the
partons is in fact built up from contributions out of their
history, which for partons coming from infinity results in
Lorentz-contracted field pancakes. But in a cascade simula-
tion it is highly unlikely that seen from a parton A, parton B
already was on the same trajectory a lightlike distance ago.
In fact, as the partons are nearly traveling with the speed of
light themselves, spacetime points with lightlike distances
along their trajectories can happen to be very long ago,
which in connection with the high interaction rates makes the
idealized picture of the field pancakes inapplicable. Changes
in trajectories can make more than one point along the tra-
jectory of parton B have a lightlike distance to parton A, the
acceleration connected to the changes in trajectory of parton
8 generates additional fields. Even worse, through the
mechanism of parton generation and absorption, parton B
might not even have existed at lightlike distances from par-
ton A, still within the framework of the transport simulation,
scattering would be possible —and causality violating.

Also, as in the idealized picture the c.m. frame is moving
parallel to the partons' trajectories and perpendicular to their
distance at the point of closest approach, the equal-time char-
acter is true in both the lab and the c.m. frame. As soon as
the two partons are not traveling into opposite directions,
their spacial distance also leads to a time separation, making
the scattering time different in the lab and c.m. frame.

IV. FRAME-DEPENDENCIES AND TIME-ORDERING

An obvious consequence of the model's causality viola-
tions is its frame-of-reference dependence: The simulation
will for example certainly lead to different results when run
in the rest frame of the target. This was already shown for the
example of a ' C+ C internuclear cascade calculation in
Ref. [10], the authors demonstrated that both the total num-

ber of collisions and the individual time ordering of given
collisions were frame dependent. As obvious that seems from
the simple problems pointed out in Secs. II and III, for a
parton cascade it is not yet the whole story: The simulation
cannot even be run in the rest frame of any one nucleus,
because there is no possibility to create appropriate initial
conditions. The parton distribution in nucleonic matter is
frame dependent, the higher the energy of a nucleon the
higher the number of virtual partons. To put it in other words,
usually components of the nucleonic wave function are con-
sidered a parton if they carry a momentum fraction beyond a
threshold given by a minimum x value, the latter one being a
parameter of the model. However, by boosting the nucleonic
wave function into an accelerated frame of reference, a pro-
cedure described by the model parameter Q of the parton
distribution function f(x, Q ), more and more components
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FIG. 3. Two partons passing their point of closest approach in

the c.m. frame.

of it cross that threshold x value, leading to higher and
higher parton numbers.

Therefore, when asking questions about how the collision
of two partons looks in their rest frame as compared to the
lab frame, another valid question is do those two partons
even exist in the other frame? Or are in that frame other
partons around that the collision partners would be much
more likely to scatter with instead?

However, as this question cannot be addressed within the
framework of a transport simulation, it is worthwhile to
study the effects of a transformation of two given partons
into their c.m. frame. It turns out that in addition to the above
inconsistencies, by boosting the partons with P into their
c.m. system, there they have a time separation of

(4.1)

Lab-Fx awe c.m. -Fraxae

FIG. 4. Since a spacelike distance usually prevents causal de-

pendencies of two spacetime points, in the c.m. frame the scattering
of parton A can happen so much earlier than the scattering of parton
8 that at the beginning of the c.m. -frame's time step (denoted by
thin vertical lines in the figure) parton A has already scattered while

parton B has not yet scattered at the end of that time step. In the lab
frame, however, at the beginning of its time step parton A and B
have not yet scattered while at the end both have.

Pc.m.

propagating the partons within the lab frame and boosting
the result into the c.m. frame. The result, expressed in c.m.
quantities, is

The partons' positions, being taken at equal time in the lab
frame, will, unless p and Ar&,b are perpendicular, not be at
equal time in their c.m. frame and vice versa. The construc-
tion of a "Lorentz-invariant CMS distance" as in Refs. [2,3]
seems doubtful. This time separation can very well be larger
than the transformed time step length, leading to a situation
where the partons' positions are not taken within the same
time step within the c.m. frame anymore. As a result, the
closest approach criterion can only provide a means to get an
averaged point in time for an actual scattering event.

