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Collisional damping in heated nuclei within the Landau-Vlasov kinetic theory
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Collisional damping of nuclear collective vibrations is studied within the framework of the Vlasov-Landau
equation including retardation (memory) effects in the collision integral. Expressions for the nuclear two-body
viscosity and the collisional width I of the giant multipole resonances in heated nuclei are obtained in the case
of the quadrupole dynamic distortion of the Fermi surface. An improved formula for I is also proposed in
which all multipolarities of the distortion of the Fermi sphere are taken into account. The collisional width of
the giant dipole resonance is calculated as a function of excitation energy for the Sn nuclei region using this
formula. It shows a weak variation with temperature. In the temperature range of T=2.5 —7 MeV, the contri-
bution of collisional damping to GDR width does not exceed 50% of the experimental values.

PACS number(s): 21.60.—n, 21.60.Ev, 24.30.Cz

I. INTRODUCTION

In recent years experimental and theoretical [1—6] inves-
tigations of the giant multipole resonances (GMR) built on
excited states of nuclei have been very extensive. Experi-
mental data for the giant dipole resonance (GDR) in the Sn
region demonstrate a stability of the energy E=A, ~o of the
resonance centroid with respect to temperature T, whilst at
low excitation energies the width increases as T and shows
much weaker variation at higher temperature. So far there is
no satisfactory description of the behavior of the observed
width. The interplay between different relaxation mecha-
nisms and dependence on the temperature of the different
contributions to the total width are still questions of debate.

In general the total width depends on the intrinsic width
and deformation of the nuclear shape, as well as on thermo-
dynamic fluctuations of the nuclear shape and orientation
angles. The intrinsic width is determined by coupling of both
particle and hole to more complicated states lying at the
same excitation energy [collisional damping (CD)]. It also
depends on the escape probability of particles in the con-
tinuum and density fluctuations.

Comparisons of experimental data with calculations based
on the theoretical model [5], which include rotation effects
and the coupling to time-dependent thermal fluctuations of
the nuclear surface, indicate a weak variation (20—30%) of
the GDR intrinsic width with temperature. In Ref. [6] the
first microscopical calculation of intrinsic width in ' 0 and

Ca was performed taking into account all main relaxation
mechanisms. The widths found in [6] were also almost inde-
pendent of temperature at high excitation energy.

In this article we will discuss a special feature of the
temperature dependence of collisional damping using a
transport theory. In particular, we will show that the colli-
sional contribution to the intrinsic width exhibits a weak
variation with temperature.

The CD relaxation mechanism in cold nuclei was investi-
gated in Refs. [7—13]. In particular, its contribution to the
GMR widths with multipolarities L)1 was estimated as
«30%. The retardation (memory) effects in a collision inte-
gral should be taken into account for a proper consideration

of the CD relaxation channel in the presence of fast collec-
tive motion, at least at low excitation energies.

Previously the CD channel of the GMR decay in heated
nuclei was investigated within a transport theory in Refs.
[8—10,13,14]. In Refs. [10,13] a relaxation rate approxima-
tion (RRA) for the calculation of the damping width was
used. In this approach the width is proportional to the quasi-
particle collisional frequency co,—= 1l7., where 7. is the relax-
ation time. As a result the width has the same behavior with
temperature as the collisional frequency, namely, it increases
as T2 As is known fr. om Fermi liquid theory [15], the RRA
method is applicable for the evaluation of the damping width
only in a regime of rare collisions. In this case, i.e., when the
frequency coo of the collective vibration is much greater than
the collision frequency ro, (too)) ro, ), a zero sound propa-
gates in the Fermi system. But with increasing temperature
the collision frequency cu, also increases. The condition
coo&) co, for the propagation of the zero sound may be vio-
lated and the RRA method for the evaluation of damping
width will be invalid. For example, in the frequent collision
regime (too((to, .) the CD width is inversely related to the
quasiparticle collisional frequency [11,12,14,15].

