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We investigate the role of the effective nucleon-nucleon interaction in the description of giant dipole reso-
nances in hot nuclei. For this purpose we calculate the response function of hot nuclear matter to a small
isovector external perturbation using various effective Skyrme interactions. We find that for Skyrme forces
with an effective mass close to unity an undamped zero sound mode occurs at zero temperature. This mode
gives rise in finite nuclei (calculated via the Steinwedel-Jenssen model) to a resonance whose energy agrees
with the observed value. We find that zero sound disappears at a temperature of a few MeV, leaving only a
broad peak in the dipole strength. For Skyrme forces with a small value of the effective mass (0.4), there is no
zero sound at zero temperature but only a weak peak located too high in energy. The strength distribution in
this case is nearly independent of temperature and shows small collective effects. The relevance of these results
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for the saturation of photon multiplicities observed in recent experiments is pointed out.

PACS number(s): 21.30.+y, 21.60.Jz, 21.65.+f, 24.30.Cz

L INTRODUCTION

Giant dipole resonances built on nuclear excited states
have been the subject of numerous studies since their first
observation at the Berkeley 88" cyclotron in 1981 [1]. By
now a significant amount of information is available con-
cerning their evolution with increasing excitation energy
(which is mainly stored in rotational and thermal degrees of
freedom) [2—5]. The energy of the resonance is known to a
good accuracy to be nearly independent of the excitation
energy (E*) while the width increases up to approximately
E*~130 MeV in the case of nuclei with A=110. Beyond
this value there are indications that the width saturates [4—6]
although some experiments suggest in contrast a steady in-
crease [7,8]. In the recent experiments performed at the
GANIL facility with a 37 MeV per nucleon argon beam, the
saturation of the width was observed at excitation energies
greater than about 250 MeV [6] together with a saturation of
the photon multiplicity. At such high excitation energies, it is
not clear, however, whether or not thermalization is actually
reached.

There are experimental indications that angular momen-
tum contributes significantly to the width of the resonance up
to the point where scission occurs [4]. Although some calcu-
lations of this effect [9—11] show a rapid and continuous
increase of the width with angular momentum, they do not
seem to account either for the observed variation at mean and
high excitation energies or for the saturation.

At zero temperature the dominant contribution to the
width is the spreading over two-particle—two-hole configu-
rations [12]. It shows, however, a negligible variation with
temperature [13,14]. In contrast, in Ref. [15], a rapid increase
of the width at small temperatures and a saturation beyond
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T=4 MeV was obtained by focusing explicitly on those ad-
ditional configurations (particle-particle and hole-hole states)
which begin to contribute in the random phase approxima-
tion (RPA) as soon as the temperature is no longer zero.
RPA calculations generally give resonance energies in
agreement with each other (and with experimental data). In
contrast, rather different predictions can be found in the lit-
erature about the width dependence on temperature. Some
RPA results for the giant dipole resonance for “°Ca predict a
sharp peak at zero temperature and an increase of the width
with temperature [16] whereas such is not the case for the
self-consistent RPA calculations of Ref. [17]. In this last
case, one already has at zero temperature a fragmented reso-
nance displaying little evolution with temperature. In the
nuclear matter calculations of Refs. [18,19] it was found that
for specific values of the particle-hole interaction strength a
disappearance of the collective (zero sound type) mode oc-
curs at a temperature of a few MeV. This result was, how-
ever, obtained in the case of a schematic Skyrme-type inter-
action which contains no momentum-dependent terms and
therefore cannot be considered as a reliable effective force.
The purpose of the present paper is to investigate what
can be learned from nuclear matter calculations of the is-
ovector response function at finite temperature using more
appropriate effective forces. In what follows we consider the
standard effective Skyrme interactions which have been suc-
cessful at describing accurately nuclear ground state proper-
ties while retaining contact with the standard fundamental
description of nuclear matter based on the Brueckner reac-
tion matrix [20]. Calculations with such Skyrme forces are
more cumbersome but analytical formulas can still be ob-
tained and interpreted in transparent way. These formulas
generalize those of Garcia-Recio et al. [21] for the zero tem-
perature response function. These formulas will allow us to
discuss in rather general terms the evolution of the collective
behavior of nuclear matter with temperature. In particular we
will see that zero sound is not as robust in nuclear matter as
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in usual Fermi liquids and disappears at temperatures of a
few MeV for all the standard Skyrme forces investigated in
the present work.