For this criterion, described in Sec. II, one can choose to
define it either in the particles' c.m. frame or in the lab frame
(a third approach will be described in subsection VIF). Be-
cause of the nonvanishing time separation of the partons in
their c.m. frame, the two possibilities are not equivalent. We
compare both methods and find nevertheless no significant
change in the collision rate, even though the individual col-
lisions happening in both simulations are different. For our
further simulations we have chosen the c.m. frame, since
intuitively this frame seems to be more significant for the
individual scattering events. In this frame, the scalar prod-
ucts of the momentum and the distance vector both at the
beginning and at the end of the time step are to be calculated.
If this scalar product changes sign, the position of closest
approach is reached within this time step. In Fig. 3
Ar, denotes the distance vector at the beginning
of the time step, Ar,' at the end. The criterion is

(p, Ar, )(p, b,r,' )~0.
The nonvanishing c.m. time separation unfortunately also

makes the calculation of Ar', ambiguous. In our model, the
c.m. positions at the end of the time step are calculated by

Pc.m. A„,p.y(&.. .,2
—P p. ))

(4.2)

Due to the spacelike distance of the partons, however, the
definition of "beginning" and "end of a time step" becomes
frame dependent.

Consider a process where the partons A and B scatter and
produce a parton pair C and D; see Fig. 4. In the lab frame
this happens within one time step, at the beginning of the
lab-frame's time step partons A and B are present, at the end
partons C and D. In the transformed time step within the
c.m. frame, however, this setup can easily be distorted to a
situation where in the beginning of that time step partons B
and C are present, and at the end partons C and D. Seen
from yet another frame, in the beginning A and D could
exist. One consequence is that in our simulation rescattering
processes have to be explicitly forbidden: In spite of the
closest-approach criterion rescattering would still be possible
if two partons are scattered towards each other —as the
distance between partons involved in a scattering event can
very well be greater than At„,~c, it is possible for those two
scattered partons to again reach a point of closest approach in
a later time step. In the case of a retarded interaction, this
would not be possible.

More relevant than the time scale given by the time step,
which is a model-dependent parameter, is the time scale
given for example by the time it takes for the two nuclei to
cross through each other, which is ~oout 0.2 fm/c. This time
interval corresponds to a parton-parton impact parameter of
0.2 fm beyond which the time ordering of scattering events is



2718 KORTEMEYER, BAUER, HAGLIN, MURRAY, AND PRATT

frame-dependent. As the interactions in question happen be-
tween particles traveling into the same direction, those would
also be low-energy interactions with cross sections very well
in the range of such impact parameters. The effects of this
frame-dependent time ordering of the incoming and outgoing
particles of a scattering event have to be subject of extensive
examination.

An interesting approach is that of Refs. [12,13]: In this
method, configuration space is divided into boxes. Within the
boxes the scattering partners are randomly chosen according
to a probability that is a function of the cross section—
convergence of this method towards the solution of the
Boltzmann equation for an infinitely small box size and time
step length, as well as an infinite number of test particles, is
shown in Ref. [14].The code of Ref. [13]was successfully
made more efficient by only considering a fraction of the
possible pair combinations within each box, and compensat-
ing the otherwise resulting loss in collision rate by an en-
hanced probability for the collision of the chosen pairs. The
authors of Ref. [12]claim that this stochastic method of for-
mulating the collision term is covariant since it is dealing
with transition rates instead of geometrical interpretations,
therefore no problems connected with the time ordering of
processes would occur. In fact, since in the model the time
order of processes is chosen randomly anyway, the model
has no "right" time order that could be distorted by relativ-
istic effects. However, this new approach does not overcome
the problem of superluminous shock waves. Within a given
cell of longitudinal size &~~ and perpendicular size &~ any
two particles have a chance of colliding. Since the subse-
quent advection step may carry some of these into neighbor-
ing cells, the maximum transverse velocity for information
transport wi11 be &~ /At„, p, Since in general &~ is several
times larger than the cross section o., the resulting maximum
possible causality violations in transverse direction are even
larger than in the method discussed above. In addition, the
stochastic method also allows for superluminous information
propagation in longitudinal direction, with velocity
&~~/At, t p Some of our recent studies indicate that in this

approach actually the nuclear Bow is very well dependent on
the frame of reference the simulation is run in.

