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Large-basis shell model studies of light nuclei with a multivalued G-matrix effective interaction
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Large-basis shell model studies of low-lying excitations in light nuclei from He to Li have been performed
with a multivalued G-matrix effective interaction, as recently suggested by Haxton et al. Calculations were
performed relative to the vacuum ("no core") using very large, separable model spaces containing all excita-
tions with unperturbed energies up to 8A, O. Using G matrices derived from a new Nijmegen potential, we
achieve a very satisfactory description of these excitations.

PACS number(s): 21.60.Cs, 21.10.Ky, 27.10.+h, 27.20.+n

I. INTRODUCTION

The nuclear Hamiltonian

A

H= g(T;,+—V;,),
EWJ

where T;, is the relative kinetic energy operator and V; the
nucleon-nucleon (NN) interaction, is often treated in the
nuclear shell model by introducing the one-body harmonic
oscillator (HO) Hamiltonian

A

Ho= g h;= g + —,'MA r, (2)

to classify the many-body states: Slater determinants are
formed from the products of these single-particle wave func-
tions. These many-body basis states can be labeled according
to the number of oscillator quanta they contain,
N,„=X", ,N;, or, equivalently, the unperturbed energies

(3)

where N, is the number of oscillator quanta (2n;+ l;) of the
ith single-particle state. Conventionally the labeling is rela-
tive to the minimum energy Slater determinant(s), so that the
basis states are partitioned into 060, 160, 260, etc. , con-
figurations.

Early shell model calculations were generally restricted to
a single shell, such as the Op or 1s Od shells, and thus in-
volved only ORB valence nucleon configurations. An effec-
tive interaction is then introduced to account for the effects
of excluded configurations, including very high energy exci-
tations associated with the hard core in the NN interaction.
The lowest order approximation to this effective interaction
is the two-body G matrix, which links two-particle states
within the model space by a ladder series for scattering in the

excluded space. The resulting interaction V' (ab;cd) is a
function of the valence-shell single-particle states c,d and
a, b that label the starting and ending states of the ladder,
respectively.

In recent years shell model calculations involving two or
more major shells have been frequently performed. A full
multi-kA basis is one that includes all many-body configu-
rations, such that N,„~N „for some N „.For example, a
calculation of the positive-parity states in ' 0 might include
all (0+2)6A or (0+2+4)fiA many-body configurations,
relative to the closed core (fully occupied Os and Op shells).
Because of the importance of the nuclear mean field, such a
truncation provides a reasonable starting point for describ-
ing the "long-wavelength" properties of nuclei. A
(0+2+4)AA calculation (for which N,„=16) of ' 0
yields a reasonable description of low-lying excitations, in-

cluding effects associated with highly deformed excited
states [I].

Such full multi-60, bases have other appealing properties.
If HO single-particle states are employed, the model space
wave functions can be decomposed so that the relative de-
grees of freedom are separated from a pure oscillator state
center-of-mass component. Thus the overcompleteness of the
Slater determinants [which depend on 3A coordinates, while
intrinsic wave functions depend on 3(A —1)] can be cured
by retaining only those linear combinations which keep the
center of mass in the Os state.

A second property has to do with technical difficulties in
evaluating the effective interaction. If, in addition to defining
the basis states, Ho of Eq. (2) plays the role of the unper-
turbed Hamiltonian, then the unperturbed energies of con-
figurations in the excluded space always exceed those in the
model space. In the case of parity-conserving (parity-
nonconserving) interactions, the minimum gap is 2A.A
(Ifi.A). This contrasts sharply with other choices for the
model space. For example, a partial 160 calculation of the
negative parity states in ' C in which the valence nucleons
are restricted to the Op and 1s Od shells leads to intermediate
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states in the core-polarization process (bubble diagram) with
vanishing energy denominators: particle-hole excitations in
the excluded space of the form Op(Os) ' have the same
energy, 1A,A, as those in the model space. While one might
attempt to cure this problem by introducing a spin-orbit in-
teraction in Ho to break the degeneracy, this tends to produce
small energy denominators of somewhat random sign, lead-
ing to serious convergence problems. Thus one sees that the
gaps characterizing complete multi-A, A bases are quite at-
tractive. As discussed in Ref. [2], this nice feature can be
preserved order by order in calculations of the full V', pro-
vided a suitable perturbation scheme for V' is employed.

Investigators doing large-basis shell model calculations in
multi-fi, A spaces have consistently chosen effective two-
body interactions of the form V' (ab;cd), just as in tradi-
tional 060 calculations. The appropriate effective interac-
tion [2] in such spaces must carry an additional index
NsPectators Vefff a b .

&d .NsPectators~ where NsPectators
sum ~a,c, ,„~,w ere

total oscillator quanta of the "spectator" (i.e., noninteract-
ing) nucleons in the many-body states connected by the ma-
trix element V' (ab;cd). It is given by

where N,„and N,'„are the total oscillator quanta of the
initial and final many-body states, respectively. In the case of
traditional 060 calculations, all basis states are character-
ized by the same N',"„"'""',so this additional index is unnec-
essary. But for multi-fi, A bases, the N,'„"""""dependence is
essential: if model-space configurations exist with different
unperturbed energies, the gaps and interactions coupling
these configurations to the excluded space will differ. The
appropriate energy denominators in the G-matrix ladder sum
are not given just by the initial and final two-particle labels,
but also depend on the energies of the A —2 "spectator"
nucleons.

The omission of the N', „"'""'dependence in recently re-
ported large-space shell model calculations [3,4] amounts to
neglect of certain many-body processes of the same unper-
turbed energy as some retained many-body processes. While
the effects of these neglected many-body processes are ex-
pected to decrease in importance as the number of shells
included in the model space increases, our investigation here,
which retains them through the N,'„"'"'"dependence of the
two-body effective interaction, will reveal that these ne-
glected effects are important in present-day calculations.

We shall see in the following calculations that the result-
ing shifts can be large, amounting to about 5 MeV for diag-
onal matrix elements. The approximation in present-day mul-
tishell calculations to neglect the N', „""'"'"dependence can
lead to unattractive consequences. One example is the appar-
ent need for unrealistic single-particle energies to reduce the
splittings between the Ofi. A and 260 states, as required by
experiment.

