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Continuum Tamm-Dancoff approximation calculations for the escape widths
of the isobaric analog state and Gamow-Teller resonance in Bi
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The proton escape widths of the isobaric analog state and the Gamow-Teller resonance in Bi are calcu-
lated by solving the charge-exchange continuum Tamm-Dancoff equations. For the Gamow-Teller resonance
the spreading contribution to the width is taken into account by the imaginary part of the optical potential. The
calculated escape widths are in agreement with measurements obtained from a recent Pb( He, tp) Bi
experiment.

PACS number(s): 24.30.—v, 21.60.—n, 25.45.Hi

It is well established that giant resonances (GR) are mi-
croscopically coherent superpositions of many correlated
one-particle —one-hole (ph) configurations forming a highly
collective state in the continuum. The two principal decay
mechanisms of GR are the direct emission of particles from
specific ph configurations and the spreading of the elemen-
tary ph configurations into more complicated n-particle —n-
hole configurations. While the microscopic nature of the
spreading is now fairly well established [1—4], the nature of
the emission of nucleons by direct decay is an issue in
nuclear theory that has yet to be satisfactorily resolved, due
mainly to the lack of experimental data. The absence of ex-
perimental direct decay data is generally a reAection of the
difficulty of performing coincidence experiments and also of
subtracting the background component due to compound
processes.

In 1980 Gaarde et al. , using the Pb( He, tp) Bi
charge exchange reaction with a beam energy E( He)=81
MeV measured the partial decay widths for both the isobaric
analog state (IAS) and the Gamow-Teller resonance (GTR)
[5].The escape widths for the IAS obtained were consistent
with previous experiments; however, the total measured es-
cape width for the GTR was about the size of the total re-
ported width of the resonance. Recently, this experiment has
been repeated by Akimune et al. [6], with an E( He) of 450
MeV. The main purpose of this paper is to compare these
new experimental results with those obtained from charge
exchange continuum Tamm-Dancoff approximation (CTDA)
calculations [7,8].

Within the distorted-wave impulse approximation
(DWIA), the singles ( He, t) and the coincidence ( He, tp)
cross sections for the excitation of the GTR may be given,
respectively, as [9]

CJ d tr 1
A Sl E

4

where E is the excitation energy measured from the ground
state of Pb, S(E) is the total GT strength function, and
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S"„(E) is the partial escape component. A ( = [mH, m, /

(2+6 ) ](pb/p, )It, I
No) is a constant factor including the

strength of the charge exchange transition t amplitude t,
and the distortion factor ND. Following Ref. [6], we define
the escape width for a specific ph configuration as

f~' a~f (d a/dEd A,dA„)dEd0
I~ —I

(2)

where Ez is the resonance energy and AE defines the range
of the integration. We choose DE=V/2. The escape width
for a specific hole state h is given by

Equation (2) shows that the escape widths are given by
S(E) and Slh(E), which are evaluated by means of the con-'
tinuum random phase approximation (CRPA) and/or CTDA
method discussed in Refs. [7,8]. Since the method has al-
ready been given in detail in Refs. [7,8], we present here
only a brief outline. We define the continuum wave function
IW) for the target excited by the Gamow-Teller transition

op«ator p=—or as
I
Ir)=GIp) w"«e Ip)= pl@) 14') being

the ground state wave function, which we assume to be that
of the pure shell model, G is the many-body Green's func-
tion (propagator) of the system and is given as

G = [E H+ i e] ', where H—=H„+H„+ V~„, H„, H~, and

V„h being the hole-nucleus Hamiltonian, the particle Hamil-
tonian, and the residual ph interaction, respectively. 0 can
be expressed as a sum of a kinetic energy operator and a
complex energy-dependent optical potential. The imaginary
part Wp in the potential describes the damping of p.

In Ref. [7], we introduced IA) as I'Ir)=GoIA), where

Go is the Green's function in the absence of Vzt, (optical
model Green's function). It is important to note here that we
properly take into account the Pauli exclusion principle in
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Go in the sense that particles are forbidden to propagate in
occupied nucleon orbitals. Now lA) satisfies the integral
equation

160

140—

x) =
l p)+ v,„G,le). (4)

The point of our method is to solve Eq. (4), after making the
partial wave expansion, 120-

IAS

+) (1/r) X ~ h(r)
l [y,@h]1 )

ph 100—

by using the Lanczos method [10].Quantities y„and ph in
the above expansion are the spin-angle wave function of the
excited particle p and the hole-nucleus wave function, re-
spectively. Once Xzh(r) are obtained as solutions, it is easy
to calculate p„h(r), the radial wave functions for l'P). Us-
ing these X~h(r) and p~h(r), and also the radial wave func-
tion p~h(r) for p), one can calculate 5 "h as