V. THE PARTON MODEL

Classical simulations, which have been successfully ap-
plied to heavy ion collisions at intermediate energies [15],
are now [1—8] being extended to high energies. The main
step in the extension of this microscopic model is using a
parton based picture of the nuclei rather than a hadronic pic-
ture; consequently the interactions between the testparticles
are to be described in the framework of QCD, leading to
so-called parton cascades.

Our code works in 3+ 1 dimensions using fully relativistic
kinematics for the partons, where the quarks are conse-
quently treated as massive particles. Both quarks and gluons
can be off shell. The initial conditions are determined by
standard parton distribution functions f(x, g )[16], where
the value for g and the minimum x are parameters of the
model. Technically stability of the incoming nuclei is guar-
anteed both by a coherent motion of all partons in longitudi-
nal direction, and by the restriction that particles from the

same nucleus cannot scatter with each other before at least
one of them has scattered with a particle from the other
nucleus.

In this preliminary version of the code only QCD pro-
cesses with two partons in the incoming and two partons in
the outgoing state are implemented [9,17,18]. Phenomeno-
logical screening or cutoff masses have been added into the
propagators to avoid divergent total cross sections. However,
the gluon-gluon scattering cross section includes a four point
diagram which does not contain a propagator. This means
that the divergence in this cross section must be handled
differently from the other cross sections. One usually regu-
larizes the gluon-gluon cross section by setting it to a con-
stant value below a certain cut-off energy, in our case we
have chosen a cutoff of s=0.25 GeV corresponding to
o.~0.45 fm . This cutoff seems appropriate because it
agrees both with a reasonable c.m. energy below which per-
turbative QCD loses validity, and with the limiting cross sec-
tion for superluminous shock waves found in Sec. II. Other
methods of cutting off these cross sections while maintaining
the correct physics are being investigated. Also, no medium
modifications to the elementary cross sections are taken into
account. Figure 5 shows the cross sections being used. Our
analytic expressions for cross sections have been checked in
the massless quark limit against results from the literature
[19,20], some of them also in the massive case [21].

VI. COMPARISON OF METHODS FOR DEALING
WITH SUPERLUMINOUS SIGNALS

This section contains a comparison of different methods
for dealing with the problem of superluminous signal trans-
port and is the outcome of simulating central collisions of a
100 GeV proton on a 100 GeV per nucleon gold nucleus.
This setup seems suitable since it allows observation of the
information transport from the incoming (comparably small)
particle in nuclear matter. Table I summarizes the parameters
used for the simulations. The time step length of 0.0002 fm/c
was determined by running the simulation with different time
step lengths and observing the total number of collisions. It
turned out that the number of collisions did not change sig-
nificantly below the value chosen anymore, even though the
simulation does not necessarily get more precise with
smaller time steps due to the causality violating effects. With
the values chosen for g and the minimum x value approxi-
mately 9000 partons per testrun are generated. For the fol-
lowing calculations, the longitudinal extent of the nuclei in
our model is determined by the Lorentz contraction only,
Fig. 6 shows the initial configuration in the lab-frame and 1

fm/c later. The effects of "wee partons" are examined in the
last subsection. The cross sections were energy dependent
according to Sec. V and Fig. 5.

The simulation was first run for S-wave scattering in the
expectation that this would be the worst case. Compared to
the realistic forward peaked angular distributions, S-wave
scattering favors transverse signal propagation. However, it
turned out that the angular distribution hardly makes any
difference as far as causality violating effects are concerned,
the only noticeable change was in the final rapidity distribu-
tions, where it turned out that the gap in rapidity between
unscattered and scattered partons was wider for S-wave scat-
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collisions. The small effect of the angular distributions is
understandable from the fact that even isotropic distributions
in the c.m. frame are strongly forward peaked in the lab
frame.