In this paper we present the results of multi-A, A shell
model calculations for He, He, Li, and Li in which the
two-body effective interaction is evaluated with full

N,'„"'"'"dependence. As a result, we obtain a lowering of
states that are dominated by 1A,B and 2fi, A configurations,
relative to OA, Q states. This improves the agreement with

experiment. The calculation of the G matrix is described in
Sec. II. This work is distinguished from our previous studies
[3,4] in another important aspect, namely, the extension of
the model spaces for light nuclei to include excitations up to
8fiA. These calculations are "no core, " performed relative
to vacuum and, of course, include excitations out of the Os
shell. The results are presented in Sec. III, where a compari-
son with previous calculations is also made. The dependence
of the results on the size of the model space is discussed in
Sec. IV, and the consequences of neglecting the N', „""""
dependence of the G matrix explored. Our conclusions are
given in Sec. V.

II. MULTIVALUED 6-MATRIX EFFECTIVE
INTERACTIONS

Shell model diagonalizations of the Hamiltonian in Eq.
(1) are performed within truncated Hilbert spaces containing,
hopefully, most of the long-wavelength modes important to
describing properties such as nuclear sizes, low-lying excita-
tions, and collective modes. The neglected degrees of free-
dom, e.g. , those high-momentum interactions arising from
NN interactions at short distances, must be incorporated into
the calculation through effective interactions (and effective
operators). While in principle an effective interaction exists
that will reproduce exact eigenvalues in a model space cal-
culation, in practice it can only be evaluated approximately.

The shell model Hamiltonian we diagonalize is

A

HsM=2 g [Tij+ V z(N )']+ Vcoatomb
iwj

(5)

where T,J = (1/2AM)(p; —p ) and

A A 2

2;gj;=) 2M

with T, = (1/2AM)(Z, t rp;) . Note that H, = T,
+U, where U, =(AMfl /2)(X", t rr;) . The last term in
Eq. (5) is included in order to project out spurious center of
mass motion: inclusion of this term with a large value of X

produces low-lying excitations with the center-of-mass in the
Os state. For this procedure to work properly, the model
space must be exactly separable, as is the case for complete
multi-A, O bases.

The bare Coulomb interaction Vc,„&, b is diagonalized
only within the model space. For the strong potential, the
effective interaction, V', evaluated at the two-body level
has the familiar Bruckner G-matrix [5] form, but with an
important difference in the definition of the Pauli exclusion
operator Q,

Veff G(~ /t/spectators)

1
g (/t/spectator

Eo —(h t + h~+ V,~)

X g(~spectators) V
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where Fo is the energy of the initial two body state
(i.e., the starting energy), V, z is the bare NN

potential, Viz=Viz Uiz U12=(MA /2A)(rt —rz), and

Q(N,'p"""")is the Pauli operator that restricts all intermedi-
ate states to lie in the Pauli-allowed, excluded space. In con-
ventional treatments of the Brueckner G matrix, a very simi-
lar equation arises, but with a Q that excludes certain
intermediate states based only on the single-particle labels of
the two particles involved in the scattering. There is no

N,'P'"""' dependence iri Q for single shell calculations but,
as discussed above, this N', „"'""'dependence arises in multi-
A, O, calculations.

The index N', „'""'"signifies the role of the full model
space many-body configuration in controlling the intermedi-
ate two-particle states available for scattering. In a shell
model calculation whose model space includes all many-
body states with N,„~N „., the allowed intermediate
states for the two particles, "1"and "2," scattered by Vi2,
are specified by

8

7 0

6
~~

~~

3 0

2

1-

0

/
//

/
/ e

/
/

////

spectators

sum
spectators =1
Sull1

spectators

sum
spectators

Sum

~ 0
~ 1 1 ~ ~

~ I '~ I I I I I I0
0 1 2 3 4 5 6 7 8 9 10

(8)

which corresponds to the following Pauli operator:

0 if N) +N2 Nmag N
Q (NsPectatots)

1 otherwise.

In Fig. 1, we depict the various spectator-dependent Pauli
operators appropriate for a fuH 6fi, A calculation of Li
(N „=8).

The fact that we introduce a spectator dependence to the
G matrix raises interesting possibilities for identifying spe-
cific Pauli-violating processes. Some two-particle scattering
states in the excluded space will place a nucleon in a single-
particle state that may be occupied by a spectator nucleon in
a given model space wave function. One might avoid these
Pauli violating processes in a full multi-fi, A calculation by
labeling Q with the full set of quantum numbers on which G
operates. This, of course, is impractical. However, for the
specific case of these light nuclei and for N', ~" ""=0,we
can easily eliminate the Pauli-violating processes involving
the Os nucleons by including the "wings" as depicted in Fig.
1. However, we have found that the presence or absence
of the wings in the case N',„""""=0results in minor
differences in our results due to the large size of the model
spaces.

To provide the reader with some measure of the
size of the effects associated with N', „""'""',we give in
Table I the matrix elements

((0$1/2 0$1/2) I
V'"I (0$1/2 0$1/2)) ~

( (0$1/2 Op 3/2) I
V

I (0s», Op 3/2) ),

and

((Op3/2 Op3/2) I
V I(op3/2 Op3/2))~

that we evaluated for a full 6fi, A calculation of the positive-
parity states in Li (which we will discuss in Sec. III C). In
this calculation, N „=8 and N,„can take on four values

FIG. 1. An illustration of the Q operator appropriate for a full

660 calculation of Li. The regions interior to the lines are the
Q=0 regions defined in Eq. (9). The lines correspond to the pos-
sible values of N,'„"'""',which range from 0 to N . The contour
for N,'„""""=0is given as a solid line. The wings result from the
fact that the spectator nucleons are in a unique configuration (closed
Os shell), in this case, forbidding scattering into the Os shell. The
wings make a negligible contribution numerically and can be ig-
nored. The contours for other values of N,'„'"""'are denoted by
dashed lines. Note that a single-valued G matrix would employ a
single contour and thus neglect much of the physics governing
V' in a multi-fiA space.

(2, 4, 6, 8). The table shows that the values of these diagonal
matrix elements can shift by up to 3.3 MeV when N', "„"'"'"
dependence is properly treated.

This "multivaluedness" is a bookkeeping complication in
shell model studies. However, its inclusion builds in essential
physics previously missing from multi-fi, 0 calculations.

