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Critical evolution of a finite system
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In this work, we investigate the possibility of occurrence of a critical behavior related to a liquid-
gas phase transition in a finite classical system. The equation of state of such a classical system
resembles that of nuclear matter. Through a study of mass distributions, scaled factorial moments,
anomalous fractal dimensions, and moments of cluster mass distributions, we find evidence for the
presence of a critical behavior of our finite system. Such a critical behavior is connected, by the use
of Fisher s droplet model and Campi analysis, to a liquid-gas phase transition.

PACS number(s): 25.70.—z, 05.70.Fh, 25.75.+r, 64.70.Fx

I. INTRODUCTION

The possibility of occurrence of a critical behavior re-
lated to a liquid-gas phase transition in the &agmenta-
tion of hot nuclear systems has been the subject of several
investigations that study the transition &om the liquid
like phase of ordinary nuclear matter (as encountered at
low excitation energies) to a gaseous phase [1—4]. The-
oretical studies indicate that infinite nuclear matter has
an equation of state very similar to that of a van der
Waals gas which is characterized by the existence of a
liquid-gas phase transition [5—8]. Recent experiments in
heavy-ion reactions at energies around the Fermi energy
have revealed the creation of many &agments in the anal
stages of the reaction exhibiting a power law in &agment
mass distributions [9]. Such a power law, as described by
the droplet model of Fisher [10], is expected for droplet
condensation near the critical temperature, indicating a
liquid to gas phase transition. Of course one would like
to know if the detected &agments have something to do
with the predicted phase transition. Strictly speaking,
sharp phase transitions can only occur in the thermody-
namic limit in that the critical singularities appear only
for a system with a very large number of particles. In par-
ticular in small systems like two colliding nuclei (where
only a few hundreds of nucleons are involved) the ffuc-
tuations can completely wash out the phase transition.
Especially important in this context is the role of the
long-range Coulomb 6eld. We note that the Coulomb
field restricts the natural mass of the biggest nucleus to
about 250 nucleons. Therefore we expect that the behav-
ior of a 6nite system is changed if this system is charged
as well.

Assuming that a critical behavior is possible, the prob-
lem is how to find evidence for it &om the large amount of
experimental data. In this paper, we address both prob-
lems and demonstrate that finite systems may in fact
exhibit a critical behavior that can be revealed through
a study of inclusive mass distributions, scaled factorial
moments, anomalous &actal dimensions, and through the
analysis of conditional moments as developed by Campi
[11,12].

An exact solution of the quantum many-body problem

is presently out of sight and this is especially true for
the nuclear systems. The dynamical approaches avail-
able give the time evolution of the one-body distribution
function as in TDHF or the semiclassical analog, i.e., the
Vlasov equation [13]. This is clearly not sufficient when
the syste'm enters the spinodal region and long-range cor-
relations become important to form blobs of matter [14].
On the other hand the exact classical many-body prob-
lem can be quite easily solved for a system made of about
100—400 particles. In classical molecular dynamics all
correlations are present; therefore, we can gain impor-
tant information from a detailed dynamical study. The
important problem is to try to understand what the role
of quantum fluctuations would be. Naively one would
expect that quantum efFects smooth any sharp transition
that can be present in the classical limit. However, if
excitation energies are large and densities are small then
the classical limit may be a good approximation.

This paper is organized as follows. In Sec. II, we give a
brief description of the classical model used in this study.
We study in Sec. III the mass distributions by the use of
the droplet model of Fisher. Section IV is devoted to the
intermittency analysis together with the study of anoma-
lous &actal dimensions. Section V contains the study
of moments of &agment mass distributions in terms of
Campi analysis. Section VI deals with the role of the
Coulomb force in the time evolution of the system. Fi-
nally in Sec. VII, we study the time evolution of the dif-
ferent observables and of the critical behavior and give
our summary and conclusions in Sec. VIII.

II. CLASSICAL MOLECULAR DYNAMICS

In this model we assume that the nucleus is made up of
A nucleons that behave classically. These particles move
under the influence of a two-body potential V given by
[15]

V z(r) = V„[exp(—p„r)/r —exp( —p r, )/r ]

—V [exp( —p r)/r —exp( —p r )/r ],
V (r) = Vzz(r) = Vs[exp( —tzcr)/r —exp( —por, )/r ] .
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r =5.4 fm is a cuto6' radius. V
„

is the potential acting
between a neutron and a proton while V is the potential
acting between two identical nucleons. The first potential
is attractive at large r and repulsive at small r, while the
latter is purely repulsive so no bound state of identical
nucleons can exist. This is done in order to mimic some-
how the Pauli principle. The values of the parameters
entering the Yukawa potentials are given in Ref. [15] and
give a corresponding equation of state (EOS) of classi-
cal matter having about 250 MeV of compressibility (set
M in Ref. [15]). This EOS strikingly resembles that of
nuclear matter [i.e., equilibrium density po ——0.16 fm
and energy E(po) = —16 MeV/nucleon]. Furthermore,
in Refs. [15,16], it is shown that many experimental data
on heavy-ion collisions are reasonably explained by this
classical model. Of course this is not accidental but it
is due to the accurate choice of the parameters of the
two-body potentials.