The top row of Fig. 7 summarizes the results for a simu-
lation v.ith a realistic angular distribution. The top left histo-
gram shows the signal velocity distribution regarding di-
rectly subsequent collisions; see Fig. 1. In other words, with
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Energy per nucleon Au
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Q for f(x, g )
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Cutoff mass for gluon propagators
Cutoff mass for quark propagators
Number of parallel test runs
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FIG. 6. In the top panel the projection of the initial parton con-
figuration on the (x,z) plane is depicted. The highly Lorentz-
contracted proton is moving to the left, into the equally contracted
gold nucleus which is moving to the right. The bottom panel shows
the configuration 1 fm/c later.
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FIG. 7. Results of simulations with different mechanisms to suppress superluminous signal transport. The leftmost histogram shows the
signal velocity distribution regarding directly subsequent collisions, Uz ', see Fig. 1.The solid histogram shows the radial component of those
velocities, the dashed histogram includes the longitudinal component. The second panel shows a more general impression of the signal
velocities, in this histogram the signal velocity U„ from the very first to the very last scattering event that a parton was involved in is
calculated. Again, the solid histogram shows the radial component of the signal velocities, the dashed histogram also takes into account the
longitudinal components. The third panel shows how subsequent scattering events are leading to this overall damping of peak velocities
occurring in single scattering events: again starting from the very first scattering event of a parton, the average signal velocity (U) to the ith
following scattering event of the partons is calculated; both the total and only the radial component of the velocities are shown. Finally, the
rightmost panel shows the outgoing shock wave, in a plot of distance from the beam axis versus simulation time the contour lines of the
scattering event distribution are given. For model A, the rejection of any individual scattering events that would lead to superluminous signal
transport, the shock wave was so strongly damped that it did not even go beyond the radius of the incoming proton.
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The second panel shows a more general impression of the
signal velocities. Instead of just taking into account the sig-
nal velocity occurring within one single scattering event, in
this histogram the signal velocity from the very first to the
very last scattering event that a parton was involved in is
calculated. With the notation from above and N(n) being the
number of collisions that the parton n was involved in, the
distribution of

vA(n): = lr. ,Ni. &

—r. , tlat(t. , N( ) t., t) (6.2)

for all n is shown. Again, the solid histogram shows the
radial component of the signal velocities, the dashed histo-
gram also takes into account the longitudinal components.

Because of damping effects the average velocities are
much smaller than the velocities from one event to the next,
the third panel shows how subsequent scattering events are
leading to this overall damping of peak velocities occurring
in single scattering events: again starting from the very first
scattering event of a parton, the signal velocity to the ith
following scattering event of the partons

FIG. 8. A first step to the introduction of retarded interactions:
After the scattering took place, the partons maintain their momen-
tum for a time period of ~Ar~/(2c) in which they are not able to
scatter with other partons. Only after this time the momenta are
transferred to the partons.

v(n, i) = ~r„, r„,~lt(t, ,
—t„t)—(6.3) B. Suppressing of low energy collisions

is calculated, and the average (v)(i) over all particles n that
had an ith collision is shown; again both the total and only
the radial component of the velocities are plotted.

Finally, the rightmost panel shows how information is
traveling outwards. The outer boundary of its spreading is
after a very fast expansion in the first few tenth of a fm/c
traveling with approximately 0.17c. The maximum distance
of a scattering event from the beam axis is 2.5 fm. A more
detailed analysis of the overlay of the average c.m. energy
and the distance of scattering events from the beam axis
shows that the expansion of a shock-wave begins rapidly
immediately after the c.m. energies get smaller, but then is
damped out —only the initial stages of the collision seem to
be problematic. However, one should note that in the later
stages the individual collisions happen with very high signal
velocities, and that it is rather by the random-walk character
of the signal propagation over longer distances that the in-
formation does not travel with the same high velocity; corn-
pare Sec. II.

A. Restrictions on the signal velocity

An obvious way to avoid superluminous signal velocities
is to systematically suppress all scattering events that would
lead to signal velocities faster than the speed of light; the
second row of Fig. 7 summarizes the results of this simula-
tion.

It is not surprising that the velocity restriction leads to a
huge reduction in the collision rate: While in the first stages
of the collision the collision rate drops to 49% of the original
rate, it drops in the later stages to only about 8% of the
original rate, there is no outwards traveling information at all—it would be unwise to apply such an unjustified prescrip-
tion given the huge effect, even more so, as from the ex-
trapolation of intermediate energy results one would expect a
rather strong outgoing effect of the proton impact.

