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The components of the nuclear inertia tensor, functions of the separation distance R and of the radius of the
light fragment R2, Bstt(R, R2), Bstt (R,R2), and Bs s (R,Rz) are calculated within the Werner-Wheeler

approximation, by using the parametrization of two intersected symmetric or asymmetric spheres. Analytical
relationships are derived. When projected to a path R2=R2(R), the reduced mass is obtained at the touching
point. The two one-dimensional parametrizations with R2= const, and the volume V2= const previously stud-
ied, are found to be particular cases of the present more general approach. Illustrations for the cold fission,
cluster radioactivity, and u decay of Cf are given.

PACS number(s): 21.60.Ev, 23.70.+j, 25.85.Ca, 27.90.+b

I. INTRODUCTION

One group of methods frequently used to solve quantum
dynamical problems in many branches of physics and chem-
istry (e.g. , tunneling phenomena in solid-state and nuclear
physics, mass transfer in nuclear reactions, mass distribu-
tions in fission, scattering reactions, molecular collisions,
chemical reaction-rate theory, etc.) [1—3], relies on quasi-
classical approximation, in which an important quantity is
the inertia tensor [4]. The components of this tensor are
strongly dependent on the arbitrarily chosen set of n gener-
alized coordinates (q t tqq, . . . , q„).

In the present paper we have in mind possible applica-
tions for quantum mechanical tunneling in nuclear decay
processes like cold fission, cluster radioactivities, and n
emission [5], for which it was repeatedly stressed that a num-
ber of collective degrees of freedom as low as possible
should be chosen in order to represent on an axis or in a
plane the main physical quantities determining the basic fea-
tures of these phenomena.

Glas and Mosel [6] have used the distance R and the
angle rt to expres's the kinetic energy in heavy ion collisions.
Within fragmentation theory of binary systems [7] the best
suited deformation coordinates are the fragment separation
distance q] =R and the mass asymmetry parameter
q2= r/=(V, —V2)/(V, + V2), where V; (i= 1, 2) are the
volumes of the fragments A, Z, (which finally will be the
daughter nucleus AdZd) and A2Z2 (which becomes the emit-
ted cluster A,Z, at the touching point configuration). Such
pairs of collective variables have been used to calculate the
nuclear inertia for the mass transfer [8—10] in heavy ion
collisions, by using either the cranking approximation [3] or
the hydrodynamical approach [10].

As a consequence of the assumed incompressibility of
nuclear matter, the total volume of the fragments is con-
served during the deformation. Also, we are interested to
study a given exit channel, hence the final value of the mass
asymmetry, r/&= (Ad —A, )/A, is known. The parametrization
of two intersected spheres with radii R, and R2 has been
adopted [11] to generate two different sequences of such
shapes for a given mass asymmetry, with an additional con-
straint of R2 =R, = const ["clusterlike" (CL) shapes] or

V2= V, =const ["more compact" (MC) shapes]. In this way,
by taking into account the total volume conservation and the
matching condition in the separation plane, it was possible to
arrive at a single independent shape variable which could be
either the separation distance, R, of the geometrical centers
of the spheres or, z —the distance between their centers of
mass. The Werner-Wheeler approximation [12,13] allowed
us to obtain analytical relationships for the nuclear inertia (a
scalar in this case) in a wide range of mass asymmetry.

Our aim at present is to relax the above-mentioned restric-
tions, leaving both q& =R and q2=R2 to vary. We shall show
that from the general expressions obtained in this way one
can get the preceding ones by giving the corresponding law
of variation R2=R2(R) in the overlapping region of the two
fragments. Also, another local test is provided by the fact
that the inertia scalar B(R), which is the result of projection
on a general trajectory R2=R2(R), is equal to the reduced
mass, B(R,) =p„at the touching point R, R=„+R

II. MULTIDIMENSIONAL APPROACH

During the decay process, leading from one parent
nucleus, AZ, to two different fragments (AdZ„—the daugh-
ter or heavy fragment; A,Z,—the emitted ion or light frag-
ment), the shape of the system changes continuously. The
potential energy surface in a multidimensional hyperspace of
deformation parameters, (q) = q,t, q2, . . . , q„, gives the gen-
eralized forces acting on the nucleus. Information concerning
how the system reacts to these forces is contained in the
inertia tensor (B;~). The contribution of a shape change to
the kinetic energy of the system at any time, t, is expressed
by

The inertia tensor with components B;J=B,I(q) corre-
sponds to the variation in time of the nuclear shape. Their
values depend on the particular choice of deformation coor-
dinates. On the other hand, for a system with axial symmetry
relative to the z axis, the kinetic energy of a nonviscous Quid
is given by
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Here V is the volume considered to be conserved,
o.= 3ml(47rro) is the mass density, m is the nucleon mass,3

v is the velocity, and ro = 1.16 fm is the nuclear radius
constant.

