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Multiplicity distributions from central collisions of 0+Cu at 14.6A GeVic and intermittency
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The E-802 Collaboration at the BNL-AGS has measured charged particle multiplicity distributions from
central (ZCAL) collisions of ' 0+Cu at 14.6A GeV/c as a function of the pseudorapidity interval 8'r/~0. 1 in

the range 1.2~ y~2.2. The fluctuations of these distributions as a function of the pseudorapidity interval have

been studied by the method of normalized factorial moments and also by directly fitting the measurements to
negative binomial distributions (NBD). Excellent fits to NBD were obtained in all 8r/ bins, allowing, for the

first time, a systematic formulation of the subject of intermittency in terms of distributions to complement the

description based on normalized factorial moments. In agreement with all previous measurements of NBD fits

to multiplicity distributions in hadron and lepton reactions, the k parameter of the NBD fit for central
' 0+Cu collisions is found to exhibit an apparently linear increase with the 8'y interval, albeit with a much

steeper slope than for other reactions, and a nonzero intercept, k(0) 4 0. The evolution of the NBD parameter

k(8r/) is used to determine the two-particle short-range rapidity correlation length for central ' 0+Cu colli-
sions, (=0.18+.0.05, which is much shorter than the value (-1—3 for hadron collisions, but this is a quan-

titative rather than a qualitative difference. These results lead to a simple and elegant explanation of the
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intermittency formalism, without resort to fractals, for all reactions, which demystifies intermittency —for
' 0+Cu central collisions, intermittency is nothing more than the apparent statistical independence of the
multiplicity in small pseudorapidity bins, Bg-0.2, due to the surprisingly short two-particle rapidity correla-
tion length.

PACS number(s): 25.75.+r, 13.85.Hd

I. INTRODUCTION

The concept of "intermittency" was introduced by Bialas
and Peschanski [1] to try to explain the "large" fluctuations
of multiplicity in restricted intervals of rapidity or pseudora-
pidity [2,3]. A formalism was proposed [1] to study non-
statistical (more precisely, non-Poisson) fluctuations as a
function of the size of rapidity interval, and it was further
suggested [1] that the "spikes" in the rapidity fluctuations
were evidence of fractal or intermittent behavior, in analogy
to turbulence in fluid dynamics which is characterized by
self-similar fluctuations at all scales —the absence of a well-
defined scale of length [4]. Bialas and Peschanski proposed
that the data be presented as normalized factorial moments of
order q:

(n(n —1) (n —q+ 1))F (Br))=
( )~

where n is the multiplicity in a pseudorapidity interval (bin)
of size Brg on a given event and the angular brackets indicate
averaging over all events. Intermittency would be indicated
by a power-law increase of multiplicity distribution moments
over pseudorapidity bins as the bin size is reduced:

(2)

The normalized factorial moment with the clearest interpre-
tation is

(n(n —1)) (n') —(n) o- + (n)' —(n)
()' ()' ()'
0 1

1 +
p p

(3)

where p, —= (n) is the mean and o = v'(n ) —(n) is the stan-
dard deviation. Note that the normalized factorial moments
are all equal to unity for a Poisson distribution.

The formulation of this new concept of intermittency in
terms of moments was taken by many as a partially retro-
grade development, particularly since the greatest advance in
multiplicity distributions in 20 years had recently been made
by the UA5 Collaboration [5] who actually determined the
functional form of multiplicity distributions. The negative
binomial distribution (which had been used sporadically for
the total multiplicity [6])was used by the UA5 Collaboration
[7] as a "remarkable" description of their measured multi-
plicity distributions in intervals of rapidity which are not
significantly constrained by conservation laws [8—11] and
also for the total multiplicity. Also, a related distribution, the
gamma distribution, had been used to describe ET distribu-
tions [12].One could not help but wonder what intermittent

behavior would look like in terms of distributions rather than
moments —since once the distribution is known, then all the
moments are known.

An intermittency analysis of charged particle multiplicity
data from central collisions of ' 0+Cu at 14.6A GeV/c by
the method of normalized factorial moments has been pub-
lished by the AGS-E802 Collaboration [13]. In agreement
with previous measurements [14], an apparent power-law
growth of moments with decreasing pseudorapidity interval
was observed in the range 1.0~6y~0. 1. In the present
work, multiplicity distributions in individual pseudorapidity
bins are presented for the same data. These distributions are
excellently fit by negative binomial distributions (NBD's) in
all 6'rg bins, allowing, for the first time, a systematic formu-
lation of the subject of intermittency in terms of distributions
to complement the normalized factorial moment analysis.
The two parameters of the NBD fit which characterize the
shape of the distribution and its deviation from a Poisson are
determined as a function of the pseudorapidity interval 6'g.
The evolution with 6y of the NBD parameters will be seen
to yield a simple and elegant explanation of the intermittency
phenomenology in terms of the mainstream of multiparticle
physics of the past decades, namely, the two-particle short-
range rapidity correlation length [15,9,16—19]. The key to
this understanding of intermittency, which has not previously
been clear, is a dramatic reduction of the two-particle rapid-
ity correlation length for ' 0+Cu central collisions from the
value in hadron-hadron collisions [15].Moreover, the corre-
lation length for central ' 0+Cu collisions, although smaller
than expected, is quite finite and can be measured —which
means that a length scale exists in these collisions and there-
fore there is no intermittency [1,4] in the multiplicity fluc-
tuations. The weakened, but still finite, short-range rapidity
correlations in collisions of relativistic heavy ions had been
predicted [17,18,20,21], since the conventional short-range
correlations should be washed out by the random superposi-
tion of correlated sources [18,22,23], so that eventually only
the quantum-statistical Bose-Einstein (BE) correlations
should remain [17,18,24].

The organization of this paper is as follows. The next
section describes some details of the experiment. In Sec. III,
the analysis of the data by the method of normalized factorial
moments is reviewed, while in Sec, IV, multiplicity distribu-
tions from the same data set are presented. In Sec. V, the
relevant properties of the negative binomial and gamma dis-
tributions are briefly noted. Section VI presents fits to the
measured multiplicity distributions, and in Sec. VII, the re-
sults of the fits are used to describe the systematics of mul-
tiplicity distributions and to relate these to the intermittency
phenomenology. In Sec. VIII, the formalism of multiparticle
correlations and Mueller moments is reviewed, leading to
Sec. IX in which the evolution of the NBD parameter with
8'y is quantitatively related to the two-particle short-range
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rapidity correlation. Correction of the data for instrumental
effects is discussed in Sec. X, with the final results for the
two-particle rapidity correlation length and strength pre-
sented in Sec. XI. Related measurements are discussed in
Sec. XII, while the results and conclusions of the present
work are summarized in Sec. XIII.