The classical Hamilton's equations of motion are solved
using the Taylor method at the order O[(bt) ] where bt
is the integration time step [17]. Energy and momen-
tum are well conserved. The nucleus is initialized in
its ground state by using the &ictional cooling method
[18]. Afterward, it is excited at a temperature T giving a
Maxwellian velocity distribution to its nucleons by means
of a Metropolis sampling [17]. We have studied the dis-
assembly of two different systems, (A=100, Z=50) and
(A=400, Z=200) starting from an initial density p=0.125
fm and with diferent values of the initial temperature.
In our calculations, the Coulomb interaction is not taken
into account, apart in Sec. VI.

In Fig. 1 we plot the time evolution of the two systems
in the density temperature (p, T) plane. In the plot the
full lines give the isothermal (ITS—isothermal spinodal)
and isentropic (AS—adiabatic spinodal) spinodal regions
of our classical system. They are given by

and shift it to lower densities. Already the ground state
of our system has a density lower than the equilibrium
value for the infinite system.

At higher temperatures the system enters deeply into
the instability region. In particular for the highest tem-
peratures, 15 and 20 MeV, the densities reached are
sometimes outside the instability region Rom the gas
side. This implies that there is a quick expansion which
leads the system in the gas region and then small drops
start to form. This is approximately true for all the ex-
pansions at T larger than 5—6 MeV. For lower tempera-
tures the system never hits the gas region and bubbles
form &om the liquid side.

In the upper part of Fig. 2 we plot the time evolu-
tion of the number of fragments (dashed line) and num-
ber of IMF's (dashed-dotted line) per unit time averaged
over 100 events for the expansion of the system 4=100
starting with an initial density p=0.125 fm and tem-
perature T=5 MeV. In the medium part of the G.gure we
plot the total multiplicity (dashed line), and intermediate
mass fragment (IMF) multiplicity (dashed-dotted line),
together with the mass of the biggest fragment (solid line)
versus time. The lower part of Fig. 2 shows the standard
deviation of these quantities around the averages. One
sees clearly three phases in this time evolution. At the
beginning, the difI'erent quantities remain constant un-
til the system enters the region of dynamical instabilities
(around 20—30 fm/c). In the second phase, the dynamical
phase, f'rom 30 to 200 fm/c, the three observables change

20— T=20 hl'eV

15—

10—

T~15 MeV .

T 5MeV

(2) T 2 MeV

20—
I

I I I02E(p)
8 2

s
T~20 MeV—

The point at T=15 MeV and p=0.05 fm in both graphs
gives the critical point for the liquid gas phase transition
in an infinite system. Note again the strong resemblance
to the (predicted) EOS of nuclear matter. The dashed
lines give the values for isentropic expansion.

In the calculations density and temperature are de-
termined following Ref. [19]. Since in the initial stage
the system is not perfectly equilibrated, the expansion
turns out to be not isentropic. But quickly (after about
5 fm/c) the system equilibrates and the following expan-
sion is isentropic. We discuss first the T=2 MeV case.
This is a typical case of evaporation: the system expands
and emits particles. Quickly the expansion comes to a
halt and the system oscillates back and forth while it
cools down through particles emission. It is important
to note that the system enters the region of instability of
infinite matter. Finite size efFects reduce such a region

T~15 MeV

T~5 MeV

0.00

T 2~e~

0.05 0.15

FIG. l. Expansion of a system with A=100 (upper part)
and A=400 (lower part) particles starting from temperatures
T=2, 5, 15, and 20 MeV. The average temperature of the
biggest fragment is plotted versus its average density. Full
dots are at a time interval of 1 fm jc. Solid curves are the ITS
(top) and the AS (bottom) lines and dashed curves give the
values for an isentropic expansion.
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rapidly. The mass of the biggest &agment goes down
from 100 to 30—35. The total multiplicity increases from 1
to 20 and the IMF multiplicity from 1 to 4. In this phase,
the fluctuations of the total and IMF multiplicities reach
their maximum while the Quctuations of the mass of the
biggest fragment show a bump around 100—150 fm/c. In
the last phase, the evaporation-deexcitation phase, the
IMF multiplicity remains constant while the mass of the
biggest &agment decreases slowly. The &agments formed
in the dynamical phase cool down by emitting particles,

which explains the slow increase of the total multiplicity
in this phase.