By assuming irrotational motion (V Xv=rot v=0), the
velocity field may be derived from a scalar velocity potential

y, i.e., v= Vy. From the continuity equation of an incom-
pressible fluid it follows that the Laplace equation,
V y =5 cp = 0, should be satisfied with kinematical boundary
conditions,

is different from zero if the origin of z is not placed in the
center of mass. Here p, = p, (z) is the nuclear surface equa-
tion in cylindrical coordinates, with z;„,z, intercepts on
the z axis.

For another set of deformation parameters In) describing
the same shape,

Bq; Bqj
Bki(tx) = X B,(q)

Bnl, Bo.i

8F= vV'F+ =0,
Bt

(3)

Also, one can define a nuclear inertia scalar B(s) along a
trajectory, given parametrically by the equations q, = q;(s),
(i=1,2, . . . , n):

expressing the need of a vanishing normal component of the
velocity at the surface. In this way there is no Aow of matter
through the surface. The surface equation for axially sym-
metric shapes in cylindrical coordinates (p, y, z) is written as

F(r, t, q) =p —p, (z, t, q) =0 in which p, is the value of p on
the surface. The velocity components, z = 8y/Bz and
p=dcp/Bp, are both functions of z and p.

As an approximation to the incompressible irrotational
flow, one can use the Werner-Wheeler assumption. In this
approximation the flow is considered to be a motion of cir-
cular layers of fluid, z is independent of p, and p is linear in

p:

z=z X,(z.q)q; p=(p~p .)X 1',(z .q)q (4)

il Psl g
PsldZ&

maxfz

In order to get a vanishing normal component of the velocity
at the surface, one needs

The quantities X; are calculated separately for the left- and
right-hand side of the body by requiring a vanishing total
(convective) time derivative of the fiuid volume to the left-
hand side, or right-hand side of an arbitrary plane normal to
the z axis:

dqi dqjB(~)=X B;,(qt q2 . . q.)d, d,
' (10)

In this way the multidimensional tunneling penetrability can
be reduced to a one-dimensional problem. When s=R, or
s=z, a good test of accuracy of the computations is ob-
tained at the touching point configurations, where one should
obtain the reduced mass B(R,) = p, .

III. TWO-DIMENSIONAL PARAMETRIZATION
OF INTERSECTED SPHERES

The surface equation, assuming a shape of two intersected
spheres, can be written as

Ps

2= 2 — 2
psl Ri —Z,

p, „=R2—(z —R),
—Ri(z~z,
zs(z(R+R, ,

where Ri, R2 are the radii of the two overlapping fragments,
z, is the position of the separation (intersection) plane, and R
is the distance between the two centers.

By taking q &

=R and q 2
= R2 as independent deformation

parameters and placing the origin of coordinates in the center
of the left-hand side fragment, the limits of integration are
z;„=—R& and z,„=R+Rz, as can be seen in Eq. (11).
The radius of the heavy fragment will be considered as a
function of these variables, R& =R&(R,R2). The X;t quanti-
ties defined above for the left-hand side fragment are

Psr(l)
i r(l) 2 ~ i r(l)z

(6)

1 8 t'~,
q 2Rt 8Rt

X« ———,
R p,',(x)dx =—,(12)
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~ zmax
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The functions X; and Y; are found as a sum of two terms for
the left- (l) and right- (r) hand side of the shape.

After substitution in the relationship for the kinetic energy
and comparison with the initial equation for El, we find the
following equations for the components of the inertia tensor:

and the corresponding Yl;

Psl ~XIR
lR

1

R +z 2) aR~
(R, —z) (

' BR)' (14)

1 8 «., 2 2Ri BR i
p„(x)dx = — (13)

Psl BR2) R Ri —z BR2

where the correction term B,'(q) due to the center of mass
motion [11]

BXiR
YlR2 2 QZ

R +z 2~ aRI
(R, —z) i

'
BR2)

' (1S)



2638 R. A. GHERGHESCU, W. GREINER, AND D. N. POENARU 52

1 8 fR+R2
X R= 2 p, „(x)dx= 1,P„~R) z

1 8 fR+R2 2, d =
"R2 ' aR, ~, P"' ) R +z R-

2R2

Similarly, for the right-hand side fragment we have

(16)

(17)

t B„(R,R, ) B„,(R,R&) )

( BR,R(R,R2) B (R,R2) )

has the nondiagonal components equal to each other,
B«=BRR, due to the symmetry property. By taking into