II. RESPONSE FUNCTION OF HOT NUCLEAR MATTER

We calculate the response function of nuclear matter at
finite temperature to an infinitesimal external field of the
form

Vext=sT3e*iq"eAi(“’+i”)’, 2.1
where 73 is the third isospin Pauli matrix and # a vanish-
ingly small positive number corresponding to an adiabatic
switching of the field from the time t= —cc. The temporal
evolution of the one-body density matrix p is determined by
the time-dependent Hartree-Fock equation in the presence of
the perturbation term, i.e.,

ihd,p=[W+ Ve,pl. (2.2)

We consider effective Skyrme forces (see Appendix A for
details concerning the Skyrme force). In this case, the energy
density can be written in terms of the one-body density, ki-
netic energy density 7, and momentum density j.

A. Construction of the response function

For a small enough external field it is legitimate to linear-
ize the mean field evolution equation (2.2) around its static
solution. This procedure leads to the following approximate
equation in momentum space for the difference
6p=p,— P, between the neutron and proton density matri-
ces:

i#0,(K| 3p| K’y =[ e(k) — e(k') [(K| 3p|K’ )+ 2[ (k") = () (K| (W, — W) [K') + e[ (k') — £ (k) ] 5(k' —k—q)e /@ +im",

2.3)

In this equation e(k) =#2k%/2m* (with m* being the effective mass; see Appendix A) is the kinetic energy of a single-particle
state with momentum Kk in symmetric nuclear matter and f(k) is the corresponding occupation number,

FfK)=1/(1 + ePle®—uly

(2.4)

where 8= 1/T is the inverse temperature. Note that since €(k) contains the kinetic energy only, the quantity x4 in the previous
equation is not quite the chemical potential pbut rather u— U, where U is the mean field defined in Appendix A. From here

on we will adopt standard units in which A=c=1.

The external field (2.1) induces a difference between neutron and proton density distributions for which we consider the
following time-dependent Ansatze suggested by the form of V,,:

<r| 5p|r>=ae—iq-re-i(w+in)t,

<I'| 5T|r>zﬁe~iq<re—i(w+in)t,

(x| j|r) = yge "4 re ~HeT M, 2.5)

From the definitions of the densities given in Appendix A the coefficients &, 8 and 7y must satisfy

d*k 1

(2.6)

The variation in the energy density can be written in terms of the quantities (2.5), yielding

W, (1) =W, (1)=2V8p(r,t)+2V, V- 6p(r,t)V+2V,67(r,1) +2iV (V- 6j+ 6j- V).

2.7)

In this formula V, and V, are related to the parameters of the Skyrme interaction via the following expressions (see Appendix

A):

2

Zo I3 q
V0= - _Q"‘(X()“'%)_ E(X3+%)pg— —1—6-[3t1(1+2x1)+t2(1+2x2)], V]:'11—6[t2(1 +2x2)—t1(1+2x1)],

where p, is the equilibrium density of nuclear matter.

(2.8)

The retarded response function is determined by the corresponding polarizability, i.e., the ratio of the density change to the

field strength,

(w,q)=ale.

(2.9)

In the case of the Skyrme effective force, this function is found by noting that Eq. (2.3) is solved by an Ansarz of the form

8p(t)=6p(1=0)e {@Fimt

provided the matrix elements at time zero satisfy

(2.10)
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f(k+q)—f(k)

(K| 5p(t=0)|k+Q>=4E(k+q)—e(k)+w+i7]

[Voa+V k- (k+q)a+e+V 8-V, v(2k+q)-q].
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(2.11)

By multiplying the previous equation respectively by 1, k- (k+q) and (2k+q)-q and by integrating over k we obtain the

following set of linear equations: for a, B3, and 7y

(1=(V0+ Vlnz)a+ VIBH0+2m*wV1H0'y+ Gno,

Bz(VOH2+ V1H4)a'+ V1H2,3+2'ym*wV1H2,

with an analogous equation for protons.