T l
Sph Sph Sph

80—

V)

60—

where the total and damping partial strength functions Sph
and S h, respectively, are

1 1
5 h ™I(P h Ph)] 5 h [(Phl —~„0,h)]

(7)

The total strength function S is then given as S= X~hS~h.
Finally, we note that in this paper it is assumed that

the total width I is expressed as I =I'1+I ~=X „I th

+Kohl „, where I „ is defined in the same manner as isl

I "h by replacing 5"
h with 5 "h in Eq. (2).

In terms of the formalism described above, we have per-
formed calculations of the escape widths for proton emission
from the GTR in Bi. Though our m~in interests are in the
GTR, calculations were also made for the IAS as a reference.
Since the IAS escape widths are well established experimen-
tally, they provide a constraint for the GTR calculations.

The theoretical parameters involved in the calculation are
the residual ph interaction Vph and the single particle poten-
tial for the excited particle p and the occupied hole states.
Vph is taken to be a simple zero-range interaction of the kind
discussed in Ref. [9], which allows for the adjustment of the
strength so that the calculated IAS and GTR resonance en-
ergies fit the experimental values. For the single particle po-
tential for p and the hole state h, a Woods-Saxon potential is
used with the diffuseness a =0.65 fm and the radius param-
eter r o

= 1.23 or 1.20 fm. In the case where ro = 1.20 fm, the
neutron hole state energies are adjusted to the experimental
values. The above values of the parameters for the single
particle potential are fixed such that the experimental emis-
sion widths of the IAS are reproduced as well as possible.
For the GTR calculation, an imaginary potential is added to
the above real potential, particularly for p, in order to take
into account the damping (spreading). The parameters of the
imaginary potential are taken from Ref. [11].

Figures 1 and 2 show 5(E) calculated with ro ——1.23 fm
as a function of E for the IAS and GTR, respectively. For the
IAS, a narrow resonance centered at approximately 18.83
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FIG. 1. Total strength function for the IAS in Pb.

MeV with a width of about 150 keV is obtained, which es-
sentially exhausts the N —Z sum rule. Spreading effects have
not been included in this calculation, since, as is well known,
the damping is specifically suppressed in this state. The solid
line in Fig. 2 represents the calculated 5(E) for the GTR,
while the dashed curve represents the Lorentzian function
St(E) =(I /2ir)B[(E —Ett) +I ~/4] ' with I =4 MeV,
E&=19.23 MeV, and B=82.9. The width of the resonance
was taken to be the width of the strength function at S=-,'
[5,„+5(Eit)], where 5,„ is the value of the strength func-
tion between the small peak at 8.5 MeV and the main reso-
nance. Note that the total width I =4.0 MeV of Si agrees
well with the experimental result of 3.80 MeV obtained by
Akimune et al. [6].This width mostly comes from the damp-
ing [6], which means that the damping predicted from the
imaginary part of the optical potential can reproduce the ob-
served width. Similar conclusions were previously drawn in
Refs. [7,12] for the damping of the monopole and quadru-
pole GR states.

The value B= 82.9 implies that the total integrated
strength of SI (82.9) is about 63% of the total sum rule limit
of foS(E)dE=3(W Z). The difference (37%—) between
S(E) and St (E) may be ascribed to the quenching of the
resonance strength and may be compared to the experimental
values of 40—50% given in Refs. [1—4]. The predicted
quenching is thus slightly smaller than the experimental
value, which may be ascribed to the 5-hole effect [4]. The
peak at 6.8 MeV shown in Fig. 2 amounts to 15.6% of the
sum rule, which may be compared with the experimental
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strength of about 10/o found by Akimune et al. [6] and
Brockstedt et al. [13].It is remarkable that the overall struc-
ture of 5(F) shown in Fig. 2 is very much similar to that
obtained by Drozdz et al. [2] by taking into account explic-
itly the coupling to the 2p-2h states.