2 2'
account Eqs. (7),(8), the inertia components have the follow-
ing form:

and the corresponding Y„ BRR(R,R2) = BRR+ BRR+ BRR

Psr ~XrR
~.R =

1

psr rR2 R2+ R Z

2 az (R2+ z —R)

(18)

(19)

fz,
2 2 1 2

lR+ 21 lR)dz
3 —R)

+7ro
) zs

f R+R2
psr(XrR+ 2 YrR) dz+ BRR

(21)

The tensor of inertia for two independent variables where
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The following geometrical quantities can be defined:
D, = z, ; H, =R, -z, ; D2=R-z, ; H2=R2-D2. By
substituting Eqs. (12)—(19) into Eqs. (21)—(29), and per-
forming the integrations we obtain for the first component,
BRR, the contribution of the left-hand side fragment: BRR

7T 0"

V

BR1 1—(Ri+Di) Rt R +3(R2+D2) (R2BR

for the light fragment contribution. The correction term is
expressed as

2R', 2R, i r aR, i'
BRR=m~ —3.5Dl —4.5R1+

H +6RllnH Rl RH, ) i aR)
(30)

2
ojR1

2+H2) —(Rt+Dt) Ri +R2(R2+D2)
BR2

(35)
For the right-hand side fragment

'TT 0
BR~ — (R2+D2) (R2+H2)

3
(31)

For the last diagonal component of inertia, BR R, the
2 2'

corresponding terms are found to be

BRR V

and for the correction term
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Similar calculations for the mixing component, BRR, lead2'
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for the heavy fragment contribution, and

BqR = YroR2(R2+D2)

(33)

(34)

Finally, by summing up the contribution of the two frag-
ments and the correction term for every of the three tensor
components, and by taking into account that all lengths are
expressed in units of the radius of the parent nucleus,
Rp = f'pA, we obtain the three components of the inertia
tensor:

1 BR1I—B~g(R,R2) =0.25A(R2+D2) (R2+H2) —A 0.25(R2+D2) (R2+H2) —0.75(R, +D, ) Ri
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1 aR i' r R, 2Rii ( R2 2R2i—BR ~ (R,R2) =A R, R, 1.5 —3.375+4.51n —2.625D& +AR2 R2 1.5 —3.375+4.51n

BR1—2.625D2 +0.5625A —R2(R2+D2) +Rt(R, +D, ) (41)



2640 R. A. GHERGHESCU, W. GREINER, AND D. N. POENARU 52

The volumes of the two fragments are given by the fol-
lowing relationships:

Vt= —(Ri+Di) (Ran+Hi);3

2V2= —(R, +D2) (R2+H&).
3

(42)

we will calculate analytically the two partial derivatives of
R, (R,R2), according to the theory of implicit functions:

By using the total volume conservation, V1+ V2= V= const
(where V=4mRO/3, Ro is the radius of the parent nucleus),
and the matching condition in the intersection plane

2 R2 D2 R2 D2
1 1 2 2&

V2 = V2I R,R2, R t (R,R2) ]. (50)

IV. TWO ONE-DIMENSIONAL SEQUENCE OF SHAPES
AS PARTICULAR CASES

We have the possibility to check the validity of the
general relationships (39)—(41), by comparing, in the
whole range of R e (R;,R,), where R; = Ro R2—;, and

R2, =R2(R;) is the initial value of R2, the results for two
particular one-dimensional configurations mentioned in the
introduction (MC and CL) with the similar equations previ-
ously published [11] assuming only one independent vari-
able. Also, at the touching point, R=R, , the inertia scalar
B(R) equates the reduced mass.

For the particular parametrization with compact shapes,
there is a second restriction besides V= const, namely
V2= const. We have to take into account the fact that

R, =R, (R,R2), in the general case when only the total vol-
ume is conserved without any other constraint, so that

BR1

BR

BR1

BR2

8V/BR

8V/BR1
'

8V/BR2

8V/BR1
' (44)

The derivative of R2(R) with respect to R, is calculated
following the same prescription as above,

dR2 (8V2/BR)+(BV2/BRt)(BR, /BR)

dR (BV2!BR2)+(BVq/BRt)(8R, /BR2)
(51)

The involved quantities are

(45)

The two partial derivatives of R1 with respect to R and

R2 are given by Eq. (48). We find for the other terms in the
above formula

1 o)V
=2R (tR t+D)),

m BR1

1 BV = 2R2(R2+ D2).
m BR2

After performing the calculations, we obtain

(46)
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Or V2 D1
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=3H2
R (R2+D2),

8V2 R2= 3—(R2+ D2) (2R+ H2),
BR2 R

8V2 R1= —3H2 —(R2+ D2).
1

(52)
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After replacing these equations in (51) and performing
calculations, we obtain the derivative of R2 with respect to R
for the compact shape parametrization:

