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Response of mica to weakly interacting massive particles
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We calculate spin-dependent cross sections for the scattering from mica of hypothetical weakly interacting
dark-matter particles such as neutralinos. The most abundant odd-A isotopes in mica, Al and K, require
different shell-model treatments. The calculated cross sections will allow the interpretation of ongoing experi-
ments that look for tracks due to the interaction of dark-matter particles with nuclei in ancient mica.

PACS number(s): 95.35.+d, 14.80.Ly, 25.90.+k, 95.30.Cq

I. INTRODUCTION

The nature of the dark matter in our galaxy and elsewhere
has become increasingly puzzling [1,2]. Although it is too
early to make definitive statements, ongoing experiments
seem to imply that there are not enough macroscopic objects
in the galactic halo [3] to account for the gravitational attrac-
tion felt by luminous objects near the edge of the disk. One
alternative is dark matter in the form of elementary particles.
For several years now, weakly interacting massive particles
(WIMP's) that arise in supersymmetric extensions of the
standard model have been attractive candidates [4].A variety
of experiments to detect WIMP's are either already operating
or in the planning/prototype stage.

One promising project [5] uses ancient mica as a detector.
The idea is that over long periods of time a countable num-
ber of WIMP's should have collided with underground mica
and left recognizable tracks. At present, the experiment is not
sensitive enough to test the WIMP hypothesis fully, but by
increasing the amount of mica examined, experimenters
hope to reach the required level of sensitivity within a few
years. Then, confirming or rejecting the WIMP hypothesis
will require a knowledge of their cross sections for scattering
from the various elements in mica. In this paper we calculate
these cross sections so that the experiments can be properly
interpreted. Our results are general enough to be applied to
any heavy Majorana particle; we explicitly calculate the
"spin-dependent" response of mica. While "spin indepen-
dent" cross sections for supersymmetric neutralinos [6—9],
perhaps the most plausibly motivated WIMP's, are usually
larger than the spin-dependent cross sections in most of the
nuclei in mica [10], there are still regions of supersymmetric
parameter space for which this is not so. Furthermore,
WIMP's with no scalar interactions, such as heavy Majorana
neutrinos, have not yet been completely ruled out. A good

calculation of the spin-dependent response is therefore war-
ranted. The spin independent scattering can be easily calcu-
lated following, for example, the work of Ref. [11].

The composition of mica is 58% ' 0, 16% Si (mostly
Si), 12% Al, 5% K (mostly K), and 9% H. Since the

scattering from even-even nuclei is entirely spin independent—and therefore easily calculable —we need to concentrate
here only on Al and K. (No nuclear-structure calculation
is required for H.) The nucleus Al is also one of the active
ingredients in a very high-resolution (AE„wHM=200 eV)
and low-threshold (E,h=500 eV) sapphire-crystal (A1203)
detector that is currently under development [12]. The low
threshold of this experiment makes it ideal for detecting
lighter WIMP's.

Though both aluminum and potassium nuclei are nomi-
nally classified to be in the sd shell, K is at the upper edge
of the shell and its wave functions contain significant admix-
tures of one- and two- particle-hole states involving higher
shells. Most of the correlations in Al, by contrast, are pro-
duced by purely sd-shell configurations. The techniques we
apply in the two cases are therefore quite different. After a
general discussion of spin-dependent scattering in Sec. II, we
will examine the two odd-A nuclei independently in Secs. III
and IV. In Sec. V we briefly discuss the implications of these
calculations for mica-based detection.

II. SPIN-DEPENDENT SCATTERING

At low momentum transfer, the tree-level coupling of
neutralinos to quarks (excluding the exchange of Higgs
bosons) yields the elastic scattering amplitude from a
nucleus ~N):

M =A(NlapSp+anSnlN) sx
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where S~ and S„are the total proton and neutron spins in the
nucleus, s~ is the spin of the neutralino, a„and a„are cou-
pling constants that depend on the composition of the neu-
tralino (in terms of the four or more neutral fermionic part-
ners of the gauge and Higgs bosons) and on the distribution
of nucleon spin among the different types of quarks, and the
quantity A depends on other physics at the supersymmetry
scale [6]. Though these specifics apply only to neutralinos,
the spin-dependent scattering amplitudes for other Majorana
WIMP's will have the same general form, Eq. (1).The spin-
dependent cross section is a product of the square of the
amplitude and a phase-space factor.