II. SOME DETAILS OF THE EXPERIMENT

The data presented in this report come from BNL experi-
ment E802 using relativistic heavy ion beams available at the
Tandem-AGS facility. A detailed description of the full E802
setup has been published [25], and so only the detector sys-
tem relevant to this measurement will be discussed here. The
Target Multiplicity Array (TMA) measures the production
angles of charged particles in the pseudorapidity range
—1.2& y&3. 1 with almost full coverage in azimuthal angle

P; the primary gap in @ coverage is due to a small opening
in the forward region to minimize the amount of material
between the target and the E802 spectrometer. The TMA
consists of resistive plastic tubes operated in the proportional
mode and read out from image signals induced on cathode
pads. There are 3240 pads in total and their sizes vary to
ensure a nearly uniform occupancy rate. In order to eliminate
electrical cross talk over tube boundaries, thin copper
grounding strips are located between the tubes. These strips
are electrically connected to ground via conducting silver
paint and act as local rf shields which prevent pads from
detecting signals on adjacent wires. It is still possible, how-
ever, to observe some small amount of cross counting over
tube boundaries when particle tracks actually cross onto ad-
jacent wires. This can occur because the detector is made of
individual small panels which are slightly tilted so that tracks
have non-normal incidence to avoid inefficiency due to the
walls of the tubes. Such cross counting has been studied
extensively and will be discussed in more detail below. The
use of proportional tubes with pad readout can produce an-
other type of cross talk which occurs between adjacent pads
along the same tube: When two adjacent pads fire, it is im-
possible to determine whether a single charged particle
passed between the two pads, inducing signals on both, or
whether two distinct particles caused the signals. To address
this problem, a conservative TMA counting convention was
adopted: During data analysis, two clusters along a wire are
always treated as a single particle passing through local re-
gions between the adjacent pads. Monte Carlo simulations
indicate that this convention is correct for over 88% of two-
cluster signals [26] in ' 0+Cu central collisions. In the re-
maining 12% of cases, however, one or more nearby tracks
are lost; these losses will of course tend to reduce the mea-
sured strength of any highly localized fluctuations in the
charged particle density. Taking all cases into account, the
estimated [26] loss of tracks due to multiple hits is ~ 1% for
the present analysis.

The uniformity and efficiency of the detector were as-
sured by constant monitoring. Hit distributions on individual
pads and the ratio of double to single clusters along a wire
were closely monitored on a run-by-run basis. Hot and
"warm" pads as well as dead pads were all treated as mal-
functioning and removed from the data. The uniformity of
response was further checked by using the symmetry of the

detector geometry to verify that azimuthally symmetric ele-
ments gave identical hit distributions to within the excellent
statistics on each run, typically —1000 hits per pad [26].

The reaction ' 0+Cu was chosen for the analysis of cen-
tral collisions at 14.6A GeV/c to reduce multihit losses in the
TMA detector and to minimize the ratio of target spectator
protons to produced particles. Information provided by the
E802 Zero-Degree Calorimeter (ZCAL) [25,27] was used to
require the forward-going kinetic energy to be less than that
of a single projectile nucleon (13.6 GeV). This cut, demand-

ing that little or no kinetic energy remain in the projectile
spectator region, served as the primary criterion for central-
ity. From a nuclear geometry calculation [28], only 3.2% of
' 0+Cu minimum bias events would be expected to pass
this cut. The number of events in the sample passing the
centrality cut was 20 994; thus these data correspond to ap-
proximately 0.6X10 ' 0+Cu interactions. For the present
measurement, restrictions were placed on which hits in the
TMA detector were accepted for analysis. Because of the
spectrometer opening and some malfunctioning tubes, an
azimuthal angle cut of 40'(@(240' was applied. The
analysis was also restricted to those tracks falling in the
pseudorapidity range 1.2~ y~2.2. This range includes the
peak in the pseudorapidity density and is in the region where
the detector segmentation, angular resolution, and detection
efficiency are high and nearly uniform. Within these inter-
vals, the detector had approximately 1250 pads with a hard-
ware inefficiency of 6% (mostly due to malfunctioning pads)
and an average resolution of a- —0.025 in y and
o.&-0.027 rad in P. After including multiple scattering
(mostly from the target), overall resolutions are o.„-0.03
and sr&-0.034 for the ' 0+Cu system. These restrictions
reduced the number of events in the sample to 19 667.

III. METHOD OF NORMALIZED FACTORIAL MOMENTS

The E802 intermittency analysis using the formalism of
moments starts with the multiplicity in a large interval,
1.2~ g~2.2, A y= 1.0, for which the evolution of the mo-
ments is determined as the interval is subdivided into M
equal subintervals (bins). The normalized factorial moments,
using "vertical" analysis, of order q are defined as [1,17,29]:

1 (k (k —1) . . (k —q+ 1))
M =i (k )~ (4)

M is the number of bins of size Brg= 5 y/M into which the
large pseudorapidity interval is divided, k is the multiplicity
in the mth bin, and (k ) is the event-averaged multiplicity in
the mth bin. [This formulation is more complicated than that
sketched in Eq. (1) which described a single bin of variable
width 8y. ] Recall that F = 1 for a Poisson distrib—ution.
Note that the factorial moments of order q are designed to
emphasize "spikes, " since bins with multiplicities less than

q do not contribute to the numerator of Eq. (4). However,
bins of all multiplicities, including empty bins, must be ex-
plicitly included in the calculation of the denominator in or-
der to obtain the correct value for the average multiplicity.
The measured moments of order 2—6 for ' 0+Cu central
collisions are plotted in Fig. 1(a). As shown by the solid
fitted lines, a linear increase of In(F ) with increasing
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which they appear to follow to an excellent approximation.
This scaling rule was proposed by Bialas and Peschanski [Ij
and was derived in the limit of a large number of cascade
steps in their n model of intermittency. This behavior was
also observed in other experiments [30—32j and commented
upon by several authors [18 24,23j. Note that the slope pa-
rameters are very small, $2=0.018((1.

Care must be taken in interpreting these results since it
will be shown that the values of the normalized factorial
moments and the slope parameters are very sensitive to the
instrumental effects of Dalitz decays, y conversions, cross
talk, occupancy, . and single-track and two-track resolutions,
for which explicit corrections have not yet been applied. The
corrections will be discussed later. Yet much can be learned
about the intermittency phenomenology by using the multi-

plicity distributions from the same data set to analyze the
fluctuations directly.

IV. MULTIPLICITY DISTRIBUTIONS

FIG. 1. (a) Normalized factorial moments F for central colli-
sions of ' 0+Cu, for orders q=2, 3,4,5,6, as a function of the pseu-
dorapidity subinterval 8'z/, presented as In(F~) versus —In(&j). For
each order, the lines represent power-law fits to the moments over
the range 1.0)By~0.1. As shown in (b), the increase of the
power-law slopes P with the order q follows the scaling law

2gq /q(q —1).