By choosing a trajectory in the plane of the two indepen-
dent coordinates, R and R2 given in a parametric form:
R2 =R2(s); R =R(s), and by taking s =R, we can write ac-
cording to Eq. (10)

I dR2)
B(R)=B~~(R,R2)+ 2B~~ (R,R2)

~
dR )

dR2

dR
H2(Rt+Di)

2R2(R+R, +R2) ' (55)

which is identical to the corresponding Eq. (21) from [11].
By substituting (55) in (39)—(41), the three components of

the inertia tensor may be written:

+BR R (R,R2)
I dR) (49)

1 H1 3 9 H1—B~~=A K&+ 4 Vz —
16 (R&+Df) +—

(56)

expressing an inertia scalar which is used to calculate the
tunneling penetrability along this path. In the limit R—+R, ,
when H, ~O and H2 0, the diagonal component, B«,

2 2'
becomes infinitely large. Consequently, for a finite inertia
scalar B(R,), one has to choose a path R2(R) fulfilling the
condition of a vanishing derivative, R2(R,) =0, at the touch-
ing point.

1 H1 3—Bgg =AR2(R2+D2)
2 R At+4(R2+D2)

m 2 Rt+Dt

9 H1 V2
(Ri+Di) + —(R+Rt+R2)

(57)
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and Vz is the volume of the emitted fragment [see Eq. (42)].
Now, in the general expression of the total inertia scalar

(49) we introduce the derivative of Rz with respect to R,
(55), obtained for the compact shape parametrization. We get
in this way the inertia for V2= const:

~ 300

& 200

100

p I I I I
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(R-R;)/(Rt-R;)
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(Ht Rz+Dz
=A E)

I, 2 R+R)+R2)
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3 Hz(R, +D, )(Rz+Dz) 3
+ V24 R+RI+R2 4~

FIG. 1. The components of the nuclear inertia tensor B~~ (top
left), B~z (top right), and B~ z (bottom left), leading to a scalar

B(R) along a path Rz(R) with a negative derivative (bottom right),
for the cold fission of Cf with ' Cd light fragment in the param-
etrization of two intersected spheres with V2= const. The one-
dimensional inertia B (top left), calculated with the Eq. (49), is
exactly reproduced.

V,
2 (61)

The last term is the correction due to the center of mass
motion. One can observe that, during the shape evolution,
this correction remains constant —9AVz/(4zr) = —A, /A.
The final result for the compact shape is

contribution at the touching point, in spite of the general
trend of Bz z toward an infinite value when R —+R, .

2 2

For clusterlike shapes, R2 =const, dR2/dR =0. Unlike the
preceding case, where all three components of inertia tensor
contributed to B(R), now

40
120
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where p,&=A,Ad/A is the reduced mass number. This term
is derived from 3AVzl(47r) —9A Vz/(4zr) =A, —A, /A
= p,„.The equation (62) reproduces the formula of inertia
obtained for MC shapes [11].

Despite the differences between B and B«shown in
Figs. 1—3 for cold fission with ' Cd light fragment, Ar
cluster radioactivity, and a decay of Cf, the final result of
the projection on the Rz(R) path coincides with the one-
dimensional B(R), the mixing term, 2BIt~ Rz being nega-

2

tive, due to the sign of the derivative R2. Also, by multipli-
cation with Rz and (Rz), the last two terms give no
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FIG. 2. Same quantities as in Fig. 1, for the Ar cluster emis-
sion from Cf.
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FIG. 3, Same quantities as in Fig. 1, for the n decay of Cf.
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FIG. 4. The components of the nuclear inertia tensor BR& equat-

ing exactly the one-dimensional 8 (left-hand side) and Btttt [right-
2

hand side, giving no contribution to the scalar B(R) owing to the
vanishing derivative R2=0], for two-intersected spheres with
R2= const. The plots refer to the cold fission with ' Cd light frag-
ment (top), the Ar cluster radioactivity (middle), and n decay
(bottom) of Cf.

which is again the same as in Ref. [11].
The variations with R of Btttt equating B(R), and of

B« for CL shapes, and the same decay modes like in Figs.
2

1—3 are plotted in Fig. 4. The other component Bz z shows
2 2

a similar behavior with that of MC shapes.
By analyzing the formula of the total inertia B(R), and

that of the derivative of R2 with respect to R, we can see that
at the touching point where H2~0, we have from Eq. (55)
(dR2)l(dR)=0 when R~R, . In this way the two last
terms of B(R), namely 2B&tt (R,R2)(dR2)l(dR) and

Btt z (R,R2)[(dR2)l(dR)] vanish at R=R, .
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