When the momentum transferred to the nucleus by the
WIMP, q, becomes comparable to the inverse radius of the
nucleus, structure functions (form factors) resembling those
associated with elastic magnetic electron or neutrino scatter-
ing modify Eq. (1). The more general expression for the
spin-dependent cross section is [11]

do 8GF
d '=(21+1)" "(q)'

where GF is the Fermi weak four-point effective coupling
constant and v the neutralino velocity. The subscript A
stands for "axial. "The function Sz(q) can always be written
in terms of three fundamental structure functions

5~(q) = aoSoo(q) +a i 5 it(q) + aoa i Soi(q). (3)

The labels 0 and 1 refer to isospin; the constant ao is given
by a„+a„and a& by a„—a„. The three structure functions
contain expectation values of operators of the form jL(qr)
X[I'r o.] —' (L even), which depend on spatial coordinates
as well as nucleon spins. Details appear in Ref. [11].Without
rewriting all the expressions here, we describe the calcula-
tion of S„(q) in Al and K.

III. ALUMINUM

The nucleus Al lies in the middle of the sd shell. To
obtain the ground-state wave function we diagonalize Wil-
denthal's "universal" sd interaction [13] in the full 06co
space. This interaction has been meticulously developed and
tested over many years and together with effective operators
accurately reproduces most low-energy observables in sd-
shell nuclei [14]. We carry out our calculations with the
Lanczos m-scheme shell-model code CRUNCHER [15]and its
auxiliary codes; the I-scheme basis for Al contains 80 115
Slater determinants. A very similar calculation for Si is
reported in [16], where more details appear.

The agreement of the calculated spectrum with that mea-
sured in Al is excellent, reflecting the effort that went into
constructing the interaction. More relevant is the accuracy of
the calculated magnetic moment, which derives from the
same spin operators that determine the WIMP structure func-
tions at q = 0. The measured magnetic moment is

pt + 3 .6415p,& . Using free-particle g factors and our
wave functions, we obtain a value p, „&,=+3.584p, z, which
agrees well with experiment. By contrast, the single-particle

ue» ~sp +4.793pN.
Although Ref. [14] advocates the use of effective opera-

TABLE I. The value of (the z projection of) the nuclear spin and
orbital-angular-momentum matrix elements for Al.

(S,) (S.) (L ) (L.)
ISPSM
OGM
EQGM (g„/gv= 1.0)
EQGM (gg /g v = 1.25)
Shell model

0.5
0.25
0.333
0.304
0.3430

0
0

0.043
0.073
0.0296

2.0
2.25

1.7812 0.3461

tors in the sd shell, we obtain a calculated magnetic moment
in Al closer to experiment with the free-nucleon spin and
orbital-angular-momentum operators (the same was true in

Si). Unfortunately, we overpredict the Gamow-Teller ma-
trix element by a factor of about 1.25, a problem that the
effective operators would remedy. Thus we have convicting
evidence on the use of effective operators. In the absence of
a better prescription, we choose to use the free-nucleon g
factors. The consequence for WIMP scattering is that we do
not quench our calculated cross sections at all. In K, where
our calculation provides more information, we make a simi-
lar decision.

Reference [17]develops two schemes, based on the "odd
group model" (OGM) and an extension of it (EOGM) for
extracting values of neutron and proton spins —the quanti-
ties that determine spin-dependent WIMP cross sections at

q =0 —from magnetic moments and p-decay lifetimes.2

These values for Al appear in Table I alongside the spins
and orbital angular momenta from our calculation. The most
surprising result is the large value for (I.„) obtained in the
shell-model calculation. On comparing the numbers in Table
I, we see that the single-particle model (ISPSM) and OGM
disagree with the shell model; the large value of the neu-
tron's orbital angular momentum is the likely explanation of
the OGM's failure to reproduce the spin angular momenta.
By contrast, the EOGM results with g„/gv-= 1 (a quenching
of the Gamow-Teller matrix element) are very close to our
shell-model values. This agreement with the most sophisti-
cated phenomenological analysis is heartening. However,
since spin-dependent neutralino scattering involves the axial
nuclear current, the failure of any analysis to reproduce
p-decay lifetimes accurately without ad hoc quenching —a
problem not mentioned in any previous work —is troubling.
As a result our aluminum calculation has an uncertainty from
this source of roughly 30%. The situation is better in the
potassium calculation since the core-polarization corrections,
to be discussed in the next section, explain much of the
P-decay quenching.

