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Crystalline structure of the mixed confined-deconfined phase in neutron stars
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We calculate that the geometrical structure of the crystalline solid mixed phase of confined-deconfined

hadronic matter in neutron stars —its form, size, spacing, and location in the star—is highly individualistic

according to small changes in the stellar mass. This suggests a possible connection with the wide range of
glitch behavior observed in different pulsars, since glitches are almost certainly associated with solid regions.

PACS number(s): 97.60.Jd, 97.10.Cv, 97.60.Gb

Quark matter in the dense, high-pressure cores of neutron
stars has been an intriguing subject of investigation since
pioneering work in 1976 [1—3]. It was assumed, and is here

also, that in cold matter the transition from quarks confined
in hadrons to the deconfined phase of quark matter is first
order. However, there has been a new development in our
understanding of this transition that may eventually provide
a link between the mixed phase of a compact star and ob-
servable pulsar phenomena. Although stars must be electri-
cally neutral they do not need to be locally neutral, as was
previously assumed. It is now realized that in the mixed
confined-deconfined hadronic phase the electric charge on
regions of hadronic and quark matter may not vanish in each
region, but may simply annul each other over an appropriate
one [4—8]. Nature will choose such a distribution of charges
as minimizes the energy at each proportion of the phases in
equilibrium, thus causing the pressure to vary with the pro-
portion [4,5]. Imposing the constraint of identically vanish-

ing charge may foreclose the possibility of finding a more
energetically favorable distribution and renders the transition
as a constant pressure one in which case the mixed phase
could not occur in the monotonically varying pressure envi-
ronment of a star.

More generally, a substance with n conserved charges (in-
dependent components) has n —1 degrees of freedom to re-
arrange charges between the phases in equilibrium so as to
lower the energy. Consequently, the nature of a first order
phase transition is fundamentally different between one-
component substances such as water, and those with more
than one [5]. This is the case with a neutron star, which,
because of P equilibrium, is not composed solely of neutrons
but also contains protons, electrons, probably hyperons, and,
in the situation under study here, quarks. So there are two
conserved charges, baryon and electric.

The internal force that favors a redistribution of charge is
the isospin restoring force experienced by the confined phase
[5,6]. It is embodied in the isospin symmetry energy in the
empirical nuclear mass formula. Charge neutral neutron star
matter in the pure phase is highly isospin asymmetric, being
composed mostly of neutrons. However, in the mixed phase,
hadronic regions can relieve the asymmetry to the degree
allowed by overall charge neutrality by transferring charge to
the quark phase in equilibrium with it. The bulk energy will

be lowered by reducing the symmetry energy of neutron star
matter at only a small cost in rearranging the quark Fermi
surfaces. Thus the mixed phase region of the star will have
positively charged regions of nuclear matter and negatively
charged regions of quark matter arranged so as to minimize
the sum of surface and Coulomb energies by forming a crys-
talline lattice. The dimensions involved will turn out to be on
the nuclear scale.

An initial study of the lattice structure that was predicted
in [4,5] was carried out by Heiselberg et al. [7], who inves-
tigated several important issues and suggested the possible
relevance of the structure to pulsar glitches. Our purpose is
to explore the radial extent and variation of the lattice struc-
ture in the environment of neutron star models to demon-
strate the extreme sensitivity of the crystalline region on the
stellar mass to which the great individuality [9,10] of the
glitch behavior of different pulsars may be related in part. It
seems plausible that all solid regions will be involved in the
phenomenon of glitches —unpredictable small discontinuous
decreases in pulsar rotational period, occurring on a time
scale of days, months, or years, that are observed in many
pulsars. A purely liquid or gaseous star is mechanically un-

able to generate sudden changes in angular momentum or
moment of inertia by any conceivable mechanism.