Once a parton has scattered with a parton from the other
nucleus it can scatter with fellow partons from the same
nucleus at much lower c.m. energies. Soft processes between
partons from the same nucleus are problematic since the
elastic gluon-gluon cross sections at low energies are large;
systematically suppressing these reactions by placing a c.m. —

energy cutoff on the scattering events should also suppress
high signal velocities. For this model calculation the cross
sections are set to zero below 0.4 GeV; see the third row of
Fig. 7. The outcome of this simulation proves that indeed the
shock-wave travels outwards through those low energy col-
lisions, only the initial outburst remains.

In fact this model provides a way to address the problem
of the energy-dependent parton resolution described in the
beginning of Sec. IV: Disregarding interactions below a cer-
tain c.m. -energy cutoff could also be viewed as disregarding
the interaction partners. By smearing out the step function of
the cutoff to a smoother function that determines the prob-
ability of scattering events in dependence of the c.m. energy,
one could try to simulate the behavior of the parton distribu-
tion function in dependence of the resolution parameter
Q . However, other physics would have to take the place of
the QCD interactions, in this lower-energy regime nucleonic
interactions take over and hadronization patterns must be
applied.

C. First steps towards a retarded interaction

As already pointed out, the main reason for the superlu-
minous signal velocities is the instantenous character of the
elementary interactions. To consequently overcome this
problem no theoretical framework with time delays has been
developed so far for parton systems, although some simple
hadronic examples have been worked out. To estimate the
effects of retardation it nevertheless seems appropriate to in-
troduce a simple —but unphysical —way of time delay in
the interactions: After an interaction took place the momen-
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FIG. 9. Initial configuration and configuration after 2 fm/c for a
simulation with wee partons.

turn transfer to both partons involved is delayed by
~Ar&,b~/(2c), where Ar„b is the distance vector in the lab
frame. In the meantime the partons are considered not being
able to interact; see Fig. 8. A technical problem in our cal-
culations, however, is that the time delay has to be imple-
mented for integer numbers of time step lengths and there-
fore does not necessarily fully correspond to its supposed
length.

It turns out that the propagation of the outgoing shock
wave becomes more homogeneous, the initial outburst is
suppressed while the distances of the outmost scattering
events are comparable to the simulations with instantaneous
interactions; see the fourth row of Fig. 7.

D. Downscaling the cross sections

The maximum signal velocity is proportional to the maxi-
mum cross section. Downscaling the cross sections to 1/nth
of its original value and compensating this by the initializa-
tion of n times as many test partons leads to a reduction of
the maximum signal velocity by I/Qn Due to lim. itations
given by the increasing computation time, for this model
calculation we have chosen a factor of only n =5 which
corresponds to a reduction of the maximum signal velocity
by a factor of =0.45.

E. Wee partons

When initializing the parton configuration the Lorentz-
contraction leads to very thin pancakes of nuclear matter, the
contracted thickness of a nucleon is around 8 X 10 fm, that
of the gold nucleus 6&& 10 fm. Thereby the z coordinate of
the partons is fixed rather precisely. However, the momen-
tum of the low x components of the nucleonic wave function
is also determined within the order of a few hundred MeV.
This leads to a violation of the uncertainty principle, which
lead to the suggestion that in any frame of reference the
nucleonic wave function should be smeared out to a pancake
thickness of at least approximately 1 fm, where the low x
components are situated further outside and only the valence
quarks are actually within the highly contracted pancake
[4—8,22,23].Applying this kind of initial configuration natu-
rally leads to a smaller parton density; in our case approxi-
mately by a factor of 20. Figure 9 shows the parton configu-
ration both at the beginning of our simulation and at 2 fm/c.

One's hope can be that the increased width and smaller
parton density of the nuclei compared to the fully Lorentz-
contracted model helps to eliminate some causality violating
effects; see the bottom row of Fig. 7: The initial outburst of
a shock wave at impact is eliminated because the nuclei enter
each other rather gradually, an outgoing shock wave within
the respective nuclei is stronger damped because of a de-
crease in collision rate, and finally time-ordering problems
on the scale of the time the nuclei are passing each other are
rarified because that time scale becomes much longer.