Table I summarizes the results of the calculated proton

FIG. 2. Total strength function and corresponding Lorentzian
function for the GTR state in Pb.

emission widths for the IAS and GTR. The results for
ra= 1.23 fm are listed in column (a). In addition, the results
of using ro= 1.2 fm and adjusting the neutron hole state en-
ergies to their experimental values are given in column (b).
The results in column (d) for the GTR will be discussed later.
For the IAS, except for the f5&2 width, the calculated indi-
vidual escape widths for both (a) and (b) agree nicely with
the experimental values. There is almost perfect agreement
with the experimental data for case (b) where the experimen-
tal neutron hole state energies are used. Note that calcula-
tions of I h~ have previously been made by Van Giai et al.
[14] and also by Adachi and Yoshida [15]. These authors
used a somewhat different (perturbative) approach for treat-

ing the continuum and predicted values fairly close to ours.
The studies in Refs. [14,15], however, both predicted that

I ~t, which disagrees with experiment and our re-
~ 1/2 1 3/2

suits. Most likely, we may ascribe this to their treatment of
the continuum, specifically to the neglect of the coupling of
the diagonal terms in the ph interaction to the continuum.
This conclusion is based on the observation that the same
result as theirs can be obtained if the diagonal coupling po-
tential is neglected in our calculation. This indicates that it is
important to treat the continuum coupling exactly in repro-
ducing such a subtle feature as the relative magnitude be-
tween I T and I"

J I/2

For the case of the GTR, the overall agreement of the
calculated I hT with the data is good, however, not as good as
compared with that obtained for the IAS case; the predicted
I „underestimate the experimental values. One possible rea-
son for this may be attributed to our neglect of the distortion
effects involved in the reaction cross sections. As is well
known, the distortion reduces contributions from the nuclear
interior to the cross section. This may then reduce the damp-
ing of the emitted particle p, which in turn increase the rela-
tive importance of the escape contribution.

In order to study this effect, we have repeated the calcu-
lations using a modified Gamow-Teller transition operator
p' =f(r) o r, where f(r) is a cutoff factor. It is assumed that

TABLE I. Theoretical and experimental partial proton and total escape widths in keV for the decay of
the IAS in Bi into neutron hole states in Pb.

IAS Expt.
C

GTR Expt.

rT

I Tf5/2

I T

I T

i3/2

I T

f7/2

I T

h9/2

r

63.4

11.2

74.1

0.2

1.2

0.002

150.1

53.9
24.9

61.7
0.13

4.3
0.04

145

51.9~ 1.6

26.4~ 2.0

64.7~ 3.4

4.2~ 0.6

147.2~ 4.3

42.5

16.7

44 4

3.0

2.9

0.2
109.7

4000

31.7
22.9

43.3

2.6

7.0
0.5

113.4

3600

78.2

15.6

69.4

2.9

2.8

0.2
169.1

4000

58.4~ 11.2
incl. in p3/2

101.5 ~ 15.6

8.3 9.2
15.6~ 7.4

184 49

3750~250

CTDA, ro=1.23 fm.
CTDA, ro= 1.2 fm, neutron hole state energies set to experimental values.

'Ref. [16], averaged results of Refs. [5,17,18].
CTDA, modified GT transition operator is used.

'Ref. [6].
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f(r) =1 —[1+e cl'] ' with a=0.63 fm and R,=5.92
fm, which corresponds to the reduced radius parameter
r, = 1.0 fm. The cutoff factor f(r) eliminates the contribution
from the nuclear interior and thus effectively simulates the
distortion effect. The result of the calculations with this
modified GT operator have demonstrated that the ratio
I „/I increases with an increasing value of the cutoff radius

R,, in f(r), particularly for the GTR. In column (d) in Table

I, we list the values of I „obtained with R, =5.92 fm. As
seen, the new calculated values are much closer to the ex-
perimental values. We note that similar calculations were
also made for the 1 h~ values of the IAS, but the predicted
values essentially remained unchanged. This insensitivity of
the I h values of the IAS may be due to the absence of the

damping in the IAS. With the modified Gamow-Teller opera-
tor, one can thus reproduce the data for both IAS and GTR
simultaneously. Finally, we note that calculations of I h were
made in Ref. [14]. The resultant I'„" are larger by about a
factor of 2.5 as compared with the experimental values.

In conclusion we have performed CTDA calculations to
obtain the partial escape widths for the GTR, as well as for
the IAS, in Bi. The CTDA treats the continuum effects in
an exact manner, which is necessary to make reliable predic-
tions of escape widths. Using a standard optical potential,
two methods within the CTDA framework were employed to
obtain the escape widths of the GTR. Since the IAS escape
widths are well established experimentally, they provide a
constraint for the GTR calculations. Using both methods the
calculated escape widths for the IAS are in good agreement
with the measured widths. For the GTR the calculated widths
are in fair agreement with the measured escape widths ob-
tained from a recent Pb( He, tp) Bi experiment. This
agreement improves if one takes into account the distortion
effects involved in the excitation cross section.
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