—In(&/) down to Bz/= 0.1 is observed for all orders q. Thus,
over the range 1.0~8'g~0. 1, the moments for each order
exhibit a power law with constant slope,
P = —d(lnF )/d(ln&/), which increases with increasing or-
der. Beyond By=0.1, the slopes tend to roll over towards
zero, especially for the low-order moments. Such slope

The AGS-E802 multiplicity distributions for central colli-
sions of ' 0+Cu at 14.6A GeV/c are shown in Fig. 2 in
increasing intervals of pseudorapidity 8'y = 0.1,0.2,0.3,
. . . ,0.8,0.9,1.0 around a central value of y= 1.7, where the

bin of 1.0 covers 1.2~ rg(2.2 in the laboratory and is iden-
tical to the large 5 rg= 1.0 interval of the moment analysis.
Note that apart from the large interval, the data are not
strictly identical for the two analyses since the momenta
analysis averages over all I bins of size 8'y=1.0/M in the
interval 1.2~ rg~2. 2, while the distributions are obtained
only for bins of increasing size (full width) Bz/ about the
center of the interval. The multiplicity distributions are
shown in Fig. 2 as frequency distributions of the number of
events with multiplicity n in an interval of size Brg for the
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FIG. 2. Multiplicity distributions for
' 0+Cu central collisions at 14.6A GeV/c pre-
sented as frequency distributions of the number
of events with multiplicity n in a pseudo-
rapidity interval of full width
8'y = 0.1,0.2,0.3, . . . ,0.8,0.9,1.0 centered at labo-
ratory pseudorapidity y= 1.7. The solid lines
connect data points from the same Bing bin.
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FIG. 3. (a) (dn/dr/) averaged over the bins of Br/presented as

(n(8r/))/Br/ as a function of 8'r/. (b) The differential pseudorapid-
ity distribution dnldrg of multiplicity in the interval 1.2» rg~2. 2
for slices of multiplicity n in this interval in the range 10—19,
20—29, 30—39, and 40—49. The dotted lines show the average
multiplicity for each slice.

ten intervals. For each 8'y, the distributions all have the
same number of events, 19 667. The solid lines on the figure
are to help guide the eye to the data points from the same
6y bin—however, they also represent NBD fits to the distri-
butions which will be discussed, extensively, in due course.
The average multiplicities in the subintervals (n(8'r/)) in-
crease rather linearly with the widths of the subintervals,
indicating that the pseudorapidity density of the average

multiplicity (dn/dr/) for these data is reasonably constant
(2.5% rms variation) over the large interval 1.2~ r/~2. 2. A
slight deviation from linearity can be seen by presenting the
data in the form (n(8'r/))/Br/ versus 8rt [Fig. 3(a)] where a
systematic increase of (n(8r/))/Br/ is visible toward the
smallest bins, near the center of the large interval
( r/= 1.7). There is concern that this peaking could be indica-
tive of a narrowing of the width of the pseudorapidity distri-
bution with increasing multiplicity [33].To investigate this
possibility, a plot was made [see Fig. 3(b)] of the differential
pseudorapidity distribution dnldy of multiplicity in the in-
terval 1.2~ y~2.2 for slices of multiplicity in this interval in
the range 10—19, 20—29, . . . , 40—49, which covers essen-
tially the whole range of multiplicities in this interval
(Br/= 1.0, Fig. 2). The dotted lines in Fig. 3(b) show the
average multiplicity for each slice. The central values of the
distributions are 10%—20% above the average values, and
likewise the wings of the distributions are below the aver-
ages. Hence, there is no evidence for any change in shape of
the dnld y distribution with multiplicity. Thus it is also to be
expected that differences in the moment and distribution
analyses resulting from averaging over the whole 5 y inter-
val or only over the central parts of the interval with increas-
ing Brg should be minimal.

In Fig. 4, the multiplicity distributions of Fig. 2 from
selected subintervals are presented in the form scaled by the
mean (n) in each case to emphasize the evolution of the
shape of the distributions with increasing pseudorapidity in-
terval Brg. These data are reminiscent of the original discov-
ery by UA5 [2,5] that multiplicity distributions in restricted
intervals of pseudorapidity exhibit large fluctuations about
the average which favor higher multiplicity and that these
fluctuations increase with decreasing pseudorapidity interval
8'y. However, by comparison, the present data are particu-
larly striking in that the shape of the multiplicity distribution
changes from nearly exponential to nearly Gaussian over a
small range of pseudorapidity, less than one unit.

It should be noted that the exact details of the centrality
cut are important for the shapes of the distributions in Fig. 4
and for the analysis by moments. The shapes of the distribu-
tions below the mean value are determined by the centrality
cut. For the present analyses, the ZCAL was used to define
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centrality —by the requirement that the forward-going kinetic
energy be less than that of a single projectile nucleon (13.6
GeV), corresponding to 3.2% of minimum bias
interactions —which is an indirect cut on multiplicity. The
usual centrality definition by a sharp cut on the multiplicity
itself—typically, at an upper percentile [34] of 7%—would
have caused the distributions to be severely truncated, which
would obviously also have caused severe distortions in the
moments [35].The ZCAL centrality cut gives smooth distri-
butions which vary uniformly with 6'y.

V. NEGATIVE BINOMIAL AND GAMMA DISTRIBUTIONS

Before a detailed discussion can be made of the shapes of
these multiplicity distributions and their fluctuations, it is
worthwhile to review some properties of the negative bino-
mial and gamma distributions. These distributions have
distinct —and in some cases "counterintuitive" —properties
compared to the Poisson distribution which forms the basis
of "intuition" on counting statistics. The Poisson distribution
is intimately linked to the exponential law of radioactive
decay of nuclei [36,37], the time distribution of nuclear dis-
integration counts, giving rise to the common usage of the
term [36] "statistical fluctuations" to describe the Poisson
statistics of such counts. The Poisson distribution results
from repeated independent trials, each with the same prob-
ability for a given outcome —if the probability of the out-
come varies or if any correlation is introduced so that the
trials are not independent, the distribution tends to become
negative binomial [38].

The negative binomial distribution of an integer m is de-
fined as

b
f(x) = (bx)" 'e

I'(p) (10)

where

p&0, b&O, 0~x~~.

I (p) =(p —1)! if p is an integer, and f(x) is normalized.
The first few moments of the distribution are

p =—(x) = —,2 Qp rr 1 (1 —b)a=, 2= —, F2 —1=b' p, p' p

One important difference between NBD and gamma distri-
butions is in the limit m or x~O: For p)1 the limit is
always zero for a gamma distribution, whereas for the NBD
it is always finite.

The gamma distribution has an important property under
convolution. Define the n-fold convolution of a distribution
with itself as

where W is the total number of events. For statisticians, the
NBD represents the first departure from a Poisson law.
Physicists are more likely to describe the NBD as Bose-
Einstein (k= 1) or generalized Bose-Einstein kg 1 distribu-
tions [6].

The negative binomial distribution bears a strong relation-
ship to the gamma distribution and becomes a gamma distri-
bution in the limit p, &)k)1. In fact, many times, gamma
distributions are substituted for NBD to prove various theo-
rems [41].The gamma distribution represents the probability
density for a continuous variable x and has a parameter p:

(6)
(12)

where P(m) is normalized for 0~m ~~, p, =(m), and some
higher moments are then, for a gamma distribution [Eq. (10)], the n-fold convo-

lution is simply given by the function

( p, b

p, 1+—,
k)

C7 1 1 1
, = —+ —, F,=1+—. (7)

p, p, k' k' b
f„(x)= (bx)"" 'e

I (np)
(13)

The normalized factorial moments (F ) and normalized fac-
torial cumulants (K~) [39,40] of the NBD are particularly
simple:

i.e., p~np and b remains unchanged. Notice that the mean
p,„and standard deviation o.„ofthe n-fold convolution obey
the familiar rule

q
—1~ (q —1)!