2m*w (2.12)
=- a. .
YT -2V im*py)
The last equation for y can be checked to be a mere consequense of the equation of continuity for neutrons:
1 N 1 N N
atpn+;V'J=§(t1+t2)(pnj—pjn)v (213)
Solving the above linear system for « leads to the following expression of the retarded response function:
IIy(w,q)
ol®.q (2.14)

(w,q)=

1= W%Ily(w,q) =2V I, (w,q) — Vi}(w,q)— ViILI,

In this equation I1j is the unperturbed response function (often referred to as the Lindhard function [22]). In what follows the
quantities IT, and IT, will be referred to as generalized Lindhard functions. They are defined as

f(k+q)—f(k)

4
H2N(wsq)= (27‘_)3f d3k

where the limit 7— 0" is implicit. Analytical expressions for
the real and imaginary parts of Il,y(w,q) are given in Ap-
pendix B as well as the relation between our definitions and
those of other authors [21]. In Eq. (2.14) we have used a
modified coefficient ¥, defined by

V—v m*w\? 2V,
oo q 1=2Vim*pg

(2.16)

This modified coefficient arises because of the change in the
momentum density induced by the external field. For inter-
actions with no momentum dependence, i.e., t;=1,=0, we
recover the results of Ref. [18].!

Our formula for the response function (2.14) generalizes
that of Garcia-Recio et al. [21] to which it reduces at zero
temperature.

B. Some properties of the response function

A collective behavior will be observed when the response
function exhibits a peak. Although this may be the case when
the denominator in the response function goes through a
minimum, the most familiar situation corresponds to the case
where there is a pole in Eq. (2.14). This occurs when the
value w, of the frequency is such that

1A factor of 2 is, however, missing in Eq. (13) of this reference,
which implies that the interaction strengths in Figs. 1 and 2 of this
reference must be multiplied by a factor of 2. This factor is also
missing in Ref. [19].

w+in—e(k)+e(k+q

)[k-(k+q)]N, (2.15)

—

1=WIly+2V,II,+ V(I3 +I,I1,). (2.17)
The real part of the frequency w, determines the energy of
the resonance and its imaginary part the width. The corre-
sponding relation is easily constructed when the imaginary
part of w is small so that a linearization of the previous
equation near Im(w,) =0 can be made [22]. In other cases a
numerical construction of the strength function is necessary,
as performed in some of the examples below.

It is interesting to note that the symmetry energy coeffi-
cient a, of nuclear matter is, as expected, an important in-
gredient to determine whether or not there is a pole. Indeed
one has the following relation between a, and the coeffi-
cients occuring in Eq. (2.17):

Kz po q
a.,.=6m* +‘2—(VQ+ R[t2(1+x2)+3t1(1+x1)]
+2V1k§), (2.18)

where kp=(3m2po/2)'? is the Fermi momentum.

The formula we have derived for the response function
looks somewhat cumbersome and thus it seems worthwhile
to explore whether approximations to the previous scheme
can be derived. We have found that one such usefull scheme
is provided by a Thomas-Fermi-type appproximation in
which one assumes that the change in the kinetic energy
density 7 can be calculated from the proportionality relation

7~p°", which leads to
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or(r,t)! 7(r,t)=56p(r,t)/3p(r,1). (2.19)

Inserting this value into Eq. (2.11) one obtains the approxi-
mate expression for the response function,

My w,
M(w,q)=—— ol@.@) . (220
1— Vol_[()((l),q) - 2V1H2(w,q)
in which the coefficient V,, is defined by
Vo=Vo—2V k%, (2.21)

This approximate formula was explored in Ref. [19]. It was
found to reproduce correctly the main features of the exact
formula derived in the previous section: the existence of a
zero sound at zero temperature with a disappearance of this
mode at temperatures of a few MeV.

In the limit w—0 and ¢g—0, the response function be-
comes the static polarizability. In the isovector channel, the
latter is related to the symmetry energy coefficient a, at tem-
perature 7. Indeed for g=w=0 the energy density of
nuclear matter in the presence of a small external field is
given by

a'r( T) 2 ar 2
F=Fy+ (6p)*+ebp=FHy+— a*+ea. (2.22)
Po Po
By minimizing with respect to @ we find
__&Po
a= 2a,’ (2.23)
yielding
_n o _m__ Po
[I(w=0,g=0) 20, (2.24)

This formula can also be obtained by performing the limit
w—0 and ¢g— 0 in the expression of the RPA response func-
tion (2.14), which provides a check of our formula for this
quantity.