As described above, when heavy particles transfer mo-
mentum comparable to the inverse nuclear radius, structure
functions modify the simple form Eq. (1) for the scattering
amplitude. In the shell model, the expectation value of any
one-body operator is easy to calculate, so the evaluation of
structure functions poses no additional problem. We did,
however, improve upon an approximation in previous works,
namely, the use of harmonic oscillator single-particle wave
functions; the true nuclear mean-field potential is closer to a
Woods-Saxon than a harmonic oscillator form. For compari-
son we calculate the structure functions with both types of
wave functions. We use a length parameter of b = 1.73 fm for
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FIG. l. The three Al structure functions Soo (top), S»
le) and S (bottom) as a function of momentum transfer
d The dotted lines are the single-particle func isquared. e o e

r sin le-dashed lines t e u uh f ll f nctions with harmomc oscillator g
d the solid lines the full functions withparticle wave functions, an e so i

Woods-Saxon single-particle wave functions.

of Ref. I.18„oscillator functions and the standard parameters
f h W ods-Saxon potential. Figure 1 shows t e three
structure functions in both cases as a function o q up o
maximum possi e mom'bl mentum transfer for a WIMP moving
at 700 knVsec (more than twice the mean WIMP velocity .
The Woods-Saxon wave functions make only small changes
in the results.

For the momentum transfers in the figure, t e oo s-
Saxon structure functions are given to high accuracy by the
third-order polynomials

Soo= 0 092 951 6—0.472 059 y+ 1.059 96 y
—1.011 48 y,

2 08 3.065 723 2 —0.449 840 y+ 1.350 41 y
—1.685 08 y,

So =0.156 330 0—0.935 958 y+2.457 79 y
—2.726 21 y,

(4)

=qb /2,'. As noted above, these three functions
allow the calculation of spin-dependent cross sec ions
any heavy Majorana particle.

IV. POTASSIUM

For the nuc eus, a s1 K hell-model diagonalization is dif-
ficult to perform because of the severe truncations require
to the active model space. Since this nuucleus is so near the
b d between the sd and pf shells, excitations of par-oun ary e

t areticles into ig er s eh h shells can have significant effects tha
f t well simulated by effective operators. Despite t eo ten no we

difficulties, our first attempt to treat this nucleus wa
the framework of the shell model, with the Hamiltonian and
method advocated in Ref. [19].Computational complexity,

of the sd shell into the fp shell. After diagonalization, the
e u a roximately2 -3h excitations we did include made up appp

(b F
I
~)(~1 ~~la)

(RIFI k.) =(blFla)+ X

usa, b

(bleu)(n F a)
Eb —E

Here a an are sing e-d b 1 -hole valence states and u an infinite
set of single-hole or two-hole one-particle (2h-lp) states

structed from the eigenfunctions of Ho, in our workcons ruc
ome froma=b=Od3&2. The energy denominators also come

H; they are integral multiples of 2 co,co where A, cu is the0~

r . We choosecharacteristic oscillator energy.
6, cu = 458 " —253 = 11.1 MeV, corresponding to
b = 1 934 fm, for A = 39. We explicitly evaluate the
intermediate-state summations for denominators equal to
26co 4fi, co 6A, co, and 8&co, and then extrapolate the resu ts
geometrically.

E . 5 contain theThe two-body matrix elements of Win Eq. (5) contain t e
one-body potential through the —U components, known as
Hartree-Fock insertionsk

' '
t21]. If the unperturbed Hamiltonian

Hp were chosen to e eh b the Hartree-Fock Hamiltonian that
minimized the energy of a single Slater determinant charac-
terizing the closed-shell core, then the Hartree-Fock inser-
tions would have no effect. Reference [20] shows that even
with an osci ator amiH ltonian the Hartree-Fock insertions
d t ff t magnetic moments and their effects ought to beono a ec

11 f th perators discussed here. We therefore rop e
Hartree-Fock insertions altogether. Furthermore, a rs-
order corrections to magnetic moments, and to the o erators
usesed here in the q = 0 limit, also vanish because the spin and

40% of the ground-state wave function. While the excitations
changed the orbital angular momentum significantly, they
had almost no effect on the spin, and our magnetic moment
disagreed badly with experiment, indicating that further cor-
relations are in ee imd d mportant. Any further complexity
makes use of the shell model difficult, however. We turn

instead to an alternative scheme, base pon erturbation
theor, that was successfully implemented a few years ago in

1 1 t' of several spin-dependent observa bles in closed-
shell-plus- (or minus-) one nuclei [20]. Since this met o as
never before been applied to WIMP structure functions, we
describe it in more detail than we did our sd shell-mode
results.