Fq=F(q- l) 1+ ~ &q= kq- lk
p,„=n p, o, = rr, Qn (14)

Sk 1
S 1/'k 2k p,

(9)

The NBD, with an additional parameter k compared to a
Poisson distribution, becomes Poisson in the limit k —+~ and
binomial for k equal to a negative integer (hence the name).
The extra parameter has made the NBD useful to mathemati-
cal statisticians as a test for whether a distribution is
Poisson —more precisely as a "test for independence in rare
events" [38]. The test for a Poisson distribution consists of
determining whether the NBD parameter 1/k is consistent
with zero to within its error s,z, which is given [38] as

The convolution property of the gamma distribution also
holds for the NBD. The probability distribution of the sum of
n independent variables, each distributed as a NBD with
mean p, and parameter k, is the n-fold convolution of the
distribution, which is a NBD with mean n p, and parameter
nk, so that the ratio p, /k remains constant for the convolu-
tions exactly like the gamma distribution. Furthermore, the
familiar rule for the mean and standard deviation [Eq. (14)]
is satisfied.

An important difference in the properties of the NB and
Poisson distributions is related to convolutions and concerns
the random decomposition of a distribution from a large in-
terval onto smaller subintervals. Suppose the population on a
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TABLE I. Results of NBD fits to ' 0+Cu multiplicity distributions,

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(n), (~)
Data

2.69 (1.53)
4.92 (2.40)
7.24 (3.02)
9.62 (3.52)
11.84 (3.96)
14.08 (4.34)
16.32 (4.70)
18.48 (5.01)
20.52 (5.29)
22.63 (5.53)

2.41 (1.66)
4.86 (2.44)
7.24 (3.03)
9.61 (3.52)
11.84 (3.94)
14.07 (4.34)
16.31 (4.69)
18.48 (5.00)
20.54 (5.28)
22.60 (5.53)

16.35~ 1.7
21.37~ 1.3
27.04~ 1.3
33.65 ~ 1.5
37.52~ 1.6
41.8 ~ 1.7
46.8~1.8
52.1~2.0
57.1 ~ 2.2
64.4~ 2.5

N()

Data

17622
19456
19643
19662
19666
19667
19667
19667
19667
19667

N()

Fit

19704
19705
19676
19666
19667
19667
19667
19667
19667
19669

X /NDF

5.1/11

30/16
39/20
46/29
44/33
42/34

59/37
39/41
47/42

63/42

large interval, e.g. , 5 y= 1, follows the NBD, and the popu-
lation is subdivided randomly by repeated independent trials
onto a smaller subinterval, e.g. , 6g, with constant probabil-
ity s per trial —this is actually a binomial decomposition of
the original population into two subpopulations on the sub-
intervals g and 1 —g. The populations on the two subinter-
vals are also negative binomial distributed [42,43], with
means gp, and (1 —j)p, and the same parameter k [43,44].
Note, however, that any clustering (i.e., correlation among
the trials) would cause k to vary [45].Most importantly, and
the principal distinguishing characteristic of the NBD com-
pared to a Poisson, the populations on the two subintervals
are not statistically independent —the distribution on one
subinterval depends explicitly on the result on the other
subinterval —so that the distributions on the two subintervals
cannot be convoluted to recover the original distribution on
the large interval. This characteristic property of the negative
binomial distribution has important physical consequences,
forward-backward (long-range) multiplicity correlations
[46,5—7]—the mean backward multiplicity is linearly pro-
portional to the forward multiplicity. Also, the fact that k
remains constant for a binomial decomposition of a NBD
gave rise to the expectation [43,44] that k should remain
constant (i.e., independent of the size of the pseudorapidity
interval) in relativistic heavy ion collisions.

VI. FITS TO THE MULTIPLICITY DISTRIBUTIONS

The multiplicity distributions from Fig. 2 have been fit to
both negative binomial and gamma distributions. The results

are given in Tables I and II and shown for the

8'ran= 0.2,0.5, 1.0 intervals in Figs. 5(a), 5(b). The NBD pro-
vides an excellent fit to both the rising and falling parts of
the distributions, although it tends to be slightly low in the

upper tails. The gamma distribution is low in the rising part
of all the distributions and tends to be above the data in the

upper tails. It is worth pointing out that the fits are performed
using a maximum likelihood method with the assumption of
Poisson fluctuations of the data points around the expected
(best fit) frequency of events with observed multiplicity n in
a pseudorapidity bin 6'y. The fact that the NBD fits exhibit
acceptable y =1 per degree of freedom for all 8'y bins
means that the deviations of the data points from the curves
in Fig. 5(a) are indeed consistent with statistical fluctuations.
For the gamma distribution fits, the y -3—20 per degree of
freedom are unacceptably high and reflect the small but sta-
tistically significant systematic deviation of the curves from
the data in Fig. 5(b). The advantage of using the Poisson
maximum likelihood method instead of fits which minimize

is that the cases with zero or small numbers of observed
events are correctly treated. This results in the excellent
agreement of the data and the fit for No, the total number of
events in each plot, and for the means and standard devia-
tions of the distributions. The only disagreement is in the
smallest 8'y intervals where in fact the values labeled "No
data" in Tables I and II are incorrect because events with

n(8y) =0 are not included in the distributions and thus are
missing form the sum of the data (although they are ac-
counted for correctly in the moment analysis).

TABLE II. Results of gamma fits to ' 0+Cu multiplicity distributions.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(n)
Data

2.69
4.92
7.24
9.63
11.84
14.08
16.32
18.48
20.52
22.63

p
Fit

2.67
4.90
7.24
9.58
11.83
14.17
16.41
18.39
20.39
22.69

1.07 ~ 0.02
0.79~ 0.01
0.73~ 0.008
0.73~ 0.007
0.72 ~ 0.007
0.71 ~ 0.007
0.71~0.007
0.72~ 0.007
0.72~ 0.007
0.72 ~ 0.007

2.86~ 0.04
3.87~ 0.04
5.29~ 0.05
6.99~ 0.06
8.52~ 0.08
10.06~ 0.10
11.65~ 0.12
13.24~ 0.13
14.68~ 0.15
16.34~ 0.16

N()

Data

17622
19456
19643
19662
19666
19667
19667
19667
19667
19667

N()

Fit

17783
19448
19648
19662
19666
19669
19669
19668
19668
19668

X /NDF

87/11

336/16
275/20
237/29
211/32
158/34
157/37
92/41
126/42
111/42
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FIG. 5. Multiplicity distributions from the intervals
By=0.2,0.5.1.0 together with the results of the fits: (a) negative
binomial distribution, (b) gamma distribution. The best fit param-
eters are given in Tables I and II.

FIG. 6. k(Bg) parameter from NBD fits to the data as a function
of (a) the interval Bg, (b) the average multiplicity in the interval

p(Brg) =(n(B'rg)). The dashes represent the linear relationship dis-
cussed in the text.