Nsum

(ab:JT) = (Osi/z Os i/z .'01)
(a b:JT) = (0s uz Os 1/2 . 10)
(ah:JT) = (Os uz Op 3/z .'10)
(ab:JT)=(Osi/z Op3/2 11)
(ab:JT) = (0s uz Op 3/z .20)
(ab:JT) =(Os„z Op3, z ..21)
(ab:JT) =(Op3/20p3/2 01)
(ah:JT) = (Op 3/2 Op 3/2, 10)
(ab:JT) =(Op3/2 Op3/2 21)
(ab:JT) = (Op3/2 Op3/z. 30)

-6.689
-8.272
-1.144
-3.768
-8.272
-1.006
-3.227
-1.272
-1.364
-4.179

-6.734
-9.006
-1.415
-3.812
-9.006
-1.029
-3.256
-1.575
-1.389
-4.528

-6.894
-9.969
-1.769
-3.935
-9.969
-1.058
-3.342
-1.950
-1.439
-5.021

-7.371
-11.554
-2.344
-4.273
-11.554
-1.090
-3.588
-2.522
-1.545
-5.821

'N, „ is related to N', p'""'" through Eq. (4). Here we have (ab)

TABLE I. Some diagonal matrix elements
((ab:JT)IV' I(ab:JT)) (in MeV) for four possible values of
N,„ in a full 6ftQ (50=14 MeV) calculation of the positive-
parity states in Li. The effective interaction V' is defined in Eq.
(7) with the Pauli operator Q specified in Fig. 1.
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Model-space states of higher unperturbed energy are now
more strongly repelled downwards by effects of states in the
excluded space which are included in G for the first time.
For example, in a (0+2+4)fiA calculation of ' 0, the con-
tribution to G that is second order in Vi2 contributes to shifts
in the position of the OA, A configuration only because of
potential matrix elements with an unperturbed energy de-
nominator of 6fi, O, or larger. However, the 460 configura-
tions are shifted by matrix elements with an energy denomi-
nator of 2fi, A or larger. The larger shifts result from a more
complete inclusion of intermediate two-particle states scat-
tering via a spectator-dependent definition of Q, which re-
duces the size of the Q=O region as N,'P'"""' increases.
Since G for a larger g =0 region is less "attractive, "numeri-

cally, we find that states that are predominantly of 1fi,A and
2fi, Q character, which were obtained at energies a few MeV
too high in Ref. [4], are now lowered relative to states that
are predominantly Ofi, A in character.

The intent of the present study is to illustrate the effects
attributable to the multivaluedness of G. We therefore follow
the treatment in Ref. [4] in other respects, which includes
two approximations in the evaluation of Eq. (7). The first is

the substitution of V for V= V—U. This considerably im-

proves the convergence of the numerical procedures we em-

ploy in evaluating G, since the growth of the HO U(r) at
large r is troublesome. Earlier studies [6] have shown that
neglecting U in terms second order or higher in V induces
errors in calculated binding energies of a few hundred keV;
these errors decrease as the size of the model space in-
creases.

The second is the replacement of the "starting energy"
Eo in the ladder sum of Eq. (7) by

+ Ed+6, (10)

(abl V' (N' """"')lcd)

= —,
' [(ab

l
G(~„,N'&„-""")

l cd), ,
+(ablG(tu, b, N,'„'" )lcd)J, T]

We employ the method of Barrett et al. [7] to calculate
the G matrices. For the bare NN interaction V, 2 in Eq. (7),
we use the nonrelativistic version of the new Nijmegen po-

where (e, + e„) is the unperturbed energy of the initial two-

body state and 6 is a parameter whose value is adjusted to
yield a reasonable binding energy. This substitution was in-
troduced and explained in Ref. [4]: it is a phenomenological
correction for the omission of folded diagrams and higher-
order contributions to the effective interaction, those beyond
G that involve the multiple scattering of clusters of three or
more nucleons. As some of these omitted corrections will
shift starting energies from their unperturbed values towards
the true eigenvalues, it is not surprising that a phenomeno-
logical shift 6 is necessary to reproduce experimental bind-

ing energies when a two-body G matrix is used. However,
energy differences are relatively insensitive to the choice of

Such a state-dependent choice for the starting energy
leads to a non-Hermitian G matrix. But the non-Hermiticity
is found to be small and we obtain a Hermitian effective
interaction by symmetrizing the G matrix:

TABLE II. The results for He from a full 8fiA (N „=8)cal-
culation for the positive-parity states and a full 7fiA (N,„=7)
calculation (A, 11=14 MeV) for the negative-parity states. In the
table, Es is the binding energy and E,(J„,T) the excitation energy
of the J„,T state. All energies are in MeV. The dominant major-
shell configuration for each state is given in the column labeled
"Main conf. " The g.s. rms point radius for protons g(r ) is also
given. The "experimental" g.s. rms radius is deduced from the

charge rms radius g(r, ) through (ignoring the neutron charge dis-
tribution and other higher-order effects and assuming a proton rms

charge radius of 0.81 fm} (r„)=(r, ) —0.81~.

Observable

Ep

g(r„') (fm)

E,(0, ,0)
E,(0+,0)
E,(0, ,0)
E,(2, ,0)
E„(2, , 1)
E,(1 i, l)
E„(1,,0)
E,(0, , 1)
E,(12,1)

Main conf.

060
260
1fi0
1A.A
160
1A, A
1A, A
1A, A
lfA

Multivalued G

26.459
1.492

0
21.824
21.566
23.003
24.214
24.418
25.286
25.370
25.671

Experiment'

28.296
1.46

0
20.21
21.01
21.84
23.33
23.64
24.25
25.28
25.95

'From Ref. [10]except for the rms radius which is from Ref. [11].

tential (NijmII) [8].The HO basis parameter fiA is fixed at
14 MeV. Calculations for a different choice of fi, A are per-
formed for selected cases for the purpose of comparison.

III. RESULTS AND DISCUSSION

The shell model calculations are performed for He,
He, Li, and Li in large, no-core, model spaces using the

many-fermion-dynamics shell model code [9]. We properly
evaluate the G matrix for full multi-A, A spaces, resulting in a
multivalued two-body effective interaction. The calculated
results are presented in Tables I—IV which we discuss below.