III. FISHER'S DROPLET MODEL AND MASS
DISTRIBUTIONS

The droplet model of Fisher is a model of liquid-gas
phase transition in which one tries to determine when
a liquid-gas system favors the growth of large liquid
droplets, and when it favors the dissociation of those
droplets into a vapor [10]. In this model, the probability
of formation of droplets can be estimated by calculating
the change in the Gibbs &ee energy of the system when
a droplet appears in the gas.

Suppose that a spherical droplet containing A nucleons
spontaneously forms in a gas consisting originally of a
total number A+ B of nucleons. Then,

~ 0.06

g 0.03
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Here pz and p~ are the chemical potentials for the gas
phase and liquid phase, respectively. The third term in
Eq. (3) is the surface free energy for a droplet of radius B
and with surface tension o. The last term in Eq. (3) was
introduced by Fisher to take into account the fact that
the droplet surface closes on itself [10]. This last term
is connected to the curvature correction energy which
appears in the Myers-Swiatecki formula for the energy
of a spherical nucleus (actually the Myers-Swiatecki ex-
pression has an A /3 dependence for this term, but we
note that for A = 10 to A = 300, At~s = lnA [20]).
So the probability of formation of a droplet contain-
ing A nucleons is proportional to exp( —AG/T) where
AG —G~zth J p 6 Q p and results in a mass yield
given by

15

10

4vrr o.
dW/dA=Ioexp "' "'A — "' A'~' —~inA

T T

100 200 300
time (fm/c)

400 500

where Yo can be determined imposing total mass conser-
vation. In this model, the surface tension vanishes for
temperatures larger than or equal to the critical temper-
ature and one gets for the mass yield

FIG. 2. Time evolution of the mass of the biggest frag-
ment, total multiplicity, and IMF multiplicity averaged over
100 events for the expansion of the system A=100 start-
ing with p=0.125 fm and T=5 MeV. The upper part
shows the time evolution of the number of fragments (dashed
line) and the number of IMF's (dashed-dotted line) [in
(fm/c) ]. The medium part shows the time integrated values
of the total multiplicity (dashed line) and IMF multiplicity
(dashed-dotted line), together with the mass of the biggest
fragment. In the lower part we plot the standard deviation
around the averages of the three quantities.

d&/dA= Ygexp A —v lnA, T) T, . (6)T

Furthermore, at the critical temperature, the chemical
potentials of the liquid phase and the gas phase are equal
and the volume contribution to the Gibbs free energy
also vanishes and one obtains at the critical temperature
a power law given by

dN/dA= YoA, T=T, .

In Fig. 3 we plot the mass distributions obtained in the



274 M. BELKACEM, V. LATORA, AND A. BONASERA 52

expansion of 4=100 nucleus starting with eight different
initial temperatures ranging kom 2 to 20 MeV and with
the ground state density p=0.125 fm . At each tem-
perature, at least 2000 events were performed in order
to generate the mass distributions. Depending on the
initial temperature, the system shows different dynam-
ical evolutions, froin evaporation-like process (for small
temperatures) to fragmentation and complete vaporiza-
tion processes (large temperatures). Following Eq. (5)
we fitted. these mass distributions according to

dK/dA = Y()A X Y

where Vo, X, Y, and ~ are Gtting parameters and the
Gts are shown in Fig. 3 by solid lines. The methodology
used to do these fits is as follows. First of all, looking
to the log-log plots of the mass distributions at different
initial temperatures (Fig. 3), we see that one obtains a
linear behavior over almost all the range of masses plot-
ted at the initial temperature T=5 MeV. By fitting this
plot with a linear fit, we obtain a slope of —2.23. Af-
ter that, fixing the parameter ~ in Fisher's formula to
the value 2.23, we fitted all the mass yields (including
T=5 MeV mass yield) using Fisher's formula and con-
sidering Yg, X, and Y as fitting parameters. One sees

that Fisher's droplet formula Gts the numerical mass dis-
tributions quite well over the wide range of temperatures
considered here. The values of the Gtting parameters are
listed in Table I. In this model L is related to the surface
tension and is equal to 1 for temperatures larger than or
equal to the critical temperature T and both X and Y
are equal to 1 at the critical temperature. Prom Table
I, we see that the point X=1, V=1 is obtained in our
calculations at T 4—5 MeV. Note the large difference in
the critical temperature with the value obtained in the
inIIinite system. For the system 2=400, Fisher's droplet
model gives a critical temperature T between 5 and 6
MeV. Furthermore, assuming that the surface tension is
given by [3,20]

3Ti f Tl'
~(T) =~(0)

I
I+ T i II —

T IT-)

and assuming in our model the critical temperature T =5
MeV, we obtain &om our Bt to the mass distribution at
T = 3 MeV a surface tension o(0) = I MeV/fm which
is consistent with the experiinental value [3,20].