It is worth reiterating that the exact details of the central-
ity cut are important for Figs. 2 and 5 since the rising (lower
multiplicity) parts of the distributions are determined by the
centrality cut. The excellence of the fits of the NBD to the
rising as well as the falling parts of all the distributions is
attributed to use of the ZCAL centrality cut, which is an
indirect cut on multiplicity, rather than the sharp cut on mul-

tiplicity which is traditionally used to define centrality. This
leads to the speculation that the ZCAL requirement that all
the projectile nucleons interact may, in fact, produce a well
defined final state with real physical meaning, in distinction
to many of the other methods of defining central collisions.

VII. SYSTEMATICS OF THE DISTRIBUTIONS AND
INTERMITTENCY

The k parameters of the NBD fits are plotted in Fig. 6 and
show a totally unexpected, strikingly steep, linear increase
with the width and mean multiplicity [p, =(n(Br/))] of the
interval —k varies by more than a factor of 3 over 1 unit of
Bri. This is in sharp contrast to the UA5 results [5], where k
is also linear with 8'rg but varies by only —10% over the
same interval. A similar effect is seen (Fig. 7) for the evolu-
tion of the p(Br/) parameter of the gamma distribution fits;
however, a clear nonlinearity is visible near Bra=0. This
might be attributed to the inadequacy of the gamma distribu-
tion for arguments near zero—or it may be more fundamen-
tal. Particularly noteworthy for the gamma distribution
(Table II) is that for Bi7~0.3, the fitted values of b are all

constant to within —1%. Since 6 = pip„, this means that the
values of p(Br/) increase linearly with p, (Br/) —in direct
proportion to within 1%—a characteristic signature of con-
volutions [Eq. (13)].This seems to imply that the multiplici-
ties added by each incremental increase of the width of the
8'y interval combine as if they were statistically independent
variables. From Tables I and II, it can be seen that the ratio
k(Br/)/p(Br/) for the NBD fits is not nearly so constant as
p(Br/)/p(By). However, it is evident from Fig. 6 that this is
merely the result of the nonzero intercept, k(0) 40, for the
strikingly linear dependence of k(By) on p, (Br/) from the
NBD fits.

Just as the linear increase of k(Brg) or p(Bg) with the
width of the interval Brg is an indication that the multiplici-
ties added in each increment of A(Br/)-0. 1 act as if they
were statistically independent variables, the relatively con-
stant value of p(Br/) in the two lowest bins, and perhaps the
finite intercept k(0) 40, is reminiscent of the property of the
sum of 100% correlated variables. Thus it is tempting to
interpret the sharply rising increase of k(Br/) with Bi7 as
evidence of a random component of multiplicity, and the
nonzero intercept, k(0) 40, as an indication of correlations
at small 6'y. The dramatically different rate of increase of
k(Br/) with Br/ for the present data compared to the UA5
data [5] would then be taken as an indication that the relative
balance of randomness and correlation is considerably differ-
ent for the two cases. In fact, such considerations can be put
on a mathematical basis for any degree of correlation, as will
be discussed below (Sec. IX).
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relationship discussed in the text.

It is now possible to relate the directly measured evolu-
tion of the fluctuations of multiplicity with increasing pseu-
dorapidity interval —as described in terms of the negative
binomial distributions which excellently fit the
measurements —to the normalized factorial moment analysis
of the same data. The strikingly linear evolution of the NBD
parameter k(8r/) with the width of the interval explains the
observation of power laws based on the intermittency for-
malism in a much more simple, elegant, and understandable
way. The apparent power laws with fractional exponent are
simply an artifact of using the quantity F2 —1, which is the
inverse of a linear quantity k(8'rg) [47]. The intermittency
phenomenology, which looks for self-similar fluctuations at
all scales 6'y by a power-law increase of bin-averaged nor-
malized factorial moments with decreasing bin size 8y, ob-
scures the underlying physics of multiplicity fluctuations,
which is given simply and elegantly by the linear evolution
of k(Sr/) —= 1/(F2 —1).

Furthermore, for all orders of the normalized factorial

FIG. 8. (a) Normalized factorial moments F~ for central colli-
sions of ' 0+Cu, for orders q=2, 3,4,5,6, from the intermittency
analysis Fig. 1(a) (open points) compared to the same quantities
computed from the NBD parameter k(8i7) of Fig. 6(a) (solid
points), with lines as in Fig. 1(a). (b) Power-law slopes P in the
scaling form 2P /q(q —1) from the intermittency analysis Fig.
1(b) (open points) compared to the computation from the NBD
parameter k(8'g) (solid points).

moments measured in this experiment (Fig 1) the . apparent
power-law increase with decreasing bin size 8'y is entirely
given by the negative binomial distribution best fit curves,
represented by the single parameter k(8z/) —and has nothing
to do with the derivations of the measured data points from
the best fit curves [48,49]. The normalized factorial moments
of all orders can be obtained from the single parameter
k(8y) of the NBD fit [see Eq. (8)], and compared point by
point with the results of the moment analysis up to sixth
order [see Fig. 8(a)]. The low order moments agree to well
within the statistical errors (see Table III), but there appears
to be a small systematic discrepancy between the two meth-
ods, which increases slightly with increasing order and
which is clearly evident in the slope parameters [Fig. 8(b)].
Part of the discrepancy may come from the slight difference

TABLE III. Comparison of NBD fits to normalized factorial moment analysis.

(n), (a.)
Data

p, (o)
Fit

k

Fit
1/(F2 —1)

Moment analysis

0.1

0.2
0.5
1.0

2.69 (1.53)
4.92 (2.40)
11.84 (3.96)
22.63 (5.53)

2.41 (1.66)
4.86 (2.44)
11.84 (3.94)
22.60 (5.53)

16.35~ 1.7
21.37~ 1.3
37.52~ 1.6
64.43~ 2.5

17.68~ 1.2
22.38~ 1.9
36.80~ 5.0

63.98~ 14.8
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in the actual data for the two methods (except for the
Br/= 1.0 interval as noted above) and may therefore be real.
It is also conceivable [50] that the NBD fits, which give
excellent values for the low order moments with the best
statistics, may give smooth values for the high order mo-
ments, which miss the fluctuations of the data points at high
multiplicity seemingly indicated in Figs. 2 and 5 [51].Two
comments are relevant on this possibility: The only visible
fiuctuations of the data from the curves occur for n ~ 15 (and
therefore are relevant only for the 15th moment or higher);
because of the excellence of the y of the fits, these fluctua-
tions (as noted above) are consistent with statistical fluctua
tions. In any case, the slight differences in the results of the
two methods would not affect the fractal interpretation of
either set of data points in Fig. 8, presented in the factorial
moment formalism of intermittency.

It is also rather instructive to compare the results of the
NBD fit for k(827) in the present analysis to our previous
vertical moment computation [13] of 1/(F2 —1) for the
8'y=1.0 interval, which should be identical since the data
are identical and since the first two moments obtained from
the data and the fit are identical (see Table III)—the values
agree, but the quoted errors differ by a factor of 6. The errors
and best fit values for the NBD fits were checked by com-
parison to the formula [Eq. (9)] and by fitting published data
from NA35 [52,53]. The anomalous error quoted for the mo-
ment analysis [13] is testimony to the confusion inherent in
that method.