Although the above physics responsible for structure in
the confined-deconfined mixed phase is quite different from
that causing a nuclear lattice in the stellar crust [11,12], the
interplay of surface and Coulomb energies is identical. The
problem is to find the particular geometry and size of the
regions of rarer phase immersed in the other that minimize
the sum of the above energies as a function of the proportion
of phases in equilibrium. The pressure varies as a function of
the proportion since the partition of charge is energetically
optimized at each proportion [5].And because the pressure
monotonically decreases with radial distance from the center
of the star, the geometry and its size and spacing will vary
with the Schwarzschild radial coordinate. One may subdi-
vide any locally ineriial region of mixed phase into (Wigner-
Seitz) cells containing one of the structures and a surround-

ing region of the other phase so that the total charge content
of the cell is neutral. Adjacent cells therefore do not interact.
We adapt the results of Ravenhall et al. [11],who treat three
discrete geometric forms in such cells to write for the radius
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of the rare phase immersed in the other and the minimum of
the sum of Coulomb and surface energies
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where qH and q& are the charge densities of hadronic and
quark matter (in units of e) at volume proportion of quark
matter y= V&/V and cr is the surface interface energy. The
ratio of droplet (rod, slab) volume to cell volume is denoted
by x = (r/R) When qu. ark matter is the rare phase x = X and
otherwise x= 1 —y. In the case of drops or rods, r is their
radius and R the half distance between centers, while for
slabs r is the half thickness. The geometric forms are de-
noted by their dimensionality, d = 1, 2, and 3 corresponding
to slabs, rods, and drops, respectively.

The function f„(x) is given in all three cases by

1 1
fd(x) = (2 —dx' ")+x, (3)

o.= const X [eg(X) eH(X)] X L. (4)

The constant should be chosen so that the structured phase
lies below the unstructured one because of the additional
degree of freedom that is exploited in the latter case. Heisel-
berg et al. [7] found a value of combined surface and Cou-
lomb energy that satisfies this condition to be about 10 MeV.
We choose the constant accordingly. It will be understood
from the formulas written above that the structure size and
the sum of surface and Coulomb energies scale with the sur-
face energy coefficient as o" independent of geometry.
Therefore the location in the star where the geometry
changes from one form to another is independent of o..

The geometrical structure of the mixed phase occurs
against the background of the bulk structure to good approxi-
mation. The energy and pressure are of course dominated by
the bulk properties of matter. The equation of state of the
confined hadronic phase is calculated as in Refs. [14,15].The
coupling constants of the theory are determined by the bulk

where the apparent singularity for d = 2 has the correct limit
for d —&2, namely, f2(x) = (x —1 —lnx)/4. We have supposed
that the electrons are uniformly distributed throughout the
mixed phase. In fact, we find that electrons are almost totally
absent from the mixed phase as is generally the case when
charge neutrality can be realized by baryon charge carrying
particles [5].

Surface tension is a very difficult problem because it
should be self-consistent with the two phases of matter,
quark and hadronic, in equilibrium. Lattice gauge simula-
tions have not provided an answer for cold isospin asymmet-
ric matter. Gibbs studied the problem of surface energy, and
as a gross approximation it is given by the difference in

energy densities of the substances in contact times a length
scale typical of the surface thickness [13], in this case of the
order of the strong interaction range, L= 1 fm. The surface
interface energy should depend on the proportion of phases
in phase equilibrium, just as everything else does,
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FIG. 1. Crystalline mixed region in a neutron star showing the
diameter D (lower curves) and spacing S (upper curves) of indi-

cated geometric structures as a function of radial Schwarzschild
coordinate. Region internal to 4.6 km is pure quark matter. Notation
"h drops" denotes hadronic drops immersed in quark matter, and so
on. Stellar radius is 10.7 km.

nuclear properties, binding energy 8/A = —16.3 MeV, satu-
ration density po=0. 153 fm, symmetry energy coefficient
a,~m=32. 5 MeV, compression modulus E=300 MeV, and
effective nucleon mass at saturation, I*/m=0. 7. The ratio
of hyperon coupling to mesons as compared to nucleon cou-
plings is chosen in accord with Ref. [15] to be
x =0.6, x„=0.653. We compute the pure quark matter
phase as in [5] using a bag constant B' t4180 MeV and the
quark masses written there. The method of finding phase
equilibrium in multicomponent systems is also described
there.