Of course the mass yield shape alone cannot be con-
sidered as a conclusive proof for a critical behavior that
recalls a phase transition.
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FIG. 3. Mass distributions obtained in the
expansion of the system A=100 with eight
diferent initial temperatures ranging from 2
to 20 MeV. The dots in the plot show the
results of our calculations and solid lines the
fits using Fisher's formula. The calculations
are stopped when the anomalous fractal di-
mensions stabilize (see Sec. VII).
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TABLE I. Values of the fitting parameters Yo, X, Y, and r entering in the formula Eq. (6).
T (MeV)

Yo
X
Y

2
442.8

0.042
2.01
2.23

3
146.1

0.10
1.83
2.23

4
30.7
1.00
1.012
2.23

5
39.5
1.00
0.995
2.23

7
69.7
1.00
0.87
2.23

10
97.0
1.00
0.70
2.23

15
290.7

1.00
0.43
2.23

20
450.5

1.00
0.31
2.23

IV. INTERMITTENCY AND ANOMALOUS
FRACTAL DIMENSIONS

One of the most powerful and promising methods de-
veloped to analyze the fluctuations and the correlations
for various physical quantities seems to be the analysis of
event-by-event data in terms of intermittency. Intermit-
tency is a statistical concept used to analyze the Quctua-
tions and correlations of a distribution. This concept has
been widely recognized in various fields of physics such
as turbulent flow [21],astrophysics and magnetohydrody-
namics, among others [22,23]. Bialas and Peschanski in-
troduced this idea to study the dynamical fluctuations in
rapidity distributions of particles from high-multiplicity
events produced in ultrarelativistic reactions [24]. More
recently Ploszajczak and Tucholski suggested looking for
intermittency in the &agment distributions in nuclear
multi&agmentation at intermediate energies. They were
able to see evidence for an intermittent pattern of fluctu-
ations in the &agment charge distributions both in data
and in models [25]. Furthermore, many efForts have been
devoted to ending evidence for the occurrence of a phase
transition of nuclear matter in the intermittent behavior
of the multiplicity distributions [26—28].

Generally, the occurrence of intermittency corresponds
to the existence of large nonstatistical fluctuations which
have self-similarity over a broad range of scales. This
signal can be deduced &om the scaled factorial moments
which measure the properties of dynamical fluctuations
without the bias of statistical fluctuations [24]:

Q„:;"~'(ng(ni, —1) . (ng —i+ 1))
++max/~&

( )
j (10)

Here X
„

is an upper characteristic value of the system
(i.e. , total mass or charge, maximum transverse energy
or momentum, etc.) and i is the order of the moment.
The total interval 0 —I „(1—A „,Z „

in the case of
mass or charge distributions) is divided in M = X „/bs
bins of size bs, nI, is the number of particles in the kth
bin for an event, and the brackets ( ) denote the average
over many events. If self-similar fluctuations exist at all
scales bs, the scaled factorial moments follow the power
law E, (bs) oc (hs) "* where A; are called intermittency
exponents. So the intermittent behavior is defined as a
linear rise in a plot of ln(E, ) versus —ln(hs).

Several models have been proposed to describe the
multi&agmentation of nuclear systems and to study the
intermittency signal [25,27,29]. One of the simplest mod-
els, widely used in the analysis of experimental data and
which gives intermittency, is the percolation model. Per-

colation models predict a phase transition corrected for
finite size efFects and produce, at the critical point for this
phase transition, a mass distribution following a power
law and obeying the scaling properties. It is very interest-
ing to note that the experimental &agment distributions
for nuclear multi&agmentation reactions exhibit features
very similar to those seen in models as simple as perco-
lation.

In Fig. 4 we plot the scaled factorial moments ln(E, )
versus —ln(bs) for the two studied systems A=100 and
A=400. For both systems, at T=7 MeV, the system goes
into complete vaporization and the mass distribution has
a rather steep slope (see Fig. 3). The logarithm of the
scaled factorial moments ln(E, ) is always negative (i.e.,
variances are smaller than Poissonian [25,29]) and almost
independent of bs and we have no intermittency signal.

For the system A=100, the situation is diBerent for
the case T=5 MeV. The logarithms of the scaled facto-
rial moments are positive and almost linearly increasing
versus —ln(hs) and the intermittency signal is observed.
This case gives intermittency exponents which are of the
same order as those reported for the analysis of experi-
mental data and for percolation [25,30]. It is also pos-
sible to relate the initial temperature of the expanding
system in this model to the q parameter for the bond
percolation model. At T=4 and 7 MeV, the behavior of
the scaled factorial moments is the same as, in percola-
tion, for subcritical (q ) q, ) and overcritical (q ( q, )
events, respectively. The intermittent pattern found at
T=5 MeV corresponds to the q q, case [25,30].

We observe the same behavior for the system A=400
but the temperature for which we observe a clear inter-
mittency signal is shifted to a higher temperature (T=5.5
MeV). This decreasing of the critical temperature when
decreasing the mass of the system (finite size efFects)
agrees with the results of Jaqaman et al. [8].