One trivial computational problem is the formulation in
terms of the normalized factorial moments, which are unity
for the Poisson distribution, rather than in terms of the nor-
malized factorial cumulants [39](see below), which are zero.
Thus slight deviations from Poisson would show up directly
as the leading term in the cumulants, but are small compared
to the leading 1.0 in the normalized factorial moment com-
putations. Another superior property of factorial cumulants
[39,40] compared to factorial moments is that the factorial
cumulants are additive for statistically independent subpopu-
lations [42]. Of course, the principal advantage of moment
analyses is that they work independently of whether the data
happen to be in the form of a convenient distribution.

C2(y1 y2) P2(yl y2) Pl(y 1)P1(y2) (15)

which obviously vanishes for the case of no correlation
where p2(y1, y2) = p, (y, )p, (y2). The two-particle correla-
tion is also expressed in the reduced or normalized form

2(y1 y2) P2(y1 y2)
R y1 y2 =

Pl(y1)P1(y2) Pl(yl)P1(y2)

and the two-particle correlation function used for the study
of quantum-statistical (Hanbury-Brown Twiss) correlations
[56] is

P2(y1 y2)
r2(y»y2) =. . . , =R(y1 y2) + 1.

pi(y 1)p1(y2)
(17)

IX. TWO-PARTICLE CORRELATIONS, THE NBD, AND
INTERMITTENCY

The importance of two-particle correlations to completely
determine the multiplicity distribution was pointed out by
Fowler and Weiner [9],and more recently by Giovannini and
Van Hove [16].The application of two-particle short-range
correlations to the intermittency phenomenology was pio-
neered by Carruthers et al. [17], Capella, Fialkowski, and
Krzywicki [18], and Carruthers and Sarcevic [19].The re-
duced two-particle short-range correlation [Eq. (16)] is pa-
rametrized in an exponential form

R(y, y2) =R(00)e i&1-~21 ( (18)

where ( is the correlation length. Then, if the inclusive
single-particle density p, (y) is taken to be constant, the in-
tegral of C2(y1, y2) on an interval of full width 8'r/,

0-y&-8'xg, 0-y2-8'rg, can be easily performed to obtain

pidity densities p~(y1, . . . ,y~) on the interval. Both K and
C are zero if there is no direct q-particle correlation [54,55].
The most straightforward Mueller correlation function is for
two particles,

VIII. CORRELATIONS AND MUELLER MOMENTS

Correlations were known to play an important role in
multiplicity distributions since the early 1970s. One of the
important conceptual breakthroughs was the realization, by
Mueller [39], that the distribution of multiplicity for multiple
particle production would not be Poisson unless the particles
were emitted independently, without any correlation, but that
short-range rapidity correlations were expected as a conse-
quence of "Regge-Pole-dominated" reactions. The non-
Poisson distribution of multiplicity and short-range rapidity
correlations were observed and well documented [15].

Mueller [39] introduced a series of moments and correla-
tion functions to describe multiparticle correlations. The
Mueller moments, or unnormalized factorial cumulants
[39,40,42], f~= (n)~ K, are the i—ntegrals of the Mueller
correlation functions Cq on an interval, just as the unnormal-
ized factorial moments are the integrals of the q-particle ra-

f '"dy 1dy2C2(y 1 y2)

(n(8r/))

[1—(&~V)(I —e '"")]
=R(0,0)

8'r//2g
(19)

1 = 1 6'r//2$
k( Br/) =

F2 —1 R(0,0) [1 (p8r/)(I e
—~v~k)]

(20)

Thus, if it is known (e.g. , from the data) that the multiplicity
distribution is negative binomial, then the two-particle short-

For a negative binomial distribution, substitution of the iden-
tity k= 1/(F2 —1) into Eq. (19) yields the equation for the
evolution of the NBD parameter k(Bred):
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range correlation determines the entire distribution, including
its evolution with By. Of course, independently of the dis-
tribution, Eq. (19) is valid for the evolution of F2 1 with-
er/ [57]. Note that Giovannini and Van Hove [16] were the
fit to give the relationship between NBD k parameter and the
integral of the two-particle correlation function C2, and a
similar derivation was given by De Wolf [58].

Equation (20) represents a mathematical description of
the observation that the linear increase of k with By is an
indication of the randomness of the multiplicity in adjacent
Brg bins, while the constancy of k with increasing By would
be an indication of 100% correlation. In the limit Br/(&(,
when the By interval is well inside the correlation length,
k(8r/) = 1/R(0, 0), a constant. In the limit Br/&)(, k is di-
rectly proportional to Br/, k(8r/) = Br//2(, as expected from
convolutions of independent bins [17].

The measured evolution of k(6r/), which appears to be
strikingly linear, is equally well described by a fit to Eq. (20)
(see Fig. 9) which indicates a weak correlation strength
R(0,0) =0.074~0.005 and a very short rapidity correlation
length /=0. 12~0.01. The correlation length derived from
the fit is much shorter than the value g-I —3 for hadron
collisions [15].However, since fits of Eq. (19) to UA5 and
other hadron data give parameters which reproduce the di-
rectly measured correlations very well [19], there is no rea-
son to doubt the results of the present fit. Thus the present
data from 0+Cu central collisions can be analyzed within
the mainstream two-particle correlation phenomenology of
the past decades of multiparticle physics —the difference is
merely quantitative, a dramatic reduction of the two-particle
correlation length. Intermittency, in central 0+Cu collisions,
is nothing more than the apparent statistical independence of
the multiplicity in rapidity bins of size By-0.2 due to the
surprisingly short two-particle rapidity correlation length.
The "large" bin-by-bin fiuctuations on individual event ra-
pidity distributions from Si+AgBr interactions in cosmic
rays [3,59] and the linear evolution of k(8r/) for the present
data are both explained by this effect.

X. CORRECTION FOR INSTRUMENTAL EFFECTS

The explanation of the observed intermittency signal by a
very-short-range correlation clarifies why various experi-

ments have resorted to studying small volumes in multidi-
mensional phase space to enhance the effect [52,60,61].The
same argument makes the susceptibility to instrumental ef-
fects evident —any short-range two-particle correlation gen-
erated by the detector mimics the effect, e.g. , electronic cross
talk [13], Dalitz and external conversions (y~e++e ),
[61—63] "ghost tracks" (double measurements of the same
track [61—63]), etc. In fact, there is a large instrumental
short-range correlation in the present data, which further
confirms the explanation of intermittency —the present un-

corrected data have a known instrumental short-range corre-
lation [13]which produces an intermittency signal that con-
stitutes about half the measured effect.

A short-range correlation was inadvertently built into the
detector used for these measurements, since, as noted above,
the TMA was constructed of individual small panels which
were slightly tilted to avoid inefficiency due to the walls of
the tubes. The inefficiency was compensated by a small
amount of cross counting on adjacent pads for particles
which cross from one wire to another across a tube wall —a
built-in short-range correlation. The effect of such cross
counting and other cross talk was studied with test beam
data, by extensive Monte Carlo (MC) simulations and, fi-

nally, by measurement in situ. By use of the event simulator
Fritiof [64], MC samples having the same number of events
as the data were generated. Dalitz decay of ~ was added to
Fritiof and the output was fed through the GEANT package to
simulate the detector response and secondary physical effects
such as multiple scattering, y conversions, and particle de-
cays. The GEANT output, which is a list of struck pads, was
then analyzed after discarding malfunctioning pads just as in
the real data.