We begin by dividing the Hamiltonian into a one-body
term and a residual interaction: H =Ho+ 7~, where

Hp = T+ U, the sum of kinetic energy and one-body poten-
tial energy operators, an d W= V—U, the difference between
the two- and one-body potential energy operators. The eigen-
functions o Ho, w ic wei H, h h e take to be a harmonic oscillator,
form the basis of the calculation. The unperturbed ground

f K a single-proton hole in the d3/2 orbital, gives the
single-particle (Schmidt) magnetic moment: — . p,~.
Corrections come from the perturbative expansion in the re-
sidual interaction. Very generally, to first order in a closed-
shell-plus- (or minus-) one nucleus the matrix element of a
one-body operator, F, is given by
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orbital-angular-momentum operators cannot create (or anni-
hilate) a particle-hole state at LS closed shells (selection
rules require the particle and hole states to have the same
orbital structure). At nonzero q, the first-order corrections to

Sz(q), while not identically zero, are still small. It is essen-
tial, therefore, to consider perturbation theory through to sec-
ond order, and we add the following additional terms to Eq.
(5):

(nl vl p)(pl via) (nl via)(a I
v a) (b

I
v p)(pl vl ~)

( I I )(~ ~ )(~ ~ )
X ( I I ) (~ ~ )2 X (p p )(~ ~ )( I I )

(bl vlb)(bl vl ~) (bl vl p) (yl «) I (bl vl p)(pl vlb)

(.Ivl p)(pl vl. )
(blFla) (6)

Q QaV —F, —V a
e 'e (7)

where the operator Q/e is X/alp)(pI/(E, F/3) If the —one-.
body operator F were to commute with both the energy de-
nominator e and the residual interaction V, as does the num-
ber operator, the second-order correction to the diagonal
matrix element would vanish. But spin-dependent one-body
operators do not commute with spin-dependent residual in-
teractions, resulting, for example, in second-order correc-
tions to magnetic moments from tensor forces [23].

Here we try two different residual interactions. The first
(which we call I), used in Ref. [20] for magnetic-moment
calculations, is based on the one-boson-exchange potential of

TABLE II. The value of (the z projection of) the nuclear spin and
orbital-angular-momentum matrix elements for K.

Here, as before, a and b are single-hole valence states, o. an
infinite set of 2h-Ip states, and p, y an infinite set of
2h-1p and 3h-2p. states. Again the selection rules on

(blFI n) and (nIF a) forbid the first four terms of Eq. (6)
from contributing at q=o, and only allow small contribu-
tions at higher q. The fifth, sixth, and seventh terms, how-
ever, each contain intermediate-state summations over 2h-1p
and 3h-2p states that are not constrained by selection rules
and converge only slowly with increasing energy denomina-
tors. (The last two terms renormalize the single-hole matrix
element (blFla). ) These three terms are sometimes called
the number-conserving set [22] because if the one-body op-
erator were replaced by the number operator the terms would
contribute nothing. This is apparent when the last three terms
in Eq. (6) are rewritten in the following equivalent form
(with a = b):

the Bonn type [24], but limited to the four or five important
meson exchanges. For use in finite nuclei, this interaction
should be converted to a G matrix; here we approximate the
procedure crudely by introducing a short-range correlation
function. The resulting interaction has a weak tensor-force
component typical of Bonn potentials. Our second interac-
tion [25] (called II here) is a full G matrix constructed from
the Paris potential [26] and parametrized in terms of sums
over Yukawa functions of various ranges and strengths. In-
teraction II has a strong tensor force, producing effects de-
scribed below.