The presence of large fluctuations as indicated by the
intermittency analysis plus the power law in the mass dis-
tribution for initial temperatures between 4 and 5 MeV
for A=100 and 5 and 6 MeV for A=400 indicate a self-
similar behavior both for fluctuations and for averages
[31]. These features might be connected to a second-
order phase transition in an infinite system. But our
system contains a few hundreds of constituents only. To
better clarify this point we consider the anomalous fractal
dimensions d; connected to the intermittency exponents
A; by [23—25]

d, = A, /(i —1) .

Different processes seem to give a difFerent behavior of
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d; =d2(i —1) (12)

with v=1.304. We note that the GL theory can also be
applied to the mean field calculated for our system [15].
In such a case, it can be easily proven that the results
obtained in Ref. [33] remain valid in our case when there
is no external field; see also the discussion in [3].

(ii) d; oc i corresponds to multifractal, cascading pro-
cesses [24].

Therefore, a study of the anomalous fractal dimensions
can give useful information about the evolution of the
system [27].

these anomalous &actal dimensions d,
(i) d;=const corresponds to a monofractal, second-

order phase transition in the Ising model and in the
Feynman-Wilson Huid [32,33]. In Ref. [34], the authors
obtained a similar behavior for the anomalous dimensions
using Fisher's &ee energy for the formation of a droplet
in gas [see Eq. (5)].

It has also been demonstrated that in the case of a
second-order phase transition in the Ginzburg-Landau
(GL) description one gets [33]

We plot in the upper part of Fig. 5 the anomalous frac-
tal dimensions d, versus i for the system A=100 obtained
at diferent temperatures. At T=4 MeV, the d s are neg-
ative while they are positive and almost on an increasing
straight line for T equal to or larger than 4.5 MeV. Note
that the anomalous dimensions d; have the largest values
for the critical temperature T=5 MeV which agrees with
the results of Ref. [34]. We have fitted these curves ac-
cording to Eq. (12) and found v=2.0, 1.89, and 1.84 at
T=4.5, 4.75, and. 5 MeV, respectively. A similar estimate,
but for the system A=400, gives v=1.68, 1.75, and 1.74
at T=4, 5, and 6 MeV, respectively. Recall that the value
v=1.304 was obtained in mean Geld theory and therefore
it represents a rough estimate of its actual value. Our
calculated values are larger than the GL estimate. Fur-
thermore, increasing the mass of the systems results in v
values closer to the mean Geld estimate.

In the lower part of Fig. 5 we plot the experimental
data obtained in Au fragmentation [25]. Our calculations
have the same behavior of the data but are shifted down
of a factor of 2. In order to understand the difference be-
tween our results and the data we have mixed the events
with initial temperatures in the range of 4 to 7 MeV and
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the system %=100 (upper part) starting with temperatures T=4 MeV (left), T=5 MeV (middle), and T=7 MeV (right), and
A=400 (lower part) starting with temperatures T=4 MeV (left), T=5.5 MeV (middle), and T=7 MeV (right). The lines in the
plot for the system A=100 at T=5 MeV and for the system A=400 at T=5.5 MeV are drawn to guide the eye.
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the critical region in terms of critical exponents, and re-
lations between them are derived for the infinite percola-
tion model. The moments of the cluster size distribution
are defined as [11]
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where e is a variable characterizing the distance from the
critical point. In thermal phase transitions ~ = T —T
is the deviation from the critical temperature T while
in percolation phase transition e = p —p, is the devi-
ation &om the threshold probability p, . N(A, e) is the
multiplicity of the cluster of size A at fixed e.

Near the critical point, a cluster size distribution of the
general form

0.01
N(A, e) = A f(eA ) (14)

I ~ ~ ~ I ~ s

2 4
I a a s I s a

FIG. 5. Anomalous fractal dimensions d, versus i. In the
upper part of the figure, the anomalous dimensions are plotted
for di8'erent initial temperatures T. In the lower part, open
squares represent the experimental data from Ref. [25], open
circles our results mixing the events having more than three
intermediate mass fragments (A ) 4) from T=4, 5, 6, and 7
MeV calculations, and solid circles the anomalous dimensions
extracted from Fig. 7.