The value of the strength distribution per unit volume
S(w) for the operator 73exp(iq-r) is proportionnal to the
imaginary part of the response function:

S(w)=— 1;Iml_[(w,q). (2.25)

It is also related to the photoabsorbtion strength distribution
Sabs [23]

1
Saps(@) = — — Wlmﬂ(w,ql (2.26)

1

Furthermore, it satisfies the energy weighted sum rule [23]

2

* q
fo dwwS(w)=2—m—;p0(l+K), 2.27)

where

2507
Skyrme SGll
8 T
—— T=0 (MeV)
----- T=1
- - T=2
v —— T=3
v —-- T=4 i
6 :' ‘: .« T=5
o o T=6
3 '
A |
4 |
A\
sy
i W
)
. ';\\ B
il by
At
N
// // | “\
SA LN
(7 | sesebesnady
L2 Lenetilooooeocdoodedsa,
M PN
| NN N3
. ~ N ~ 2. 000,
0 : F—
16 17 18
® (MeV)

FIG. 1. Distribution of strength per unit volume for the operator
exp(iq-r) (in fm~2) as a function of the energy  (in MeV) for a
momentum ¢=0.23 fm™! and for different values of the tempera-
ture T=0—6 MeV, in the case of the interaction SGII.

*
m=po

8

K=— [£2(1+2x,)—1;(1+2x))] (2.28)

is the enhancement factor arising from the momentum-
dependent terms of the Skyrme interaction.

III. RESULTS AND DISCUSSION

The strength function is plotted for the Skyrme forces
SGII [24], SkM [25], SIII, SI, and SV [26,27] in Figs. 1, 2, 3,
4, and 5, respectively, as a function of the excitation energy
w for various values of the temperature. The corresponding
values of the Skyrme parameters are given in Appendix A. In
these figures we have chosen the value of the momentum
transfer g in such a way that it corresponds to the dipole
mode in lead-208 described by the Steinwedel-Jenssen
model [28]. In this model neutrons oscillate against protons
inside a sphere of radius R according to the formula

(r| 8p|r) = esin(q- r)sin( wt), (3.1)
where
o
q= 51—.‘; . (3.2)

Taking R=6.7 fm for lead-208 we find ¢=0.23 fm '
We have checked in our numerical calculations that the
energy-weighted sum rule is well satisfied. Some examples
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FIG. 2. Same as Fig. 1 for the force SkM.
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52 ISOVECTOR RESPONSE FUNCTION OF HOT NUCLEAR ...

TABLE 1. Right hand side (RHS) of the energy-weighted sum
rule (MeV fm™3) compared to the integrated value of the strength
my for T = 0, 3, and 6 MeV.

RHS m,(T=0) m(T=3) m,(T=6)
SGII 52 25 52 52
SkM 54 15 54 54
SIII 49 18 49 49
SI 43 11 43 43
SV 121 122 121 120

are shown in Table I, which compares the right hand side of
the sum rule [c.f. Eq. (2.27)] to the value of the integrated
strength using Simpson’s rule. It can be checked that there is
an excellent agreement. There are some apparent exceptions,
however, which correspond to the presence of a sharp zero
sound peak which falls in between two mesh points of the
integration method. We have checked that the contribution of
the pole just provides the missing strength in these cases.

For interactions SGII, SkM, and SIII the strength function
shows a strong temperature dependence and exhibits a sharp
peak at zero temperature. This peak occurs at a value of 18
MeV which is slightly higher than the observed one (we
assume that we can rely on the Steinwedel-Jenssen model).
One common feature of the three interactions SGII, SkM,
and SIII is that their effective masses are very close (respec-
tively, 0.78, 0.79, and 0.76, in units of the bare mass).

For a Skyrme interaction with an effective mass closer to
unity, such as SI (see Fig. 4), the resonance is found at a
lower energy (15.5 MeV). For Skyrme forces with a very
small effective mass, such as SV (m*/m=0.36), the energy
of the dipole resonance (see Fig. 5) is much higher (about 35
MeV) than the observed value and the dipole strength is
nearly independent of temperature. It still exhibits a weak
collective behavior but for most of the energy range, the
form of the response function is not very different from the
imaginary part of the bare Lindhard function I1;, which is
shown in Fig. 6. The imaginary part of Il exhibits a nearly
linear growth with energy which is also present in the imagi-
nary part of the RPA response function, with moderate de-
viations occuring only in the resonance region.