The response of the detector to instrumental cross talk,
including the small amount of cross talk over tube bound-
aries, was determined by measuring the ratio of two-pad
clusters on adjacent wires in situ —using the whole detector
and the full data sample. The measured rate at which pads on
adjacent wires fired was (7.45+ 0.11)%, which was larger
than the predicted rate of (3.4~ 0.3)% from the MC simula-
tions, which included all the physical (conversions, decays,
multiple scattering) and geometrical effects (except for the
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FIG. 10. The final MC results for the instrumental effect, pre-
sented in the form of Fig. 1: (a) normalized factorial moments,F, for orders q =2,3,4,5,6; (b) the power-law slopes P in the
form of the scaling law 2P /q(q —1).

slight tilt). ' The difference of 4% was therefore incorporated
into the final Monte Carlo simulation to represent the effect
of all cross talk including cross counting.

The results of the final MC simulation for instrumental
effects, F, are presented in Fig. 10, while in Fig. 11,
F2 —1—=Kz is shown together with the measured F2 mo-
ments from ' 0+Cu. It can be seen from these plots that the
MC simulation also exhibits the characteristic intermittency
effect—a power-law increase of F as the bin size 8'y is

q
reduced —but at roughly only half of the measured In(F~) and
slope qt~ of the data [13].The instrumental MC simulation
can be made to fully reproduce the measured Fq moments by
increasing the assumed cross talk to (8.2~0.7)%, which is
significantly larger than the measured value of

'The 3.4% rate of pads on adjacent wires firing, calculated from
the Fritiof+GEANT Monte Carlo simulation, consists of a random
combinatorial effect of 2.3% from the known multiplicity and
dnld y distributions, with only 1.1% from conversions and Dalitz
pairs. These latter effects are small because both tracks from the

pair tend to fall on a single pad and are counted as a single track in
the detector.

The additional rate of (4.0+ 0.4)% measured in situ for two-pad
clusters on adjacent wires is consistent with being entirely ex-
plained by a slight tilt of the detector panels such that the detection
inefficiency and cross talk roughly offset each other at probabilities
of approximately 3% as measured in a test beam [26].

(4.0 0.4)%. This indicates that there is a net intermittency
effect in the data of more than five standard deviation sig-
nificance. As already described, the conservative counting
convention was used for two adjacent pads in the same tube,
and the measured cross talk over tube boundaries was explic-
itly included in the final MC simulation. Thus the net inter-
mittency effect in the data comes from sources other than

y conversions, Dalitz decays, and instrumental cross talk,
which are the main contributors to the MC signal because
Fritiof gives Poisson distributions [65] and does not exhibit
any intermittency, i.e., F ""'

(Br/) = 1.000~ 0.003 for all
For the normalized factorial moment analysis [13], the

measured values of F
q

were corrected for instrumental
effects by subtracting 5F, as determined by the
Monte Carlo simulation: AF —=F —F'" "', where F is
given in Fig. 10(a) and F'"~"'= 1.000 as noted. To correct the
results of the negative binomial distribution analysis, the re-
sults of Kz= Fz —I =b,F—z (Fig. 11) for the instrumental
effects were first fit [66] to Eqs. (18), (19), which gave an
excellent representation (solid curve in Fig. 11) with param-
eters R (0,0) =0.050~0.010 and (=0.072~0.020. This is,
in fact, a reasonable mathematical description of the built-in
short-range correlation of the detector, which leads to fur-
ther confidence that a very-short-range pseudorapidity corre-
lation also explains the intermittency effect in the corrected
data.

The correction of the NBD analysis for instrumental ef-
fects is then performed by taking the measured two-particle
correlation R(y ~,yz) to be the sum of a true effect plus the
instrumental effect:

R(y ty )z=R (y&, yz)+R (yt, yz), (21)

with the further assumption that the instrumental effect has
minimal infiuence on the observed (n(Br/)). It then imme-
diately follows from Eqs. (19), (20) that the measured
Kz(Brg) = I/k(Br/) is just the sum of the integrals of the true
plus the instrumental terms or

1
Kz(B&)=, =K,'(B&)+Ktz(B&).

k Bz/
(22)

The true effect Kz(Bz/) is then simply

1
Kz'( Br/) = Kz( Br)), -

k Br/
(23)

Note that the R (0,0) =0.050 from the fit is the same as the
instrumental effect of 5.1%, which is composed of 4.0% cross talk
and 1.1% Dalitz and conversions. However, the numerical equality
is an accident, since to go from the percent cross talk on pads on
adjacent wires to R(y, ,yz) involves normalization [Eq. (16)j by an
additional factor of p& X 8g, for the adjacent ring of pads, which is
of order unity: (dn/dy-23) X(Bg-0.05)=l.

where Kz= Fz 1=AFz i—s taken —from the fit (solid curve)
in Fig. 11 and k(Br/) is taken from Fig. 6. The statistical
errors for Kz(B'r/) are summed in quadrature from the two
terms, where the original [13]error of Kz(Br/) (see Fig. 11)
has been corrected, at each 8'y, to correspond to the NBD
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methodology [66]. It is important to note that Eqs. (19),
(21), (22) are valid in general, for any distribution, and pro-
vide a physical explanation of the method used to correct the
E802 normalized factorial moment analysis [13] for instru-
mental effects.

XI. FINAL RESULTS FOR R(0,0) AND g

In keeping with the notation based on the NBD, the final
results are quoted as I/Kz(8y), denoted k (Brg), and are
plotted vs 6y in Fig. 12, which clearly illustrates, again, the
simple linear evolution and nonzero intercept. The final val-
ues of R(0,0) and (, corrected for instrumental effects, are
derived from a fit of these data to Eq. (20):
R(0,0) = 0.031~ 0.005, (= 0.183+o'o42 (statistical errors).
The systematic error, predominantly from the measured
cross-talk uncertainty (4.0%~0.4%), is ~0.003 for R(0,0)
and ~0.01 for (. These results are consistent with previous
attempts at direct measurements of two-particle rapidity cor-
relations in 0+emulsion [67] and S+A [68,69,49] central
collisions, which also indicate a much weaker correlation
strength than hadron collisions, and a reduced rapidity cor-

relation length [69]. The hadron short-range correlation
length at low energies is known [15] to be roughly (-2
units of rapidity, with strength R(0,0)-0.6. Thus, for the
weak correlation strength and small correlation length de-
rived from the E802 data to make sense, it must be that the
standard hadronic short-range correlation effect is diluted by
the multiple collisions in the ' 0+Cu reaction. Similar con-
clusions in the context of the conventional intermittency
slope parameters are given in Refs. [17,18,22,23].