In what follows we concentrate on the damping properties
of giant resonances. We calculate the CD width of the giant
resonances starting from a Landau-Vlasov transport equation
with a memory-dependent collision term. In Sec. II we de-
rive the basic local equations of motion taking into account
the memory and temperature effects in the collision integral.
In Sec. III we obtain simple analytical expressions for the
viscosity, amplitude attenuation coefficient, and width of the
GMR in the case of dynamic quadrupole distortion of the
Fermi surface. These expressions are valid for an arbitrary
relation between ~0 and co, . Particularly, they are valid in
the transition region from the zero sound (collisionless) re-
gime to first sound (hydrodynamic) regime in excited nuclei.
The general form of the expression for the attenuation coef-
ficient agrees with the interpolation formula assumed in [16].
In Sec. IV we also propose an approximate formula for the
CD width deduced by taking into account all multipolarities
of the Fermi sphere in the zero sound regime. Using this
formula we investigate the general behavior of the GDR col-
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lisional width as a function of the excitation energy in the
region of Sn nuclei.

II. THE MOMENT EQUATIONS

We start from the Landau-Vlasov equation with the
memory-dependent collision integral St(t),

Bf p Bf &VS—+ —=— =St(t)
Bt m gr gr gp

dp p

p g (2 vrfi) m

and P & is the pressure tensor

P p
——— 3(p —mu )(pp —mup)f.

The tensor P &, of third rank

(9)

(10)

Here V is the self-consistent mean field and f is the Wigner
distribution function in which we take into account only the
deformation of the Fermi sphere with multipolarities 8~2

g ( dp
P p, =—

~
3 (p —mu )(pp mup—)(p, —mu„)f

vanishes,

f=f,+~f ~f= X ~f~ (2)
P p=0,

Here f,=f,(r,p,—t) corresponds to the spherical Fermi sur-
face and Bf represents both quadrupole deformation and dis-
placement of the Fermi surface. For small deviations from a
Fermi sphere the right-hand side (RHS) St(t) of (1) is a
collision integral linearized in 8f and it may be represented
in the form [17,18]

because we take into account only the deformation of the
Fermi sphere with multipolarities 8~2 and the deformation
with /=1 corresponds to a displacement of the Fermi

sphere in p space by a vector mu.
The pressure tensor P & can be written as

P.p= P b.p+ P.'p

St(t) = 8St(p,—t) =
J —~

dt'A(t t') Bf(t'), —
where the component P'&, associated with dissipative pro-
cesses, is

Bp
pup,

rv

8 ' 8 8 0—mpu + mpu u„+ P, + p —V=O,
Bf Bra Brv

0 . 8 8
Pp+ u„P—p+P„p u +P„up=0 p,

where

g f dpQ~p=, )s (p~ mu~)(pp mup) 8St(p, t),
m J (2mB,

(7)

which takes into account the retardation effects. Here
A(t t ') allows for t—he memory effects. In this paper we will
not use an explicit form of A. Below we will need

8'St(p, t) only for periodic oscillation of Bf and we will use
some extension of results which were obtained earlier in
[11,12] [see Eqs. (21) and (22)].

We begin by calculating the first three moments of Eq. (1)
in p space. As a result we have (for details, see [19,20])

g 7 dpP' p= ,—(p —mu )(pp —mup) Bf~ (13)

and P is the pressure due to motion of nucleons without
distortion of the Fermi sphere

P = 2@k;„l3. (14)

Here ek;„ is the kinetic energy density in the case of a spheri-
cal Fermi surface. For example, we have in the Thomas-
Fermi approximation

p2 3 g2 t' 3 ~2) 2/3

&kIn= g (15)
(2m&) 2m ' 10m ( g

In the following we restrict our consideration to the case of
small amplitude vibrations around the equilibrium value of
the density p,q

and the pressure P eq where P,q
is given by

the relations (14) and (15) at p= p,q. We will thus consider
a periodic time dependence of the form exp(icot) for the
quantities involved. We will also omit terms proportional to
u in Eq. (5), since they are zero in the linear approximation
of 6'u.