Let us now try to understand qualitatively the previous
results about the position of the resonance and its evolution
with temperature. The imaginary part of the bare response
function II; is known to show at zero temperatures two an-
gular points at the following values of the energy (see Ap-
pendix B and Fig. 6)

(3.3)

As temperature rises the corresponding discontinuities are
smeared by the presence of the Fermi occupation numbers
(Fig. 6). At these points the real part of the bare response
function has a vertical slope (at zero temperature) and a
maximum in between these points. For the particular value
of the momentum transfer we are considering (g=0.23
fm™!) and for a Fermi momentum kr=1.36 fm™! one finds
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FIG. 6. Imaginary part of II; (in fm™2) as a function of the
energy @ (in MeV), in the case of SV force, for g=0.23 fm™!; the

temperatures are from 7=0 to T=6 MeV.

m
w:=—3 X(13.21.1) MeV. (3.4)

Let us now assume for more simplicity (which is supported
by numerical estimates) that the Lindhard function of order
zero is the most important one for our discussion, so that the
RPA response (2.14) can be approximated as

Ho(‘"ﬂl)

@)= 729 T (o)

(3.5)

At this point we should note that the maximum value of the
real part of the bare response is proportional to the effective
mass,
max(Relly)=m*kpA(kg.,q,T), 3.6)
as can be seen from the equations given in Appendix B.
Since the maximum is smeared and reduced at high tempera-
tures, the function A decreases as temperature increases. In
terms of this function the condition for the existence of a
zero sound is
1<Vom*kpA(T). 3.7
It turns out that for interactions with an effective mass close
to unity and at zero temperature the condition (3.7) is just
satisfied. If this is the case, we expect the response function
to have a maximum when the real part of the bare response is
near its maximum, i.e., between the two points defined by
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TABLE II. Velocity ¢, of the collective mode compared to the
Fermi velocity v for the Skyrme forces SI, SGII, and SV.

SI Sv SGII
Co 0.35 0.77 0.40
VR 0.30 0.77 0.35

Eq. (3.3). Since these points are quite close, a reasonable
estimate of the resonance energy is

m
Wp= F X 13 MeV. (38)

By comparing this formula with the results in Figs. 1-5, it
can be seen to provide a good description of the resonance
energies. Note that for other values of the momentum trans-
fer g, a similar construction would give the dispersion rela-
tion

wr=coXq, (3.9)

with

kF m
Co= ;1—*'=UF=O.3XCX—m—£, (3.10)

where we have taken kr=1.36 fm~'. This formula exhibits
the important role played by the value of the effective mass.
In actual calculations the sound velocity ¢ is slightly larger
than the Fermi velocity as can be seen from Table II. The
similarity between the two velocities shows that nuclear mat-
ter exhibits weaker collective effects than helium-3. Indeed,
in this last case theoretical estimates of the zero sound ve-
locity are between 2 and 3.5 times the Fermi velocity [29].

The dispersion relation wzp=cqpq implies that the reso-
nance in light nuclei is located higher in energy according to
the relation g=2/R, i.e., evolves with mass number as
wr~A"1 in agreement with the empirical formula [28].
Since in our model the strength is concentrated in a single
region, this result also means weaker collectivity in light
nuclei.

Let us now show that the previous formulas also provide
an explanation for the presence or not of a zero sound at zero
temperature and for the different temperature dependences of
the strength obtained for various interactions. Indeed from
the relation between Vj, a,, and m* we have

2
m* V, m* ky

m 2 PO e

(3.11)
Taking a,=30 MeV and kr= 1.36 fm ™! this relation shows
that the quantity m*V,, which is the relevant one for our
discussion, is much smaller for interactions with a small ef-
fective mass (0.4) than for interactions with m*/m=1.
Therefore, if the condition (3.7) is just satisfied at zero tem-
perature for m*/m=1, such will not be the case for an inter-

action with m*/m=0.4. Similarly, since the function A de-
creases with temperature, it is also clear that the condition
for the existence of a zero sound will eventually no longer
hold at high enough temperatures (in actual calculations a
few MeV). It is also interesting to note that the coefficient
Vy is proportional to the potential part of the symmetry en-
ergy coefficient which is thus also important for the exist-
ence of the zero sound mode.