A. He

For the positive-parity states in He, we use a nine-major-
shell model space which allows us to include all configura-
tions with N,„=N,+N2+N3+N4~8 (i.e., N,„=8). For
the negative-parity states, we use an eight-major-shell space
and include all configurations with N,„~N „=7.The low-
est configuration in this nucleus is (Os)", which has

N,„=O, so we are doing a full 8fiA (76fl) calculation for
the positive-parity (negative-parity) states. The calculations
involve (N,„+1) G matrices, corresponding to (N,„+1)
possible values of N,'~""""(from 0 to N,„).

The parameter 5 in the starting energy is chosen to be -55
MeV, which yields a reasonable binding energy of 26.3 MeV.
(It should be pointed out that due to the large size of the
model space, the G-matrix elements are a very smooth func-
tion of A. The binding energy of He increases by less than
1 MeV when 6 is increased by 3 MeV from —60 MeV to
—50 MeV. See Ref. [4] for a discussion of the sensitivity of
the results to A. ) The calculated results are given in Table II
and plotted in Fig. 2 along with the experimental data, taken



2492 ZHENG, BARRETT, VARY, HAXTON, AND SONG 52

26 25.67 ~
25.37 ~25.29
24.42
24.21~23.00
21.82 ~21.57

20

'~

0
'~ ~

a '~ o 0
'~

'~

1- 1 25.95
0- 1 25.28
1- 0 24.25
1- 1 23 ' 64
2 1 23 ~ 33

2- 0 21.84
0- 0 21.01
0+ 0 20.21

18

16

14

12
Calc. Kxpt. Jar T E„

10—

0 — 0-00 0+ 0 0.00

FIG. 2. The calculated and experimental low-lying energy spec-
trum of He.

from a recent compilation of Tilley et al. [10]and Ref. [11].
As can be seen from Table II and Fig. 2, very good agree-

ment with experiment is obtained for the energy spectrum. In
particular, the experimental low-lying negative-parity
("160") states are reproduced to within 1.2 MeV with a
correct level sequence. The first excited 0+ (predominantly
"2fi,A") state is obtained at an excitation energy of 21.8
MeV, only 1.6 MeV higher than experiment.

The importance of the high-energy configurations can be
seen by examining the wave functions. In terms of major-
shell configurations, the calculated ground-state (g.s.) wave
function can be expressed as

[0i ]=70%IOI'in)+ 14%%u 12~&)+9%%u. l4&&)+3%%u.l«&)
+ 4%

l
8 fr A), (12)

while for the first excited state, we obtain

[02 ]=8% lOfiA)+ 61% l2fiA)+ 15% l4fiA)+ 13%l6fiA)

+ 3%
l
8@A). (13)

(Note that these are shell model wave functions obtained
using G; there is further mixing of configurations because G
represents an infinite summation of two-particle scatterings
outside the shell model space. ) As can be expected, the 0,+
state is dominated by the Ofi, O configuration and the 02 state

is dominated by the 2fi, O configuration. However, we see
from the above "wave functions" that l0,+) has significant

2fiA and 460 admixtures while l02 ) has significant 4@A
and 6A, A admixtures. Therefore, for a reasonable description
of the Oi+ and 02 states using a HO basis with fi, A=14
MeV, one needs to perform a 4fiA calculation and a 660
calculation, respectively. The requirement of a large HO
space for convergence of wave functions dominated by
1fi,A and 2fi, A components has been established by Ceule-
neer et al. in Ref. [12] where a 10fiA calculation was per-
formed for He using a modified Sussex [13] interaction.
Because the HO potential is too confining at large distances,
high-lying configurations are required to properly describe
the shape of the nuclear surface. Alternatively, one may ad-
dress these same physics issues within the effective Hamil-
tonian formalism in a HO space by evaluating the contribu-
tions of effective many-body interactions.

The weights of the different major-shell configurations
listed in Eq. (12) and Eq. (13) depend on the choice of
single-particle basis: they would change if we were to adopt
a Hartree-Fock basis or, even, retain HO wave functions but
change the value of the oscillator parameter. One procedure
for removing this arbitrariness, for a given model space,
would be to diagonalize the ground-state one-body density
matrix, then transform to a new basis given by the eigenvec-
tors. The naive "closed shell" would then be defined by the
largest eigenvalues. We will discuss these issues further in
Sec. IV.

The major differences in the spectra resulting from the
present work and Refs. [3,4] appear in the lowering of the
excited states due to increased admixtures of higher-lying
configurations for the reasons mentioned above. For ex-
ample, the 02 state is lowered by 11.9 MeV from its excita-
tion energy in Ref. [3] and by 4.3 MeV from its excitation
energy in Ref. [4].On the other hand, the Oi state is lowered

by only 0.8 MeV and 1.3 MeV relative to its excitation en-

ergy in Ref. [3] and Ref. [4], respectively.
Since there are a number of differences between the

present work and our previous efforts, we will discuss in Sec.
IV the dependence of our results on model space size alone
with all other ingredients in the calculations held fixed.

S. 'IIe

Throughout this work, the unperturbed energy of a con-
figuration is measured with respect to that of the lowest con-
figuration (of either parity). For He, the lowest (OfiA) con-,
figuration is (Os) (Op)' with N,„=l. We do a full 6fiA
calculation (N „=7) for the negative-parity states and a full
7fif), calculation (N,„=8) for the positive-parity states.
The parameter 5 in the starting energy is taken to be —45
MeV for this and other Op-shell nuclei considered in this
work. The results are shown in Table III and in Fig. 3. The
first excited state (1/2 ) is obtained at an excitation energy
of 2.47 MeV. The well-known 3/2+ state at 16.75 MeV is
reproduced at an energy of 19.06 MeV. We have also ob-
tained a number of low-lying "160," positive-parity and
"2A,O" negative-parity states that have not yet been identi-
fied experimentally. There is a 1/2+ state at an excitation
energy of only 4.34 MeV and there are two nearly degenerate
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TABLE III. The results for He from a full 6fiA (N =7)
calculation for the negative-parity states and a full 7 A A
(N,„=8) calculation

(final

= 14 MeV) for the positive-parity states.
Calculated states with an excitation energy larger than 23 MeV are
not shown. All the states listed in this table have an isospin
T= I/2. The g.s. electric quadrupole moment Q and magnetic di-

pole moment p, are also listed. See the caption of Table II for more
explanations.