Let us now introduce the displacement field y,
with g being the degeneracy factor. In (4)—(6) and in the
following expressions repeated greek indices are to be under-
stood as summed over.

In (4)—(6) p is the local density of the nucleons

(8)

u = Bgldt,

and write down Eq. (5) in the following way [20]:

a~ taa)a
2X.+ P+p V + P.' =O

Bt
~ Br, Br, t Br

(16)

(17)

u is the velocity field
Here the terms in parentheses are the conservative forces per
unit volume calculated with spherical surface. The last term
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a a aB~
P+p V=par„ar„ar„BP ar„BP ) eq

(18)

where e is the energy density of particles

~kin+ ~Pot

and E'p t is the potential energy density which is related to the
mean field V by

on the left-hand side of Eq. (17) represents the dissipative
force. It takes into account dynamic distortion of the Fermi
surface in a moving Fermi liquid.

Using relations (14) and (15), we can rewrite the expres-
sion in the parentheses in (17) as

relaxation time [21,22]. The factor C„defines the magnitude
of the partial relaxation time 72 in the quantum region
Atop&)T. The values C„and r2(T) will be discussed later
(see Sec. IV).

Taking into account (11), (12) and (21) we solve Eq. (6)
with respect to P '

p and obtain

p'p ———yg„A p
—P, A /t(o)r2) /[I+( cpr2) ], (23)

where

8 8 28R
Ap g A g p 3 g Ap&

2 yv

V= Be&«/Bp. (19)

Note that (Be/Bp), q is the chemical potential which does not

depend on the space coordinate r for the equilibrium state of
the nucleus. We have used this fact when deducing Eq. (18).

The density variation Bp in (18) can be represented by a
displacement field. It follows from (8), (9), (15), and (16)
that

Bp= p p, = —d—iv(p, X). (2o)

Q p= —P' p/r2(top, T). (21)

The quantity v2 is the relaxation time in the case of a quad-
rupole deformation of the Fermi surface. It is dependent on
the real part of co (cop—=Re cp) and the temperature T. In the
case where T, ficop(& p, we have [11,12]

I/r2(cop, T) ={I+C„[ficop/(2mT)] )/r2(T). (22)

The frequency dependence of ~2 is due to the retardation
effects in the collision integral. Note that we deal with a
collision integral related to real transitions. By definition, an
expression for this collision integral should contain a 8' func-
tion associated with the conservation of energy. It can be
seen that the expression will contain two 8 functions and
these 6 functions will include the shifts ~A, Re cu in the ar-
guments, if the retardation effect is taken into account
[17,18].Therefore the real part of cu only enters in (21) and
(22).

The dependence on temperature T in Eq. (22) results from
the T dependence of the equilibrium distribution function
near the Fermi momentum. The quantity r2(T) is the thermal

In order to obtain an expression for the quantity Q & in (7),
we use the procedure of Refs. [11,12,18] for calculating the
energy integral containing the linearized memory-dependent

collision term BSt(p, t). It should be pointed out that in this
method the equilibrium component f,q

of the Wigner distri-
bution fUnction is taken as the Fermi distribution

f,q= 1/[1+ exp((e, q
—p)/T)] depending on the quasiparticle

energy E'
q

in equilibrium, the temperature T, and the chemi-
cal potential p, . The dynamical component of the distribution

function has the form Bf(r,p, t)= —(af,q/ae, q) p(r, p, t),
where P depends only on the direction of the momentum. As
a result, we find for (7)

The quantity r/„ in (23) is given by

r/„= ( P, /q tp)(tpr2)/[ 1 + (o)r~) ]. (24)

This quantity determines the time irreversible contribution to
the pressure tensor (23) and can be considered as the viscos-
ity coefficient due to the relaxation occurring on the distorted
Fermi surface. Expression (24) is valid independently of the
nucleon's collision rate. The viscosity goes to zero in both
the rare and frequent collision regimes.