To demonstrate the extreme dependence on stellar mass of
the crystalline structure we compare two stars differing by
only 0.02MO. In Fig. 1 we show the diameter of the geo-
metrical objects, identify their forms, and plot the spacing
between centers of the rare phase objects immersed in the
other phase. The mass of the star is M = 1.42MO and is at the
mass limit. The pressure at the center and extending to 4.6
km is sufficiently high that this region is occupied by pure
quark matter. The region between 4.6 and 7.8 km is in the
crystalline confined-deconfined phase. Since the phase tran-
sition is completed before the center of the star is reached,
the geometrical structures span the full range of forms. At the
outer edge of the mixed phase region, quark drops of finite
diameter are spaced, in the limit of y= 0, at infinite distance.
At greater depth and therefore proportion of quark matter the
drops are more closely spaced and slightly larger in size.
Deeper in the star, drops are no longer the favored configu-
ration and merge to form rods of varying diameter and spac-
ing. At still greater depth, the rods give way to slabs, then the
roles of quark and hadronic matter interchange, and the
forms are repeated in reverse order until at the inner edge of
the mixed phase hadronic drops of finite size but spaced far
apart are immersed in quark matter. In all cases the diameters
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FIG. 2. Similar to Fig. 1 but for slightly less massive star. Mixed
crystalline phase now extends to star's center. Radius is 12.3 km.

of the geometric forms lie between about 10 and 25 fm. Of
course, were it not for the restriction to three discrete geom-
etries, the discontinuities in the diameters and spacings
shown in the figures would be interpolated by intermediate
forms.

For lower-mass stars, the central density and pressure may
be insufficient to fully convert quark matter to hadronic mat-
ter. This is the case for the neighboring mass star,
M=1.40Mo, for which the geometries of the crystalline
mixed phase are shown in Fig. 2. The crystalline phase ex-
tends to the center of the star and the central geometry con-
sists of rods of hadronic matter immersed in quark matter.
For a mere 0.02Mo change in mass the situation has
changed radically from a star having a 4.6 km quark gas
core, enclosed by a 3 km thick solid shell, to a star having no
gas interior, but an 8 km solid sphere. For a star of mass 1.2
Mo we find the quark rods occupying the region from the
center to 2 km and quark drops from there to 7 km. For a 1

Mo star, quark drops extend from the center to only 3.6 km.
All of the above configurations are of course surrounded by
neutron star liquid and finally a thin solid crust of nuclear
forms embedded in an electron gas. Stars of somewhat lower
mass than the above have no quark matter whatever.

The great sensitivity to stellar mass is due to the high
compression in neutron stars so that the density is a rather
Oat function of radial coordinate except near the edge of the
star, and a small change in central value and therefore mass
has a large effect on where in the star a particular density
occurs. Naturally, the details illustrated above pertain to the
particular parameters chosen. The pattern of the results is,
however, general.

Early work, by inadvertently closing off a degree of free-
dom, rendered the transition as one of constant pressure for
all proportions in the mixed phase [1—3,16]. In such a case
the mixed phase cannot exist in the gravitational field in a
star. The pure quark phase was found to occur only at high
density or pressure and therefore concentrated near the cen-
ter. That is true here also. However, the mixed phase extends
to a rather low density of only several times nuclear satura-
tion density, as has been found by several authors when the
star is allowed to exploit the degree of freedom opened when
charge neutrality is imposed in the global rather than the
local sense [4,5,7,8].

It is almost certain that solid regions in a pulsar will play
a role in the period glitch phenomenon, whether associated
with cracking of the solid as in star quakes, or with unpin-
ning of superfluid vortices from solid regions. Glitch behav-
ior is highly individualistic from one pulsar to another [10].
We tentatively suggest that this may be due to the extreme
sensitivity on stellar mass of the radial extent of the solid
crystal region and the forms that occupy it as well as the
moments of inertia associated with different gaseous (quark),
liquid, and solid regions. The interior solid region of the
mixed phase and the crustal solid, separated by a nuclear
liquid, offer interesting possibilities for interaction or stimu-
lated response at the time of a glitch originating in one of
them and in postglitch recovery.

The crystalline form cannot fit uniformly into the axial
symmetry of a rotating star without there being lattice imper-
fections. As the star cools we envision that the crystalline
structure will develop with relatively few imperfections but
over time and successive glitches their number will grow,
creating eventually a granular region. Thus we may also ex-
pect a long-term change in behavior with pulsar age.
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