Our results for the orbital angular momenta and spins in
K appear in Table II. As was the case earlier, the spins

from both forces agree well with those obtained in the phe-
nomenological EOGM. To test our results against data, we
perform a comprehensive calculation of magnetic moments
and CJamow-Teller matrix elements, including (under the
heading MEC) meson-exchange currents, isobar currents,
and other relativistic effects (see [20]) in addition to the core
polarization described above. Table III presents the results
for both isoscalar and isovector quantities. (The magnetic
moment of K is the sum of the isoscalar and isovector
moments. ) The MEC correction is small for isoscalar mag-
netic moments and p decay, but is significant for isovector
electromagnetic operators. There is little difference between
the two interactions for isoscalar operators and the results are

TABLE III. Corrections to the single-particle (SP) values of the
isoscalar {ps) and isovector {p, v) magnetic moments and diagonal
Gamow-Teller P-decay matrix element [M{GT)], for the mass
A = 39 system from a Bonn-based, weak-tensor force, I, and a Paris-
based, strong-tensor force, II. The corrections are due primarily to
second-order core-polarization (CP) and meson-exchange currents

(MEC). See text for further explanation.

(S.) (L„) (L.) Force SP CP MEC Expt.

ISPSM
OGM
EOGM {g„ /g v = 1.0)
EOGM {gw/gv= 1 25)
Force I
Force II

-0.196
-0.171
-0.197
-0.184

0
0

0.055
0.030
0.051
0.054

1.8

1.339
1.068

0.308 M {GT)
0.564

I
II
I
II

II

0.636
0.636

—0.512
—0.512
—0.976
—0.976

0.066
0.064

—0.138
—0.378
0.176
0.205

0.004
0.008
0.364
0.369

—0.009
—0.016

0.706
0.708

—0.286
—0.521
—0.809
—0.787

0.707
0.707

—0.315
—0.315
—0.647
—0.647
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So~ = 0.033 204 4—0.231 943 0 y + 0.638 528 y

—0.798 523 y + 0.380 975 0 y .

0.00

0.08—

We repeat that these structure functions comp1etely deter-
mine spin-dependent cross sections for any heavy Majorana
particle.

(/) P 04
V. DISCUSSION
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FIG. 2. The three K structure functions Soo (top), S„(middle),
and So, (bottom) as a function of momentum transfer squared. The
dotted lines are the single-particle functions, the dashed lines the
full functions obtained from the modified Bonn interaction, and the
solid lines the full functions obtained from the Paris-based G matrix
(see text).

Soo= 0 009 499 9—0.061 971 8 y+ 0.162 844 y

—0.194282 y +0.089 105 4 y,

S] ]
= 0 029 812 7 0 217 636 0 y+ 0 623 646 y

—0.814418 y +0.405 027 0 y,

in good agreement with experimental values. For the isovec-
tor operators, interaction II produces larger corrections and
poorer agreement with the experimental isovector magnetic
moment. But, although neither interaction reproduces the
Gamow-Teller P-decay matrix element well, interaction II
does better, and we recommend it for that reason. Compared
with Al, much smaller ad hoc quenching is required to
reproduce the measured lifetime; the correlations induced by
the core-polarization produce about two-thirds of the re-
quired reduction themselves.

Turning now to the WIMP structure functions in Fig. 2,
we see that all three are strongly quenched from their single-
particle values. The strongest quenching is in Soo(q), which
is reduced to 25% and 20% of the single-particle value for
the two residual interactions considered. Our preferred
choice, the solid line (corresponding to interaction II), is the
lowest in all three diagrams. The solid lines are accurately
reproduced by the following fourth-order polynomials in

y = (bql2):

What are the prospects for mica as a WIMP detectors At
present the limits that can be set on WIMP cross sections are
about 10 cm, [5] several orders of magnitude higher
than expected cross sections for neutralinos, which very
rarely exceed 10 cm in light nuclei [2,27]. But by ana-

lyzing more mica the experiments may reach the necessary
level of sensitivity within a few years. Because the efficiency
with which each element in mica can be detected when it
recoils is different, we cannot easily present an overall cross
section for a representative neutralino, as is the common
practice in the literature. But we note that the calculated
efficiencies [28] begin to increase at a recoil energy of about
20 keV, corresponding to a q of about 10 GeV in Al
and about 1.6X 10 GeV in K. If the 20 keV were a detec-
tion threshold, then as the curves in Figs. 1 and 2 show the
number of events below threshold would be a small fraction
of the total.

Whatever the precise characteristics of the detector, the
expected number of events can now be calculated by folding
the efficiencies together with the cross sections presented
here and with the Aux of WIMP's, which, unfortunately, is
still poorly constrained. But continuing work with the mica,
with complementary detectors, and with telescopes should
make it possible to rule in or out most hypothetical WIMP's
within the next decade.
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