Finally, using (18), (19), and (23) we find from (17) the
equation for the normal mode of vibrations of the displace-
ment field

8 8
PeqXv+ (Peq ) a a PeqXp,

v

( o)r2)~ a
+

)2 (P,q lm) A,

i ~ ( r/„A—„~/m).
Bf'~

(25)

This equation has the form of a Fourier transform of the
Navier-Stokes equation for the displacement field. The quan-
tity a in (25) is the local incompressibility of the nuclear
liquid taken at equilibrium,

t~ = ( B el Bp ),q . (26)

The last term on the left side of (25) describes the infiuence
of the dynamic distortion of the Fermi surface.

III. THE DAMPING OF COLLECTIVE EXCITATIONS

The local equation (25) is rather complicated to solve in a
general case. For a qualitative analysis of the dependence of
the GMR collisional widths on temperature we will consider
the nucleus as a homogeneous system with a sharp surface.
We will assume that all equilibrium quantities p~, P eq etc.
do not depend on the position r in the nuclear interior
r-R,q (R,q is the equilibrium radius of the nucleus). Note
that this simple model satisfactorily describes the main char-
acteristics of the GMR if we introduce some boundary con-
ditions on the nuclear surface [11,12,20,23,24].
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cg)z8p+(K'/9m)V' Bp= —i(u(4' /3mp q)V Bp. (27)

Here

K.'= K+ 8(~k,./p). ,(~rz)'/[1+(~rz)'1 (28)

and K=—9~p,q is the adiabatic compressibility modulus.
We will look for the solution of Eq. (27) inside the

nucleus for a giant resonance of multipolarity L. Using the
form

Calculating the divergence from the left and right parts of
(25), we find an equation for the density vibration inside the
nucleus. Taking into account Eq. (19), we obtain

in the transition region from the zero sound regime to the
first sound regime. From (38) and (22) [rz—= xz(cop, T) j we
can see that the width of the GMR is determined by the
temperature and the frequency cop of the normal mode.

Note that in the theory of Fermi liquids one usually stud-
ies not the damping coefficient y=—I /2' but, rather, the am-
plitude attenuation coefficient n [16,27]. This coefficient is
found as the imaginary part of the wave number k (cu is
real): k= kp —i n Us. ing (24) and (32) we obtain (kp&) n)

2 Go m 2 co
2

CO T2

3 S~ vF p,
" S3 vF p, 1+((orz)

Bp=const XjL(kr)YLM(r), (29)
The general form of this relation agrees with the form of the
interpolation formula assumed in [16] [Eq. (1.186)].

we find that k and co are connected by the dispersion relation

co =(K„'/9m)k +ice(4r/„/3mp, q)k . (30)

The solution of this equation

co= Q)p+ lI /2' (31)

defines the energy of the giant resonance fi, cop and its width
I . Note that this definition of the width is in agreement with
the response function method in Fermi liquids in the case of
small damped collective vibrations (cup&)Im co) [14,25,26].
When fi. cop&) I we find from (30) (k is real)

IV. GENERALIZATION AND DISCUSSION

Above we have taken into account only the dynamical
quadrupole deformations of the Fermi surface. In Refs.
[11,12] expressions were obtained for the GMR widths in the
two limiting cases of rare (copr&) 1) and frequent (cop'T(~1)
collisions, but all multipolarities of the distortion of the
Fermi surface have been taken into account. They have the
foITIl

R(S„) 1
I (co r)1)=—I,=2R(S„)—=—2 A,co, (39)

O&2

4 k~om2r= —,,3 S vFPeq
(32)

B(Sf)
I (co r(1)=—I &=2 A, cu r= 2B(Sf)Bilge r—, (40)

Here S=—cop/vFk is the velocity of sound in units of the
Fermi velocity vF,

S =K„' /(9mvF)=—S„+(S/ S„)/[1+(topaz) —j, (33)

where S„—=S(cop7z&) 1) and Sf=S(QJptz(~ 1) —are the veloci-
ties of the zero and first sounds, in units of vF, respectively,

if the effective nucleon mass m*—=m(1+F, /3) is approxi-
mately equal to m.