V. MOMENTS ANALYSIS

At this point it is worthwhile to use the method of
conditional moments developed by Campi [11,12] to bet-
ter identify the critical behavior observed using Fisher's
droplet model and intermittency analysis. As stated in
the Introduction, sharp phase transitions are well defined
only for an infinite system in that the singularities that
are associated with such a transition can only be ob-
served in the thermodynamic limit. If the system has a
finite size, the singularities become finite and the tran-
sition can be completely washed out by the finite size
effects. To overcome this inherent problem of nuclear
systems, Campi suggested the method of conditional mo-
ments which aims at characterizing the finite system near

we have chosen only those events having more than three
intermediate mass fragments (A ) 4) similarly to the ex-
perimental cuts [25]. The results are shown in the same
figure by the open circles. They are in nice agreement
with the data and exhibit the feature of being constant
for large i values. In previous works [25,27] the apparent
flattening of the data, which is in contrast with a cas-
cade process, was related to the possibility of finite size
effects. Our results instead indicate that the flattening is
solely due to the mixing of events and to the cuts in the
multiplicities.

is predicted where ~ and o are two critical exponents.
Fisher's droplet formula, Eq. (5), is a special case of this
general form. Replacing the summation in Eq. (13) by
an integration, one gets for the moments near the critical
point

(

(s- —i—k) /sr

Since the exponent w satisfies 2 ( w & 3, the second
and higher moments diverge at the critical point. In
contrast the lower moments Mo and Mq, which corre-
spond to the number of fragments and the total mass,
do not diverge. Furthermore, one cannot define the av-
eraged multiplicity K(A, e) for a fixed e because there is
no model-independent way of classifying the experimen-
tal events with respect to e. Therefore, to overcome this
difFiculty, Campi has proposed to study the moments of
single event cluster size distributions

M„"'=) A"n(')(A)
A

or

g(i) M(i ) (M(i )

where n(~)(A) is the multiplicity of clusters of size A in
the event j, and the summation is over all the fragments
in the event except the heaviest one. Of course, in finite
systems, the moments My (or S&) remain finite, even for
A: & 1. However, if the system keeps some trace of the
phase transition for some particular events, the moments
MA, should show some strong correlation between them.
In particular by studying the correlation in the percola-
tion model and in experimental data between the largest
fragment in each event and the second moment of the dis-
tribution of the remaining fragments, it was found that
this correlation shows the typical features that reflect the
occurrence of a phase transition in that it consists of two
branches, an upper branch with a negative slope that cor-
responds in the average to undercritical events (T ( T in
the liquid-gas phase transition, p ~ p, in the percolation
phase transition) and a lower branch with a positive slope
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that corresponds to overcritical events (T ) T„p& p„).
The two branches meet at the critical point of the phase
transition [11,27].

In the following, the calculations are done only for the
system A = 100.

In Fig. 6 we plot the logarithm of the largest clus-
ter P in each event versus the logarithm of the second
moment S2 of the cluster size distribution of the remain-
ing fragments in the event. This plot is generally called
Campi scatter plot. The total number of events con-
tributing to this plot is 6000. The events are obtained
from CMD simulations with initial temperatures T=4
MeV (2000 events, black points in the figure), T=G MeV
(2000 events, red points), and T=7 MeV (2000 events,
blue points). From this figure, one sees clearly the two
branches corresponding to undercritical and overcritical
events, characteristic of the phase transition observed in
percolation and in experimental data. One sees also that
the upper branch is made mainly by the events having 4
MeV of initial temperature (black points) while the lower
branch is made by the events having 5 and 7 MeV of ini-
tial temperature (red and blue points). The region where
the two branches meet (which corresponds to the critical
region) is made by events coming from calculations with
T=4 and 5 MeV of initial temperature (black and red
points) .

In Fig. 7, we plot the logarithm of the scaled factorial
moments calculated from the events which fall within the
critical region in the Campi scatter plot Fig. 6 versus
the logarithm of the bin size bs. This region is delim-
ited by the yellow rectangle in Fig. 6. One sees from
Fig. 6 that the selected events are coming from the CMD
simulations with T=4 and 5 MeV. The scaled factorial
moments in Fig. 7 show a very strong intermittency sig-
nal. The values of the SFM are about six times larger
than those obtained with T=5 MeV simulation. In fact,

this is obvious because when doing the calculation with
T=5 MeV, we are considering a mixture of critical events
together with under- and overcritical events due to the
statistical Huctuations present in the simulations (see red
points in Fig. 6). In this case, the intermittency signal is
present because of the presence of critical events but it
is weakened due to the presence of noncritical events. In
contrast, when making the selection in the Campi scatter
plot (Fig. 6), one is mainly selecting the critical events
and the intermittency signal is very strong and it is not
polluted by the presence of noncritical events. Note that
the anomalous fractal dimensions d; extracted from this
Ggure are within the error bars of the experimental data;
see lower part of Fig. 5.

Another test proposed by Campi to have more insight
in the shape of the fragment size distributions and to
indicate the critical behavior is to look at the relative
variance p2 defined as [12,25]

M2Mp
M21

It was shown by Campi that this quantity presents a peak
around the critical point which means that the fluctua-
ti'ons in the fragment size distributions are largest near
the critical point [12].