22

20—

18

1/2+ 22.72»
7/2+ 22.19

1/2+ 19 90~
3/2+ 19.06

5/2- 17.30~7/2- 17 .25

'~

'~

19.8

16.75

Observable

F~
v(r ) (fm)

/J (/J x)
Q(e fm )
E,(3/2i )
E,(1/2, )
E,(1/2i )
E,(3/2,+)

E,(5/2, )
E (3/22 )
E,(1/22 )
E (7/2, )
E (5/2, )
E (3/22 )
E,(1/22 )
E (7/21 )
E (1/23 )
E (9/2i+)

Main conf.

of A
0A.A
1A, A
1A,A
1A,A
2A. A
2fi.A
2fi, A
2A, A
1A,A
1fi.0
1fQ,
1A.A
1fi,A

Multivalued G

25.883
1.630
-1.847
-0.443

0
2.465
4.343
9.717
9.727
12.006
15.213
17.252
17.296
19.060
19.895
21.908
22.187
22.723

Experiment'

27.410
N/A

N/A

N/A

0
4~lb
See '
See '
See '
N/A

N/A

N/A

N/A

16.75
N/A

N/A

N/A

N/A

16

14

12

10

0

1/2- 15 ~ 21

3/2- 12.01~
5/2+ 9.73~
3/2+ 9.72

1/2+ 4.34~
1/2- 2.47 ~
3/2- 0.00»

x Ex Calc.

0 00

Expt.

'From Ref. [19].
Analyses of experiments give different values ranging from 1.4

MeV to 5.5 MeV.
'Previous theoretical works predict a 1/2+ state at 5—7 MeV and a
3/2+ and a 5/2+ state at 12—14 MeV, see Refs. [17,18].

3/2+ and 5/2+ states at about 9.7 MeV. The lowest "2A,A"
state (3/2 ) is obtained at an excitation energy of 12.01
MeV.

The energy splitting AE between the 1/2 state and the
3/2 state (g.s.) is of particular interest. Analyses of experi-
mental data yielded many different values for AE, ranging
from 1.4 MeV [14] to more than 5 MeV [15]. In a recent
Green's function Monte Carlo (GFMC) calculation [16), a
small splitting of 0.8 MeV is obtained. In our calculations,
we notice that AE tends to decrease as we include more p
orbitals in the model space. The values for AE obtained in
the Ofi, O, , 2fi,,A, 460„, and 6A, O, calculations are 2.81, 3.15,
2.89, and 2.47 MeV, respectively. As this series does not
appear to have converged, it is quite possible that still larger
model spaces would yield a result below the 6fi, A value of
2.47 MeV.

Our predictions of the low-lying positive-parity states
agree quite well with other theoretical work [17,18] where a
1/2+ state at about 5—7 MeV is predicted along with two
additional states (3/2+ and 5/2+) at about 12—14 MeV, ex-
cept that our results are slightly lower. These levels were first
obtained by van Hees and Glaudemans [17] in a
(0+ 1)fit shell model calculation using a phenomenologi-
cal interaction (obtained by fitting selected nuclear proper-
ties) and were later supported by other shell model calcula-
tions using different phenomenological interactions [18].

FIG. 3. The calculated and experimental low-lying energy spec-
trum of He. The first excited state (1/2 ) is very broad; its experi-
mental excitation energy is not well defined. References [17,18]
also predict a low-lying 1/2+ state at 5—7 MeV and 3/2+ and
5/2+ states at 12—14 MeV. We obtain a few "2A,A" (relative to the

g.s.) states (e.g. , a 3/2 state at 12.88 MeV) that have not been
observed experimentally nor predicted theoretically before. All the
states shown in this figure have an isospin T= 1/2.

[I/2i ]=45%
i
1 fi Q) + 28%

i
3 fi A) + 18%

i
5 6A )

+9%~7f n). (14)

The calculated wave functions al~~ show that these states can
be roughly described as systems with one neutron moving in
an s or d (not necessarily ls or Od) orbitals outside a He
core.

These states are expected to be broad and cannot be easily
identified experimentally. However, they can be seen in an
R-matrix analysis of the nucleon-alpha phase shifts with a
channel radius of a-5 fm, [18]but not with a smaller a of
about 3 fm commonly used before. A large channel radius of
5.5~1.0 fm has been determined from the stripping and
pickup reaction data [15].

These low-lying positive-parity states were obtained at
higher energies in our previous 3 A, A (i.e., N,„=4)
single-G calculation [4]. This can be explained by noting
that the calculated wave functions of these states contain
significant higher-shell configurations. For example, for the
1/2+ state, we obtain
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The point made by Eq. (14) and the associated discussion
may appear provocative. If we try to interpret all our states as
predictions for the locations of resonances, this would indi-
cate the near absence of a shell gap in He. However, we
should always keep in mind that He is unbound with re-
spect to neutron emission and that all the states of He are
experimentally above breakup threshold (i.e., in the con-
tinuum). Thus, as we systematically expand our model space
we would expect our calculated results to approach a con-
tinuous spectrum, though presumably the convergence might
be quite slow due to the use of confined HO wave functions
in the shell model expansion. By analyzing transition
strength functions we would be able to isolate those states
which are truly predicted resonances from the background of
continuum states. However, at the present time, our model
space is too limited to be able to carry out such an analysis.
Nevertheless, we expect that states which are experimentally
narrow will be reproduced by our theoretical framework.

The calculated 3/2+ state at 19.06 MeV is dominated by
the configuration (Os) (Op), which is basically the ground
state of Li with a proton removed from the Os orbital. It can
therefore be identified as the 16.75 MeV state observed ex-
perimentally in nucleon knockout reactions with a Li target

The lowest "2fi,A" state is calculated at a surprisingly
low excitation energy of 12.01 MeV with (J,T)
=(3/2, 1/2). This state was obtained at a much higher en-

ergy of 21.5 MeV in a 4' A (i.e., N „=5) single-G calcu-
lation [4]. The dramatic decrease of the excitation energy is
due, again, to the importance of 6Ii,A admixtures, as can be
seen from the following decomposition:

[3/22 ]= 1%106&)+ 52% l 2' A) + 28%14&&)

Observable

F~

g(r„) (fm)

P(Pn)
Q (efm)
E (1, ,0)
E,(3,+,0)
E (0, , 1)
E (21' 0)
E,(2 t, 1)
E,(12,0)
E,(22, 1)
E,(1, , 1)
E (2, ,0)
E„(1,,0)
E,(13+,0)
E„(02,1)
E,(0, ,0)
E,(1 i, l)
E„(2, , 1)
E„(14,0)
E,(12,0)
E,(32,0)
E,(2~,0)
E,(0, , 1)
E (03+, 1)

Main conf.