The function B(Sf) in (40) is defined by (37). The func-
tion R(S„) in (39) depends both on the magnitude of the
distortion of the Fermi surface in the absence of the collision
integral and on the scattering probability of quasiparticles. It
has the form [11,12]

S„=[K+ 8(ek;„/p), q]/9mv F,

Sf——K/9mv F .

Using the expressions (24), (34), and (35) we obtain

I =2B(S) fzo)p tpprz/[1+(o)prz) ]

where

B(S) '=15S /2

(34)

(35)

(36)

R(S) = S g d (2Y+ 1)Q (S)/(2SF Q, (S)[Q,(S)F —1]
Po2

—
Q,'(S)), (41)

where Q~(S) are the Legendre functions of the second kind
defining the magnitude of the distortion of the Fermi surface
in the collisionless regime. This function (41) was first de-
rived in [27—29] though in a somewhat different form. The
quantity d~ is equal to

=B(S„) '+[B(Sf) ' —B(S„) ']/[1+(tpprz) ].
(37)

Expression (36) for I can then be written in the form

COP 72
I =2cB(S„)AQ)p

1 + c( coo T2)
c=B(S/) /B(S „), —

(38)

which is the general expression for the width applicable for
different values for the ratio cop/co, . In particular, it is valid

d~=(W4~)/(W), (42)

where W is the probability of scattering of nucleons near
the Fermi surface. The function 4 ~=—1+P~(pzp, )—P~(p3p, ) —P~(p4pi) defines the angular constraints for
scattering of nucleons within the distorted layers of the
Fermi surface with multipolarity 8 (Pr is a Legendre poly-
nomial). The symbol ( ) denotes the averaging over
angles of the relative momentum of the colliding particles.

The function R(S) is proportional to B(S) for large val-
ues of S,
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R(S) =d B(S)=2d /15S, 5&) 1. (43) R(S„) COp T2
I = 2c fico

1 + c cd o tp
If the magnitude of S tends to 1, R(S) also approaches 1

R(S)=1, 5 1+0. (44)

The quantity ~ is the relaxation time for the collective mo-
tion:

Sp7—=2q R(S ) 6o)
o 1+q cuor

where the cutoff factors c and q are equal to

c=B—(S ) d /R(S ), q=c/d .

(49)

(50)

7 ( cu, T) = r ( co, T)d = 7( T—)//1 + C (A c0/2' T) ), (45)

where 7(T) —= v(c0=0, T) = r2(T)d2 and

I/~(T) = T g(m*/6 ) (W)/24vr2. (46)

Q, (S ) =1/[F +S F /(1+F, /3)]. (47)

The velocity 5, of zero sound is the solution of the disper-
sion equation

This expression has the correct behavior in the limiting cases
of ct)p72&) 1 and cop~2(& 1 irrespective of the value of 5, and
coincides with (38) when the Fermi surface distortion is re-
stricted to the multipolarities /~2.

To a good approximation, the condition 5,=1 is fulfilled
for the model of the nucleus in which nuclear-matter solu-
tions of the Landau-Vlasov equation are combined with
boundary conditions [11,12]. In nuclear matter, the relation
5,= 1 is also valid both for isovector and isoscalar vibrations
when well-defined collective modes are present [26,30-31].
In this case of S„=1, we have from (49) the following ex-
pression for the collisional width:

The speed of the first sound is given by

5 = (1 + F ) (1 + F,/3)/3. (48)

GOp 7 COp 72
V=2q kmo I+q(m )2 25c ~~o 1+c(m r

where

For simplicity here and in (41) only the Landau parameters
Fp, and F& of the interaction between the nucleons were
taken into account.

We now compare the relation (38) with (39) and (40) for
the width. In the first sound regime expression (38) coincides
with (40). This feature is due to the dominating role of the
quadrupole deformation of the Fermi surface when the col-
lisions of nucleons are frequent.