In Fig. 8, we plot the relative variance p2 calculated
in two diferent ways versus the reduced multiplicity
n = (Mo + 1)/A „where A „=100in this case. In
both upper and lower parts of the figure, the open circles
show the results for events coming from CMD simulations
with initial temperature T=4 MeV, solid circles calcu-
lations with T=5 MeV, and open triangles calculations
with T=7 MeV. In the upper part of the figure, for a Bxed
reduced multiplicity n, we calculate the average fragment
size distribution K(A, n) from all the events having that
reduced multiplicity n and calculate the moments Mp,
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FIG. 6. Campi scatter plot.
The logarithm of the largest
fragment P in each event is
plotted versus the logarithm of
the second moment S2. Black
points show events with ini-
tial temperature T=4 MeV, red
points T=5 MeV, and blue
points T=7 MeV. The yellow
rectangle delimits the critical
region for Fig. 7.
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FIG. 7. Scaled factorial moments calculated from the
events which fall within the critical region in the Campi scat-
ter plot Fig. 6 (delimited by the yellow rectangle).

where j runs over all events N,„(n)having the reduced
multiplicity n. As we have few events with very small
multiplicities, one observes some statistical Huctuations
for small n, . One clearly sees &om both upper and lower
parts of Fig. 8 that the relative variance p2 presents a
peak around the reduced multiplicity n=0. 15—0.2. One
also notes that in both cases, the peak is mainly given by
the events having initial temperatures T=4 and 5 MeV
(open and solid circles). The results for events with T=7
MeV of initial temperature are located in the tail of the
distribution, far &om the peak. We notice also that
around the peak, p2 has larger values than (p2). This
efFect has also been seen in percolation [35].

Finally we plot in Fig. 9 the two relative variances p2
(dashed line) and (p2) (solid line) defined above versus
the initial temperature in our calculations. The reduced
multiplicity used above is replaced here by the initial
temperature for the expansion of our system. So now
the two p2 are defined as

M2Mp
M2

1
(2o) M2Mp

72 M2 )

1
(22)

In the lower part of Fig. 8, we calculate the relative vari-
ance p2' for each event i and (p2) (event-by-event) is de-

where the moments Mp M] and M2 are given by

MI, = ) A"N(A, T) (23)
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~ T=5 MeV

T=7 MeV

and

h')(&) = ~ ~ ).~" (24)
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oo where j runs over all events N, (T) having the initial
temperature T. One sees that both curves show a peak
for temperatures between 4 and 5 MeV. Note again that
p2 gives larger values than (p2).

I ~ ~ I s s s ~ I I
~ s s

I
I ~ I ~ I s

s s I I I
~ ~ s

I
s

I s s I s
~ ~ ~

I
s

s ~ ~ I I ~
~ s I

I
s ~ ~

2.5
A

V
1.5 c6oo

oo

T=4 MeV
T=5 MeV
T=7 MeV 1.8—

1.6—

I I
I

I I

I

I S

I

I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I

Incl usi ve,
Event-by-event,

0.5
1.4—

I I I » I I I ~ I I I I ~ ~ ~ I I s ~ I I I

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 8. Reduced variance p2 versus reduced multiplicity
n for the system A=100. In both parts of the 6gure, open
circles show the results for events with initial temperature
T=4 MeV, solid circles T=5 MeV, and open triangles T=7
MeV. See text for the definition of pq and (p2).

s I I

2
I I I s I « I I I I s I I « I

6 10 14
T (MeV)

FIG. 9. Reduced variance p2 versus the initial temperature
T of the expansion of the system A=100. Dashed line shows
the results for p2 and solid line (p2).



280 M. BELKACEM, V. LATORA, AND A. BONASERA 52

T=20 MeV

15

Q) T=15 MeV

10

T=5 MeV

0 —s
—

i
—f i:

s s i I i s
i=i

t

T=2 MeV

0.000 0.025 0.050 0.075 0.100 0.125 0.150

p (fm ')

VI. ROLE OF THE COULOMB FORCE

As we can intuitively expect there should be impor-
tant differences when the system under consideration is
charged. The reason why in nature infinitely large nu-
clei do not exist is because of the strong repulsion among

FIG. 10. Expansion with Coulomb interaction included in
the dynamics of a system with A=100, Z=-50 starting from
temperatures T=2, 5, 15, and 20 MeV. The average temper-
ature of the biggest fragment is plotted versus its average
density.