OA, A
of A
OA. A
of A
OA, O
of A
of A
of A
1fi.0
1fi.0
of A
of A
1A, A
1A, A
1A.A
2AA

1AA

2AA
1A.A
1A, A
2A.A

Multivalued G

30.525
2.11

0,840
-0.067

0
2.619
3.786
4.713
6.406
6.764
9.942
10.742
10.863
11.082
11.382
12.934
13.147
13.706
14.242
14.716
15.422
16.083
16.950
17.328
17.515

Experiment'

31.996
2.41

0.822
-0.082

0
2.186
3.563
4.31
5.366
5.65
N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

15.8
N/A

N/A

N/A

TABLE IV. The results for Li from a full 6A, A (N,„=8) cal-
culation for the positive-parity states and a full SfiA (N „=7)
calculation (60 =14 MeV) for the negative-parity states. Calcu-
lated states with an excitation energy larger than 18 MeV are not
shown. See the caption of Table II for more explanations.

+ 19%l6AA). (15) 'From Ref. [19]except for the rms radius which is from Ref. [22].

The fact that the above wave function contains a large
6fi, A, component implies that the energy of this state, now at
12.01 MeV, is likely to be further decreased if one is able to
do an even larger calculation to include the 8 fi 0
(N,„=9)configuration. The second lowest "2' A" state is
obtained at 15.21 MeV with (1,T) = (1/2, 1/2). These two
"2fiA" states were also obtained by Wolters et al. [20] in a
(0+2) A, A calculation using an phenomenological effective
interaction, but at an even lower energy of about 9 MeV (see,
however, Ref. [21] for a comment on this work).

C. Li

For this nucleus, we perform a full 6fiA calculation
(N „=8) for the positive-parity states and a full 5fiA cal-
culation (N „=7) for the negative-parity states. The results
are shown in Table IV and in Fig. 4. The six low-lying states
known experimentally are nicely reproduced except that the
1"= 2+, T= 1 state at 5.37 MeV and the J = 1+T= 1 state
at 5.65 MeV are obtained at excitation energies about 1 MeV
too high. The other four "OfiO, " states are obtained at exci-
tation energies of 9.94, 10.74, 11.38, and 12.93 MeV. The
new results presented here again show some improvement
over the previous results [3,4]. In particular, the member of
the 0+ isospin triplet state is obtained at an excitation energy

of 3.79 MeV, close to the experimental value of 3.56 MeV.
This state is of some interest for the study of isospin and
parity violation [23].

The lowest "2fi,A" state that we obtain has
J =1+,T=O and an excitation energy of 14.72 MeV. It has
the configuration of 2%lOAA)+56%l26A)+22%l4fiA)
+19%l6AA). We identify the second lowest "2fiA" state
at 16.08 MeV as the experimental 15.8 MeV state [24] since
it has J =3+. This state has very little overlap with Ofi, A
configurations; its wave function can be expressed as
58%

i
2&&)+ 21%l4fiII)+ 21%16fi&).

Below these "2fi,A" states we obtain five negative-parity
"1fi,A" states with excitation energies of 10.9 to 14.2 MeV.
One should not be surprised if the experimental energies of
these "1fi,A" states turn out to be somewhat lower than the
values listed in Table IV, obtained in a 5fiA (N,„=7) cal-
culation. We have seen in the cases of He and He that the
excitation energies of the "1fiO," states are lowered by 1 to
3 MeV as we go from a 5fi, A space to a 7fi, A space. How-
ever we are not able to perform a 7fiA (N,„=9) calcula-
tion for the negative-parity states in Li at the present time.

A 6fiO. calculation for Li was also attempted by Bevel-
acqua [25] who used a modified Sussex interaction [13].In
that work, all experimentally known states were quite well
reproduced. But several "Ofi,O" and "1fiA" states that we
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3+0 16.08

15
1-0 15 ' 42
1+0 14.72
2-1 14.24

14 1-1 13.71

0-0 13 ~ 15
13

0+1 12.93

15.8

Observable Main conf. A. A, = 14 fi A = 11 Experiment'

TABLE V. The results for 7Li from a full 4fiA (N,„=7) cal-
culation for the negative-parity states and a full 5fiA (N,„=8)
calculation for the positive-parity states. Calculated states with an
excitation energy larger than 16 MeV are not shown. See the cap-
tion of Table II for more explanations. In this table, we also list the
results for fi A = 11 MeV.

9

8

N

1+0 11.38 ~
1-0 11.08 ~
3-0 10.86 ~~
1+1 10.74

2+1 9 94

1+0 6.76
2+1 6.41 ~

2+0 4.71

0+1 3.79

'~
'~ ~

'~
~ ~

~ ~
0 ~

5.65

5.3&

4.31

3.56

Fg
v'(r„) (fm)

P(/Jn)
Q(e fm )
E„(3/2, , 1/2)

E ( 1/2i, l/2)

E (7/21, 1/2)

E„(5/2, , 1/2)

E,(5/22, 1/2)

E„(3/22, 1/2)

E,(7/22, 1/2)

E„(1/22, 1/2)

E,(5/22, 1/2)

E,(3/2, ,3/2)

E,(3/23, 1/2)

E,(1/2~, 1/2)

E„(1/2i+, 1/2)

E,(1/21, 3/2)

'From Ref. [1

Of A
Of A
Of A
Of A
Of A
OAA

OA, A
OA. A
OAA

Of A
OA, A
Of A
1' A

Ofi. A

37.533
2.062
3.027
-2.372

0
0.463
5.249
7.325
8.857
10.749
11.402
11.608
12.847
12.961
13.237
13.704
15.264
15,780

36.141
2.233

3.014
-2.672

0
0.188
5.872
7.006
8.473
9.178
11.012
10.165
11.920
12.592
11.837
12.419

39.244
2.29

3.2564
-4.06

0
0.4776
4.63
6.68

7.4595
9.85
9.67
N/A

N/A

11.24
N/A

N/A

N/A

N/A

9] except for the rms radius which is from Ref. [22].