IV. CONCLUSION

In conclusion we have found that the standard Skyrme
forces SGII, SII, and SkM give rise at zero temperature to a
zero sound type collective mode exhibiting the usual disper-
sion relation E = coq. The sound velocity for these forces
is just slightly greater than the Fermi velocity, which implies
a rather weak collective behavior as compared to helium-3
for which there is a factor of 3 between the two velocities.
For values of the momentum transfer corresponding in the
Steinwedel-Jenssen model to the giant dipole mode in lead-
208, we have found that the zero sound mode disappears at
temperatures of a few MeV. This may be related to the satu-
ration of photon multiplicities observed in some recent ex-
periments [6]. For Skyrme forces with a small value of the
effective mass such as SV, we have found no zero sound at
zero temperature and a weak variation of the strength with
temperature. It is worthwhile noting that the previous forces
all provide good descriptions of nuclear properties, such as
binding energies and radii, all over the periodic table. In spite
of this common property, they do give rather different pre-
dictions for the temperature evolution of giant resonances
and also for their positions. Collective properties thus appear
to give useful information on the effective nucleon-nucleon
interaction.

One limitation of our calculations is that although they do
include the effect of the volume symmetry energy, they ig-
nore the effect of the surface symmetry energy which is
known to play a role, especially in light nuclei [30]. They
ignore as well shell effects which are also important in light
nuclei. These effects indeed produce in this case a fragmen-
tation of the strength in RPA calculations (see for instance
the results of Sagawa and Bertsch [17] using the SGII force)
whereas our model produces only a broad peak. Complete
RPA calculations in finite nuclei (including heavy nuclei)
would thus be of interest to complete the results of the
present work. For such calculations we believe that the dis-
cussion we have presented would be a useful guide.
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TABLE III. Numerical values of the parameters ¢, t,, t,, t3, Xg, X1, X, X3, and a corresponding to the five Skyrme interactions SGII,
SkM, SIII, SI, and SV considered in this work.

ty 1y t 23 Xq X Xy X3 o
MeV fm®)  (MeV fm®) (MeV fm®) (MeV fm°)
SGII ? -2645.0 340.0 -41.9 15595.0 0.09 -0.588 1.425 0.0604 1/6
SkM® -2645.0 410.0 -135.0 15595.0 0.09 0 0 0 1/6
SIIL © -1128.75 395.0 -95.0 14000.0 0.45 0 0 1 1
SI® -1057.3 235.9 -100.0 14463.5 0.56 0 0 1 1
sve -1248.29 970.56 107.22 0.0 -0.17 0 0 1 1

2From Ref. [24].
From Ref. [25].
°From Refs. [26,27].

APPENDIX A: PARAMETERS OF THE INTERACTIONS USED

We consider an effective Skyrme interaction of the following form:

t
v 12=1o(1+x0P ) 8(r1= )+ 5 (14, P)[ 8ty =1k +k'28(r1~17)]

t
+1o(1+x,P K. 8(ry— 1)k + 53(1 +x3P,)p*8(ri—Ty), (A1)

where P is the spin exchange operator; see Table III for numerical values.
Denoting the single-particle wave functions by ¢;(r,o,q), o and g being the labels for spin and isospin, the nucleon
density p,(r), the kinetic energy density 7,(r), and the momentum density j(r) can be expressed as

1
P (=2 [¢(r.o.@)’. 7= [Vo(ro.g)l’, =2 5(V-V)$}(r.0.0)$(r.0.0)e=r.  (A2)
The Hartree-Fock mean field Hamiltonian reads
1
Wq(l‘)=7m V+Uq(r), (A3)
q

where U, is a local potential given in the case of neutrons (g=n) by

X

(NTRs

U,(r,0)=rto{(1+x03)p(r,1) = (xo + %)Pn(l‘,t)}+t31‘]§[ (2+ a)( 1+ )P(”‘”)(l‘,t)J = t3{(x3+ 5)[2p,(x,1) p*(r,1)]