protons. In fact, in order to keep the binding energy per
nucleon almost constant in natural atoms, the ratio of
neutrons to protons changes. Thus we can also expect
a critical behavior in a nucleus-nucleus collision when a
highly charged fragment is not formed. For example, in
Au+Au collisions there should be no multi&agmentation
of the total system, but the projectile or the target op-
portunely excited might go into multifragmentation. To
shed more light about this problem we repeated the cal-
culation of an expanding A=100 system, with half of the
constituents charged. In Fig. 10 we plot the time evolu-
tion of the charged system in the (p, T) plane. Note the
large difFerence with the uncharged expanding system for
the case T=2 MeV, Fig. 1. This case is an evaporation
case if there is no Coulomb Beld. But when charging
the system, the extra positive pressure due to Coulomb
pushes the system towards lower densities, thus entering
the instability region. In Fig. 11 we plot the mass dis-
tributions corresponding to diferent initial temperatures
together with the factorial moments. We see a qualita-
tively similar behavior with the cases without Coulomb
Beld but everything is shifted to lower temperatures. The
shift is roughly 3 MeV down, i.e., the critical behavior is
observed for T about 2—3 MeV. We would like to stress
that for a charged system there is no reason why one
should get a power law in the mass distribution for the
most critical events. We can see that the factorial mo-
ments show an intermittent behavior for temperatures
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FIG. 12. Expansion with Coulomb. Reduced variance p2
versus initial temperature T. Dashed. line shows p2 and solid
line (pq).

around 2 MeV, Fig. 11. The shift to lower temperatures
is more clearly demonstrated in Fig. 12 where the reduced
variance is plotted versus temperature T. Comparing to
the analogous case without Coulomb charge, Fig. 9, we
see clearly the shift toward. s lower temperatures.

%e would. like to discuss some analogies and di8'erences
of our molecular dynamics approach with some success-
ful statistical models widely applied to nuclear multi&ag-

mentation [27,36]. As we demonstrated in Fig. 2, the
mu&tiplicity increases suddenly in the T=5 MeV case, for
example. This implies that the breaking of the system
happens almost simultaneously and later on there is some
evaporation that cools down the fragments. This is one of
the basic assumptions of the statistical models. Prom our
calculations we find that the density of the biggest &ag-
ment and its temperature when the multiplicity sharply
increases is about 0.025 fm and 2 MeV, respectively.
These values probably depend on the two-body forces we
are using and in particular on the range of the force itself;
thus we do not try to compare these values with those
used in statistical models. One d.iKerence with statistical
models is the role of the Coulomb force. In our case the
excitation energy the system needs to go into multi&ag-
mentation is lower since the extra push given by Coulomb
helps the system to climb the barrier. A consequence of
this is that the time it takes to reach the multi&agmenta-
tion point is much larger in the Coulomb case. At lower
temperatures the expansion is very slow, so it takes a
long time before the system reaches the point where it is
unstable, more than a few hundreds fm/c. However, in
statistical models one usually determines the configura-
tion of the system at the &eeze-out and then calculates
the Coulomb trajectories of the &agments. So Coulomb
plays a role only for the final angles, kinetic energies, etc. ,
of the fragments while in molecular dynamics it plays a
role for the entire dynamics.
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moments. Another important aspect to keep in mind,
especially when analyzing experimental data where only
the final fragment distribution is given, is the decrease of
the values of the factorial moments with increasing time.
Note, however, that the slopes remain almost constant af-
ter some time. The reason why the values of the factorial
moments are decreasing is essentially evaporation. Since
we have a small system, excited fragments emit nucle-

ons, deuterons, etc. , and therefore "fill up" small masses
bins and "empty out" large masses bins. The factorial
moments are especially sensitive to smaller masses (be-
cause they have larger yields); therefore, their values de-
crease because of these secondary decays. However, the
secondary decays have almost the same eKects for the
small bins and the slope of the factorial moments does
not change. This can be clearly seen in Fig. 17 where we
plot the anomalous fractal dimensions d; versus time for
the two temperatures. Note, as we have stated, that the
d s are negative in the T=4 MeV case but positive in
the T=5 Mev case. Furthermore, these indices saturate
rather quickly and therefore are insensitive to secondary
decays. It seems to us that these indices are the most rep-
resentative of a critical behavior of a finite system since,
as observed, they are insensitive to fragments evaporation
in contrast to mass distributions and factorial moments.

VIII. CO[NCLUSIONS

In conclusion, we have found evidence for a critical be-
havior in finite systems in a dynamical model. Under
some initial conditions, the dynamical evolution creates
a power law mass distribution of fragments with v=2.23
and develops an intermittent pattern of fluctuations. We
have used a moment analysis of the distribution to fur-
ther substantiate the large fI.uctuations for our finite sys-
tem, and we have also performed a dynamical analysis
to shed some light on the critical behavior. A very great
similarity with the results obtained for the percolation
model is found for many aspects. We have stressed the
important role played by the Coulomb field in shifting the
point of critical multi&agmentation towards lower exci-
tation energies. The time evolution of a system under-
go'=-;:g multi&agmentation, as described by this molecular
dynamics approach, demonstrates rather clearly that the
most important observables are the fractal anomalous di-
mensions and the Campi plots since they are rather in-
sensitive to the latest stage of the evolution, i.e. , the final
cooling of the fragments through evaporation. We hope
that the results discussed in this article might be useful to
the experimentalist in analyzing data on nucleus-nucleus
collisions in an almost 4' geometry.
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