3+0 2.62 2.19 D. Li

1+0 0.00

JxT E„ Cafe.

0.00

Expt.

FIG. 4. The calculated and experimental low-lying energy spec-
trum of Li.

obtain here were not given in [25]. Some of these states,
however, were obtained by van Hees et al. [26] in a
(0+ 1)A, A calculation using a phenomenological interaction.
For example, they obtained a 2 state at an energy of about
9 MeV, lower than our 2 state at 10.86 MeV.

The g.s. magnetic dipole moment is calculated to be
0.840p,z, slightly larger than the experimental value of
0.822p, &. The g.s. quadrupole moment is calculated to be
—0.067 e fm, very close to the experimental value of
—0.082 e fm . These results are obtained by using bare
electromagnetic operators. In principle, these electromag-
netic operators should also be renormalized in a way consis-
tent with how the effective interaction is derived from the
bare NN potential. This is particularly important when the
model space is small. While we hope that our model spaces
are large enough to permit the use of bare operators, we are
aware that this assumption ought to be verified by explicit
calculations of effective operators.

The negative-parity states are calculated in a full 4A, A
space (N,„=7) and the positive-parity states in a full
5' A space (N,„=8). The results are given in Table V (see
also Fig. 5). The theoretical spectrum appears expanded rela-
tive to experiment, perhaps indicating that, for the model
spaces we can handle, that the two-body G matrix is not an
adequate approximation to V' .

However, the energy of the first excited state (1/2 )
agrees very well with experiment (0.46 MeV vs 0.48 MeV).
We had previously experienced some difficulty with this
state in single-G calculations using smaller spaces [3], find-

ing excitation energies that were too low. The inclusion of
high-lying unperturbed configurations is important for repro-
ducing this state at the experimental energy. In a Oui, Q cal-
culation, the excitation energy of this state is only 0.195
MeV. When 2fi, A configurations are included, the result in-

creases to 0.498 MeV, which becomes 0.463 MeV when
4fiA configurations are taken into account.

The lowest positive-parity state we obtain has J"=1/2+
and T=1/2 and an excitation energy of 15.264 MeV. This
state is dominated by the configurations (Os) (Op) (about
50%) (Os) (Op) (ls)' (12%), and (Os) (Op) (ls)' (10%).
The other 28% is distributed over many configurations.

For the g.s. electric quadrupole moment Q, we obtain
—2.37 e fm, much smaller in magnitude than the experi-
mental value of —4.06 e fm . We notice that the calculated
quadrupole moment increases in 'magnitude with the size of
the model space. The results for Q from the Ofi, Q, 2fiA, and,
4AQ calculations are —1.67, —2.16 and —2.37 e fm, re-
spectively. Presumably still larger model spaces are needed
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13 3/2- 12.96
5/2- 12.85

1/2- 11.61
7/2- 11' 40

3/2- 10.75

\

'~
11.24

TABLE Vl. The results for the g.s. energy (in MeV), proton rms
radius (in fm) and the excitation energy (in MeV) of the first excited
state in He obtained in the multivalued G (m-G) and single-G
(s-G) calculations in different model spaces with two choices of
fiA (14 and 20 MeV). The difference between the s-G and m-G
results is also given.

10 9.85

9.67

5/2- 8.86
'~

'~

7

6

5/2- 7.33
'~

0

7.46

6.68

7/2- 5.25
4.63

0

1/2- 0.46
3/2- 0.00

Calc.

0.48

0.00

Kxpt.

FIG. 5. The calculated and experimental low-lying energy spec-
trum of Li. All the states shown in this figure have an isospin
T= 1/2 except for the 3/2 state at 12.96 MeV which has T= 3/2.

14

20

+max Approach

m-G

diff.

m-G

s-G
m-G

diff.
s-G
m-G

m-G

diff.
s-G
m-G

s-G
m-G

s-G

Experiment

-23.18
-23.64
0.46

-25.23
-25.95
0.72

-25.62
-26.44
0.82

-25.62
-26.46
0.84

-25.62
-25.94
0.32

-26.34
-26.84
0.50

-25.73
-26.27
0.54

-25.21
-25.82
0.61

-28.30

1.57
1.56
0.01
1.57
1.56
0.01
1.51
1.49
0.02
1.51
1.49
0.02
1.38
1.37
0.01
1.46
1.45
0.01
1.46
1.46
0.00
1.49
1.48
0.01
1.46

26.38
25.17
1.21

26.73
25.78
0.95
22.93
22.27
0.66
22.38
21.82
0.56
33.05
30.56
2.49
31.84
30.23
1.61

26.93
25.49
1.44

24.71
23.35
1.36

20.21

to generate the degree of deformation indicated by the quad-
rupole moment. However, we are currently unable to go be-
yond 4fi, O, for this nucleus. One may notice from Table V
that the calculated rms point charge radius is also too small
(2.06 fm vs 2.29 fm from experiment), indicating the calcu-
lated wave function is probably confined to too small a re-
gion by the limited size of the model space. We have re-
peated the 460 calculation for fiA=11 MeV. The results
are also listed in Table V. Although the rms radius for this
choice of A, O, agrees quite well with experiment, the result
on the quadrupole moment Q ( —2.67 e fm ), though im-
proved somewhat, is still too small. Therefore changing the
model space through adjustments in the basis parameter
A, A alone is not sufficient, given our use of the bare operator;
presumably one has to introduce higher configurations to re-
alistically describe this deformed nucleus.

IV. DEPENDENCE ON THE SIZE OF THE MODEL SPACE

In this section we examine the differences arising from
the use of a multivalued G matrix, rather than a conventional
single-valued effective interaction. These differences are ex-
pected to diminish as the model space is increased because
the increasing energy denominators in Eq. (7) suppress ef-
fects higher order in V. In Table VI, the calculated energy

and root-mean-square (rms) proton point radius of the
ground state and the excitation energy of the first excited
state in He are given for four different model spaces
(N „=2, 4, 6, and 8) and two choices of A, A (14 and 20
MeV). As expected (see also Fig. 6), the differences between
the excitation energies obtained in the conventional and mul-
tivalued G-matrix calculations diminish as the model spaces
increase. Similarly, the choice of fi, O, becomes less important
in the larger model spaces. Note in particular that the calcu-
lated g.s. rms radius is about the same (-1.49 fm) in the
8fi, A multivalued G calculations for the two values of 6A,
indicating good convergence for this quantity.