It is interesting that exactly the deduced effects from the
E802 data —weakened, but finite, short-range rapidity corre-
lations in collisions of relativistic heavy ions —were pre-
dicted several years ago [17,18,20,21]. In nucleus-nucleus
collisions, the conventional short-range correlations should
be washed out by the random superposition of correlated
sources [18,22,23], so that eventually only the quantum-
statistical Bose-Einstein (BE) correlations should remain
[17,18,24]. Other experiments have reported a relationship of
intermittency and BE correlations [62,63,65,70]. If BE cor-
relations were the entire effect, then direct measurements of
BE correlations in the variable 8'rg, instead of the usual vari-
able [56] (Q=p& —p2), combined with an estimate of the
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= 540 GeV (dn/dr/= 3.01), NA22 p+p vs
=22 GeV (1.90), EMC p-p DIS W=18 —20
GeV (1.57), HRS e++e 2-jetPs =29 GeV
(2.12), E802 0+Cu central Pb„= 14.6A GeV/c
(23.0), E802 corrected k (Brg), NA35 S+S cen-
tral Eb„=200A GeV (10.4). The dashed lines
are fits to Eq. (20) with the parameters ( indi-
cated.

particle composition in the TMA detector from spectrometer
results [34], should reproduce the parameters derived from
the evolution'of k (Br/).

XII. RELATED MEASUREMENTS

It is clear that the present E802 data have much in com-
mon with the original UA5 [2,5] observation —an increase in
the width of the multiplicity distributions about the average
with decreasing 6y interval, well fit by the negative binomial
distribution. Since the pioneering work of UA5, many other
experiments have shown that the NB@ provides excellent fits
to charged multiplicity distributions in restricted 6y intervals
for all reactions studied, for example, p+p (NA22 [71]),
e++ e (HRS [72]), /L-p DIS (EMC [73]), and S+S central
(NA35 [52]). Particularly noteworthy is that all these previ-
ously published measurements show the same effect as the
present data —linear dependences of the NBD parameter
k(Bred) with the pseudorapidity interval Bing or, equivalently,
with the mean multiplicity in the interval p, (8)7), with non-
zero intercept k(0) 40 (see Fig. 13). However, the present
data (and also to a certain extent, the other heavy ion data,
NA35 S+S) are quantitatively, rather than qualitatively, dif-
ferent from the others in that k(8yg) is much larger and the
dependence on 8'rg much steeper. As previously noted, fits of
Eq. (20) to the hadron data give values for ( and R(0,0)
which reproduce the directly measured correlations very well
[19].These fits are shown by dashed lines in Fig. 13. The
difference between the present and previous data is merely
quantitative: The rapidity correlation length is g-3 in UA5,
$-0.2 in E802.

There is some other previous work on NBD fits as a func-
tion of pseudorapidity interval in relativistic heavy ion colli-
sions. Two emulsion experiments have presented NBD fits to
minimum bias multiplicity distributions in ' 0 and Si re-
actions [43,74], with limited statistics (~1000 events). Of
course, minimum bias distributions look nothing like those in
Figs. 2 and 4, and furthermore, the fIuctuations are more
dominated by nuclear geometry and the various target com-
ponents than by fundamental hadron dynamics. NBD fits to
multiplicity distributions in central S+A collisions at

200A GeV have been presented by two experiments: EMU01
[75] with -350 events for S+Au, and NA35 [52] with 2856
events for S+S collisions and 270 events for S+Au. Inter-
estingly, both experiments find excellent fits to the NBD in
S+Au collisions, but their results for k(Bing) disagree. Mul-
tiplicity distributions with a zero degree calorimeter central-
ity cut, but without fits, were presented by another AGS ex-
periment [76] at 14.6A GeV/c for Si+Al, Cu, Pb, for a fixed
pseudorapidity interval 8'p=0.6, as a function of the posi-
tion of the center of the interval. The distributions show Auc-
tuations that favor high multiplicity, but do not change shape
as the center of the interval is varied from rg= 1.1—3.5, ex-
cept for the most forward position.

Of most importance for the comparison to the present
measurement is the high statistics NA35 S+S data, with cen-
trality cut (2.6%) made by a zero degree calorimeter, where
the result for k( Br/) was shown in Fig. 13. It is instructive to
try to understand the precision obtained for the NBD param-
eter k(8'r/) from the two heavy ion experiments, NA35 and
the present experiment, E802. The error estimate s &+ for the
NBD parameter I/O was given above [Eq. (9)]. Thus, to an
excellent approximation, the required number of events, N,
for a fixed percent error in s&/k, is

N=2
/J, 4 sip

(24)

This explains why the errors for NA35 S+S with 2856
events are so much larger than E802 0+Cu with 19667
events —(k/p, ) is 2—3 times larger even though NA35, in
distinction to all the other NBD fit experiments, combined
the data from all intervals of a given size (as in the normal-
ized factorial moment analysis) to reduce the errors. Interest-
ingly, the fit of Eq. (20) to the NA35 data, shown as the
dotted line in Fig. 13 with /=0. 6+0&, indicates that k in-
creases with Br/ (i.e., I/(WO) to 99.4% confidence (2.5o),
which is somewhat in disagreement with the conclusions
reached by NA35 from these data [52], and also by EMU01
[75], that "the NBD parameter (I/O) is (within the errors)
independent of the width of the rapidity interval. "Of course,
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the present measurement, corrected for instrumental effects,
gives a much clearer (3.5o.) effect for the variation of
k(Bzl).

XIII. SUMMARY AND CONCLUSIONS

E802 ' 0+Cu central (ZCAL) multiplicity distributions
in bins of pseudorapidity By=0.1,0.2, . . . , 1.0 show an ap-
parent fractional power-law growth of normalized factorial
moments with decreasing pseudorapidity interval, in agree-
ment with previous intermittency analyses. The same data
also exhibit excellent fits to negative binomial distributions.
Consequently, the present data allow for the first time a com-
prehensive formulation of the subject of intermittency in
terms of distributions to complement the analysis based on
moments. Of course, many of the individual components of
the present analysis have been noted by previous authors
[9,16—24,58,62,63,65,70,77—79].

In agreement with all previous measurements of NBD fits
to multiplicity distributions in hadron and lepton reactions,
the k parameter of the NBD fit for central ' 0+Cu collisions
is found to exhibit an apparently linear increase with the
Bzl interval and a nonzero intercept k(0) 40. The heavy ion
data are quantitatively rather than qualitatively different from
the others in that k(Bzl) is much larger and the dependence
of Brg much steeper. The evolution of the NBD parameter
k(Bzl) is used to determine the two-particle short-range ra-

pidity correlation length for central ' 0+Cu collisions,
/= 0.18~0.05, which, although much shorter than the value
g- 1 —3 for hadron collisions, is clearly nonzero. True

intermittency —a scale-invariant power-law singularity as
Bzi—&0—would correspond [80) to the limit (—+0, which
can only occur if the intercept k(0)~0. In this case,
K2=1/k would obviously diverge as 8'y~0, and the non-
Poisson multiplicity distributions in small cled bins would, in
fact, be fully statistically independent —a clear example of a
singular correlation. However, this is not observed in any
experiment. There is no doubt that the correlation length re-
mains finite for the present data, since k(0) = 32.7
~5.4(stat)~2. 4(syst) differs from zero by huge statistical
significance, implying that there really is a two-particle cor-
relation with very small correlation length and, therefore, no
intermittency.
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