In the regime of rare collisions the contributions of dis-
tortions with different multipolarities are governed by the
variation of the mean field, i.e., they depend on the value of
the zero sound speed 5, . In the case of S,&) 1, which corre-
sponds to strong repulsive interaction Fo)& 1 [30], the Fermi
surface distortion is restricted to the multipolarities 8~ 2 and
expression (38) coincides with (39). This is evident from Eq.
(43). For S„=1, an essential contribution to the width is
given by the scattering of quasiparticles in the layers of the
Fermi surface with multipolarities Y)2. As a result, the
magnitude of I calculated by (38) is 2d2/15 times smaller
than that obtained from (39).

Using the exact expression (38) for the width in the case
of quadrupole deformations of the Fermi surface as a basis,
we propose a refined formula that describes the transition
from the hydrodynamic regime to the zero sound regime
taking into account all multipolarities of the distortion of the
Fermi surface. In a general case the function R(S„) defines
the contributions to the width of the scattering of quasiparti-
cles in the layers of the Fermi surface with different multi-
polarities in the regime of rare collisions. Therefore we re-
place B(S„)by R(S„)/dz in order to correct equation (38) in
the zero sound regime with S,= 1 [this substitution does not
change (38) in the case S„&)1 in view of (43)]. In this way
we have from (38) the following expression for I:

q= 1/6S =1/2(1+F )(1+F,/3), c=16q/25. (52)

I =I =2A, /7. =2@co /co ~. (53)

As it is evident from (39) and (44) or (49) and (51), strictly
speaking, the formula (53) is valid for describing collisional

damping only in the regime of rare collisions. The distinction
between (51) and (53) is due to the self-consistent mean
field. The width I p increases as the quantity mpv. decreases.
In contrast to I'o, the width I' [Eq. (51)] approaches zero
when coor tends to zero. Note that the factor of 2 in (53)
results from the relation (31) between I and Im c0. It ac-
counts for the fact that the quantity r [Eq. (45)] is the relax-
ation time for a motion of the collective coordinate rather
than the collective energy.

Crucial quantities in the calculations of the collisional
width I Eq. (49) are the thermal relaxation time 7(T) and
the cutoff factor q. The value of q is determined by the
velocity of the zero sound, i.e., the Landau parameters FI of
the interaction between nucleons. The thermal relaxation
time v(T) leads to a nuclear viscosity in the regime of fre-
quent collisions [15,22,32—34]. Most estimates of the ther-

To derive (51) and (52) from (49) and (50), Eq. (44) and (47)
and the value d2= 4/5 were used. This value of d2 is exact if
the collision probability w is isotropic. Equation (51) repre-
sents a simple formula linking the expressions for the CD
width in two physically different regimes of the rare and
frequent collisions. Below we will use these relations for the
calculation of I .

Let us compare the expression (51) for the collisional
width with the one that corresponds to the width in the re-
laxation rate approximation [8—10,13,29], in which
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TABLE I. Values of parameter a extracted from the correspond-
ing references.

10

Ref. [22] [32] [10] [35] [33]

a MeV 4.9 2.4 5.2 3.2 19.3

mal relaxation time 7.(T) in nuclear matter are based on the
expression (46). For example, this value was calculated in
Refs. [10—12,22,32,33,35] with different assumptions about
the collision probability W. Using Eq. (4.6) we introduce the
parameter n by the relation

6-

7 (T)IA = nT [T,n in MeV]. (54)

In Table I we give a list of the parameters n which were
derived using different approaches [10,22,32,33,35].The dif-
ferences between the estimates obtained in Ref. [33] and
Refs. [22,32] are rather large. They result from different val-
ues of the nucleon-nucleon cross section in a medium and in
free space [36-38].The variation in these estimates of a is
probably due to this fact. Reference [33]gives apparently an
overestimate for the value of r. For example, in [8] the value
of the nucleon-nucleon cross section in a medium was as-
sumed to be smaller by only a factor of 2 than the value in
free space o.t„,. Using the value of o.t„,=40 mb, [22] one
finds a=9.8.