However, there are now other inconsistencies: Although
this concept given by the uncertainty relation is truly valid in
any frame of reference, within this model there is no way of
implementing it in a Lorentz-invariant way. In reality the
components of the wave functions transform; in different
frames different components of the wave function are con-
sidered a parton. In our model only the parton coordinates
and momenta transform, while the partons themselves, once
generated, exist in any frame. While for the initial collisions
the c.m. frame of individual parton collisions nearly coin-
cides with the lab frame, in subsequent collisions the c.m.
frames are closer to the rest frames of the respective
nuclei —in its rest frame, however, a nucleon, smeared out to
1 fm in the lab frame, has a longitudinal radius of 100 fm.

F. Proper time approach

As already pointed out, a fully covariant description of a
particle collision would require a fully four-dimensional con-
figuration space. This is not possible without giving up the
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equal-time character of the simulation. Reference [10), how-
ever, proposes a causality preserving scheme that while re-
taining the unique global time character of the simulation
minimizes the frame dependence of the choice of collisions
partners for the particles, but not the frame-dependent time
ordering of those collisions. Each particle i is considered to
have its own clock showing its proper time r;,

ao
(6.4)

Since the particles do not change their momenta between
collisions, the above integral can be reduced to a sum of
products of the type p; At . With r;,(j ) being the proper i

time of the collision of particle i with particle j, and 7;0
being the proper i time of the most recent collision of par-
ticle i, let

(6.5)

be the proper time distance between those two events, a
Lorentz-invariant quantity. The collision instant r;, (j ) is de-
fined individually within the rest frame of particle i through
the closest approach to particle j—in the other methods, the
closest approach is defined either within one frame, usually
the lab frame or the c.m. frame of the nuclei, or within the
respective c.m. frame of a particle pair. In our previous dis-
cussions, we had chosen the latter mechanism. To corelate
the individual closest approach tests, for collisions only the
particle pairs (t,j) are considered for which both

Bz;(j ) = min(8r;(l) ~0, l = I, . . . , N;l Xi'I (6.6a)

and

Br~(i ) = minft 6'r~(l) )0, I = I, . . . ,N; l 4j),
(6.6b)

N being the total number of particles in the simulation.
Through the restriction Bv.)0 only collisions in the absolute
future of each particle are considered. What the two above
conditions mean is that for particle i the very next possible
collision (in the sense of the proper time) is with particle j
and vice versa. This algorithm only allows collisions that
have no risk of not happening in another frame. Suppose
particle 1 has a minimum proper time distance to particle 2,
but particle 2 has its minimum proper time distance to par-
ticle 3, then no collision will take place at all.

The search for the very next collision partner of every
particle in the simulation is an unavoidable N problem.
Since each of these tests involves a change of coordinate

system, this mechanism is computationally very intense.
Therefore, it was only possible to simulate the initial stages
of one single (p, Au) collision. We observed that the number
of collisions in this phase dropped dramatically, in our test
run to about 10% of the number in the other simulations; due
to computational limitations, however, we are not able to
claim significant statistics on this percentage. This outcome
is compatible with the conjecture of the authors of Ref. [10]
that the mechanism might underestimate the number of col-
lisions [11].In smaller simulations of (p,p) collisions we
indeed observed situations where particle 1 had particle 2 as
its closest collision partner, particle 2 had particle 3, and
particle 3 again had particle 1. "Ring" configurations like
this, possibly spanning over even more particles, might lead
to the underestimation of the collision rate. This effect might
have been enhanced by the high particle density and the ex-
treme Lorentz contraction of the nucleons as compared to
lower energy internuclear cascades the mechanism was de-
veloped for. Further investigation of this method is required,
but due to computational limitations was not possible within
this work. It is, however, not expected that the above mecha-
nism can overcome the macroscopic problem of shock
waves.

VII. CONCLUSIONS

The inhuence of superluminous signal velocities on the
signal propagation in parton cascade codes was found to be
smaller than expected. This is mainly due to two effects: In
the initial stages of the interaction the energy-dependent
cross sections tend to be small. Without this beneficial effect
the signal propagation has a threshold in the region between
0.4 and 0.5 fm from where on the velocity of the outgoing
shock wave reaches the speed of light. In the later stages of
the interaction shock waves get damped out not because of a
lack of interactions but because of signal propagation that
resembles a random walk: not every collision actually leads
to an outward propagation, in fact, the equally probable in-

ward propagation leads to a virtual damping of the shock
wave.

In the near future the inhuence of particle production and
particle absorption will be examined.
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