1 X1 1 X2 1 . 1 1 1 1
a1+ | +an| 1+ 7= = (V4§ V) [ H{=30,(x + D) 3l t )}

+alpi(r,t)+pi(r,0)]p* D+

1
X| 7a= 57(Vedgtig V) [ +{= G Hx )+ §G )}V + {31 (5 +x) + i(3+x)} VP, (A4)

with a similar expression for protons. The effective mass m;" is given by

LY P (U1 D PO
2w 2m o P T ) TR

1
P+g[tz(xz'k%)—h(xl"'%)]Pq‘ (AS)

APPENDIX B: EXPRESSION OF THE RESPONSE FUNCTION

In this appendix we give the explicit expressions of the real and imaginary parts of the generalized Lindhard functions
defined in Egs. (2.15). For this purpose we need to define the following integrals:

2 f(k+q)—f(k)
12N—(27r)§j e e s ol

(B1)
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The imaginary parts of the generalized Lindhard functions are given by

m*21 1 +efr=E-)
7qB 1+ ePHE)

Imlly(w,q)=—

*3 1+ eBH—E-)

2
Iml'[z(w,q)=-—ﬂ_32q BVELE_ lnm'f']_,lz(l'i‘eﬂ(’“ E+)) L12(1+eﬁ('u‘ E- ))

Imll (w,q)=—gV2m*E  Imll,+2Iml,—22m*E  qgImli,, (B2)

where Li, is the Euler dilogarithmic function [31],

xIn(t)
Liy(x)= ft——l dt, (B3)
and
m* q2 2
= — -+ —_
gl
The expressions of the functions Im/, and Im/, are
m*? L+ et B(u—E.) Bu—E_)
ImIz(w,q)=—W—q?(ﬁE+anE—)+le(l+e KTEN) —Lip(1+eFH™ ))
x4 ) 1+eﬂ(#‘E—) o 1+e‘B(ZE+“w“#)
Inly(w.q)== g EY “l—gm‘fm“f dzzln————ger = (B5)
At zero temperature the real parts of the Il,, are given by
m*kp kp
Rello(T=0)=—— —l+z[¢(h)+¢(h)] ,
m*ky kg
ReH2(T=O)=7 —3+4x,x_+x2+x2 + [(1—x+—2x+x Yp(x )+ (1—x%—2x,x_)p(x_)]],
1
ReH4(T=O)=2(Re14(T=O)—2q\/2m*E+Re12(T=O)+q2m*E+ReH0(T=O)+ 37 m*q2k;), (B6)
where
m*k kg 4m
Rel,(T=0)= = —3—x,x_—x>+x2 + (1+x+)¢(x+)+ 1+x%+ ¢>(x )
m*kg 1 5 . m*w *2 )2 5q
Rel (T=0)=— —5— g(1+x_+x_)+ (1+x )+ —— | d(x_ )+6(1+x++x+)¢>(x+)+
2mq 2 kg 3kp
2m*wx_  8q%x. 2 x5 2mrex®  Am*lex_
+4 I3 +ix3+ + +—+—+ +
| T i K2 373 K2 ke ®7)

with x. =q2kprm*wgkr and ¢(x)=(1—x>)In|(x—1)(x+1)|.

For nonzero temperature the expression of Rell,y (N=0,1,2) is an average of the zero temperature functions calculated for
the same values of w and g, but with various values of the Fermi momentum k distributed with a weight factor which is just
the derivative of the Fermi occupation number. Explicitly one has the following formulas:
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Relly(w,q,T)=— f Relly(w,q9,T=0,kp=k)df(k,T),

ReHz(w,q,T)= - J ReHz(w,q,T= 0,kp=k)df(k,T),

Relly(w,q,T)=— j Rell4(w,q,T=0kp=k)df(k,T), (B8)

where f(k,T) is the occupation number. For the case of zero temperature we have

df(k)=— 8(k—kp)dk,

yielding the above expressions for these functions.

We would like also to show the relation between our definition of generalized Lindhard functions (II,;) and those of

Garcia-Recio et al. [21] (I1,y) defined in the limit 7=0:

H0=4ﬁ0, H2=4ﬁ2‘_2q2ﬁ0,

I,=411,— 4411, — ¢*m* po+ ¢*Tly+ (2m* wq)?11,. (B9)

Our definition of V|, and V, and their W and W, are related by

W, q¢*

Vo=—t+ =

4 8

W2, Vlz_.

(B10)
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