The magnitude of the factor C„ in (22) and (45) was
originally obtained by Landau [39] in the calculation of the
absorption coefficient y in a Fermi liquid. It was shown that
in the zero sound regime the variation with temperature and
frequency of the coefficient y and consequently of the damp-
ing width, which is proportional to y, is similar to that given
by (39) [R(S„)= 1] and (45) with C„=1. This result in the
regime of rare collisions agrees rather well with those ob-
tained by the variety of microscopic approaches to damping
in Fermi systems in the case of small amplitude deviation
from a steady state [29,40—42].

The factor C„may also be calculated in a direct way
within the framework of a kinetic theory if the exact expres-
sion for the collision integral is known. In the general case,
the total dynamic part of this collision integral consists of
three terms,

8'St=BSt +BSt +8'St .f W

The first term 8'St& is connected with the variation of the
distribution function Bf The second one .85t, is governed
by a variation of the mean field. The third term 8'St results
from the screening effect for the free two-body scattering in
a hot Fermi system due to high frequency collective vibra-
tions. In Refs. [11,12,18], the quantities C„associated with

BStg and BSt, were calculated to be C„=C„=3 and
C„=C1„'l=l, respectively (see also [10]).These results are
in disagreement with the value of 1 obtained in Ref. [13]for
the factor C„—=C„' for the combined variation
BSt&+ 8'St, . Note that when compared to 8'St& the quantity
BSt, contains a complementary effective interaction ampli-
tude arising from a variation of the self-consistent field. In
our opinion this indicates that the value C„=1 can be ob-
tained only by incorporating into the collision integral the

10

FIG. 1. The collisional width as a function of ~p'T. The curves
la and lb are obtained using (51) and (52): For curve la we use

q = 0.192 and for 1 b we use q = 0.254; curve 2 is the relaxation rate
approximation 1 0, Eq. (53).

contribution of 8'St . At present the term 8'St is rather
poorly studied in kinetic theory. Because of this, we will use
below the value C„=1, which corresponds to Landau's pre-
scription [15].

Strictly speaking, the preceding discussion is concerned
with isoscalar vibrations. However some of the relations de-
duced for the isoscalar case remain the same for the isovector
case by changing the meaning of certain quantities and other
relations are valid as a good approximation. For example, the
general form of Eq. (27) for the volume density vibrations
will be correct for isovector GMR if the isoscalar density
variation and compressibility modulus are replaced by the
corresponding isovector quantities [20,43]. Note that we took
into account volume oscillations 8p of the form (29), as in
the hydrodynamic Steinwedel-Jensen model [44]. Because of
this, the dispersion relation (30) and the general form (38) of
the collisional width can be valid only in heavy nuclei. As
can be seen from the results of Ref. [10], the thermal relax-
ation times for isovector and isoscalar modes are in agree-
ment in the case of quadrupole distortion of the momentum
distribution. For isovector vibrations the condition S„=1 is
also fulfilled both in the models of a nucleus as a homoge-
neous system with a sharp surface and in nuclear matter
[11,12,26,30,31].All these facts make it possible to use the
expressions (51) and (52) with n from Table I to estimate the
isovector collisional widths in hot heavy nuclei.

Figure 1 shows the dependence of the collisional widths
on coo~. The curves 1a and 1b are found by employing Eqs.
(51) and (52), respectively, in the case of the GDR. We used
the values of the isovector amplitudes Fo= 1.6 and F

&
=0,

[45] i.e., q=0. 192 (S&=0.931) to obtain curve Ia. Curve
1b was obtained using q =0.254. This value corresponds to
the velocity of the first sound 5&=0.81, which was evaluated
in [26,30] for an isovector sound in nuclear matter. We also
used A, coo= 15.6 MeV (this value corresponds to the energy
of the GDR in " Sn). Curve 2 corresponds to I o of Eq. (53).

The width I is peaked at the value of cu07.=q " . It is
equal to I,„=A,moq at the maximum. The value of I 0 at
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