It is clear from Table VI that the increased size of the
model space and the use of an appropriate (multivalued) G
matrix both contribute to the improved results for the 02
state in He in this work. For example, in a conventional
(single-valued) G-matrix calculation with fiQ = 14 MeV, the
excitation energy of this state decreases by 0.55 MeV from
22.93 MeV to 22.38 MeV when we go from a 6@A space to
a 8fi, A space; in the 8A, A space, the use of the multivalued
G matrix further decreases the result by another 0.56 MeV to
21.82 MeV.

As mentioned in Sec. III A, the relative importance of
different major-shell configurations depends on the choice of
6A. For fiA=14 MeV, the configurations of the 0,+ and
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1.6 leads to faster convergence of the 02 state is obviously better
when both states are desired. In this sense, fiA = 14 MeV is
a better choice than 60=20 MeV for He.

1.4

Nmax =2 Nmax =4 Nmax =6 Nmax=8
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(b)

FIG. 6. (a) The rms point charge radius of the ground state in
He obtained in multivalued G (m-G) calculations with model

spaces of different sizes (signified by N, „) using two values of the
HO basis parameter fiA[14 MeV (solid lines) and 20 MeV (dashed
lines)]. (b) Similar to (a) but for the excitation energy of the first
excited 0+ state in He. Results from both the multivalued G (m-
G) and single-G (s-G) calculations are shown.

02 states in He obtained in 8 A, A, multivalued G-matrix

calculation are given in Eqs. (12) and (13). For fi.0=20
MeV, we obtain

I:0i+]=86% I«&)+4% I2&&)+5%14&&)+2%I«&)
+ 3% I 8 fit) (16)

and

I 0& ]=0%I060)+60% I26A)+ 20% I4AQ)+ 15%
I
660)

+ 5%I8AA). (17)

A comparison of the g.s. configurations in Eqs. (12) and (16)
for the two values of fiA shows that fi, 0=20 MeV may be a
more reasonable choice for the ground state, since the g.s.
can be better approximated as a OA, A state. However, from
Eqs. (13) and (17), we can see that the wave function of the
first excited state has stronger 6A, A and 8fi, A components
(which means slower convergence with respect to the size of
the model space) for fiA = 20 MeV than for fiA= 14 MeV. ,

This is not surprising, as the 02 state in He is loosely
bound and has a much larger radius than the 0,+ state. Since
it is generally much more difficult to obtain a converged
result for the 02 state than for the 0+, state, a basis which

V. CONCLUSION

In a multi-fi, A model space the two-body G matrix is
dependent on the unperturbed energy of the other A-2 nucle-
ons. We have used such a multivalued G matrix in large,
no-core, shell model calculations for light nuclei. When com-
pared to conventional calculations, proper treatment of the
N', „"'""'dependence of the G matrix tends to lower the
energies of the "1fi,0" and "260"excited states more than
the "Ofi,A" states, bringing energies into better agreement
with experiment.

Applying this approach to large, no-core, shell model cal-
culations, we have achieved a reasonable description of the
"low-lying" states (including "Ifit" and "2AA" states) in
light nuclei. With model spaces consisting of as many as nine
HO major shells, the experimentally known states in He,

He, Li, and Li have been reproduced. Very good agree-
ment with experiment has been obtained for the excited
states in He, the "single-particle" 3/2 —1/2 splitting in

He and in Li, and the low-lying spectrum of Li, etc.
Some earlier theoretical predictions of additional states in
the spectrum have been confirmed Ie.g. , a 1/2+ state at 4.3
MeV and two nearly degenerate states (3/2+ and 5/2+) at
9.7 MeV in He]. We have also obtained a few low-lying
states that have neither been observed experimentally nor
predicted theoretically before. For example, we obtain a
3/2 state at 12.0 MeV in He and several "Ofi,A" and "
1fiA" states below 15 MeV in Li. Some of these states
may be approximations to nonresonant continuum states.
One shortcoming is that the calculated quadrupole moment
of the ground state in Li is too small in magnitude when
compared with experiment. We attribute this disagreement to
the relatively small size (4fiA) of the model space that is
used for this nucleus; it may be that the bare quadrupole
operator is not appropriate for this space.

By using large, no-core model spaces, we have eliminated
adjustable s.p. energies usually involved with shell-model
calculations using effective interactions. However, it should
be emphasized that in calculating the G matrices, we have
used an empirical prescription for the starting energy, which
involves a parameter A. This parameter is adjusted to yield a
reasonable binding energy. For this reason, our calculated
binding energies should not be confused as exact results,
which can only be obtained through a parameter-free ap-
proach. Recent GFMC calculations of Pudliner et al. I16]
serve as a major step in this direction. Nevertheless, we be-
lieve that once this parameter is adjusted to reproduce the
binding energy, other nuclear properties can then be pre-
dicted.

There are important improvements that could be incorpo-
rated into future calculations of the type reported here. Our
use of very large model spaces was motivated by the hope
that bare operators and effective interactions approximated
by a two-body G matrix might be successful in such spaces.
But presumably the need for large values of 5 is connected
with the omission of the folded diagrams and neglected in-
teractions of three-body and higher clusters in the excluded
space. As there are prospects for improving these aspects of
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the calculations [2], we consider the present effort a first step
toward the ultimate goal of accurate shell model calculations
based on realistic NN interactions.

If one were able to generate the exact V', energy eigen-
values should not depend on the choice of the model space.
Thus perhaps the most important result from this initial ex-
ploration of multivalued G matrices is that some improve-
ment was achieved in the rate of convergence of energy ei-
genvalues, as a function of the complexity of the model
space (see, for example, Fig. 6). We would argue that the
degree to which our results can be further improved is an
open question: clearly we have the capacity to put substantial

new physics into calculations of V' and to generate the
corresponding effective operators.
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