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K-N S channel I=1,0 phase shifts as a direct measure of chiral condensation
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We study, in the framework of a QCD-inspired confining Nambu —Jona-Lasinio model, the I= 1;0, S-wave
K-N phase shifts for simple examples of chirally consistent microscopic potentials. The Dyson equation for the

scattering of the bound states K and N is solved. The equivalence between this equation and the resonating

group method equation is presented. The role of the chiral symmetry in the strength of the effective hyperfine

potential, simultaneously responsible for the features of K-N repulsion and the m —p mass difference, is

discussed.

PACS number(s): 24.85.+p, 12.39.Fe, 12.39.Pn, 13.75.Jz

I. INTRODUCTION

The studies of the E-N reactions have a long history dat-

ing back to the 1950s. Already, in 1953, Chew [1] realized
that it was absolutely necessary to spread out the region of
interaction (between a pion and a nucleon), or in other words
to introduce a cutoff in momentum space of the order of
450 MeV, if he was ever going to have meaningful results for
the m-proton cross section. With the prequark knowledge of
the time this cutoff was interpreted as an effective simulation
of a mixture of nucleon recoil effects together with some-
thing else which rendered the theory nonlocal. Four years
later this theory was extended to the study of low-energy
scattering of K+ particles by nucleons [2]. In this Chew-
theory approach for the E-N interactions one had a vertex
described as a direct product of a gradient coupling o. k in
ordinary spin space and an isotopic nucleon-kaon-hyperon
vertex. In the same year Schwinger [3] introduced a new
scalar meson cr which, in conjuction with the V-A theory of
the P decay and the Feynman-Gell-Mann [4] universality
hypothesis for the V-A theory, motivated a series of articles
on chiral symmetric Lagrangians for nucleons and pions in
terms of the phenomenological ~-N coupling constants and
the intervening hadronic masses [5].These Lagrangians were
built in such way as to have a mechanism of spontaneous
breaking of chiral symmetry which was held responsible for
the partial conservation of the hadronic axial current
(PCAC). Quarks were introduced in 1964 [6], and this
prompted 30 years of quark hadronic spectoscopy, up to the
present day, basically along two main lines which can be
summarized under the names of the naive quark model
(NQM) and bag model (BM).

The bag model story started with Bogolioubov [7] in the
late 1960s. Conservation of the energy momentum tensor for
the confined quarks led to the introduction of a phenomeno-
logical bag energy density together with a Lagrange multi-
plier of the type q-q at the confining bag surface. This last
term breaks chiral symmetry and soon it was realized [8] that
pions, as a fundamental field, should be coupled to the bag
surface if we were to have a chiral-invariant Lagrangian for
the bag model. The final step which led to the formulation of
the cloudy bag model (CBM) [9]was the recognition that the
quarks themselves should be dressed with pions and in this
way the pions were allowed inside the bag. By simple in-

spection of the obtained Lagrangian it was then possible to
rederive the Weinberg-Tomozawa result for soft-pion-hadron
scattering lengths [10].The CBM prompted a wealth of pa-
pers on pion-nucleon scattering [11]as well as on K-N scat-
tering [12]. The main conclusions were that a qualitative
agreement with the E-N experimental phase shifts was pos-
sible for a bag radius around 1 fm. This short summary il-
lustrates the connection existing between confinement, chiral
symmetry, and soft pion- (and kaon-) -hadron cross sections.
Naturally it is to be expected that this connection will con-
tinue to play a major role in any quark microscopic, chiral-
invariant, effective Lagrangian, with pions as q-q bound
states instead of as pointlike particles.

As for the NQM, notwithstanding its considerable phe-
nomenological success, it fails to accomodate in a simple
way the requirements of spontaneous breaking of chiral sym-
metry, i.e, PCAC. The solution of this inadequacy goes along
the lines first proposed, in analogy with the BCS theory [13]
of superconductivity, by Nambu and Jona-Lasinio [14] in the
framework of a Lagrangian with nucleons and pions. The
same theory can be formulated in terms of quarks and a
QCD-inspired quark microscopic potential and has been pur-
sued by several authors [15—20]. In what concerns the non-
exotic reactions, like for instance m-N reactions, where
quark-antiquark annihilation plays a crucial role in the ~-N
kernel, allowing for the S-channel exchange of three-quark
baryonlike intermediate states, these types of. theory lead to a
picture that, when seen as an effective meson-nucleon theory,
looks like the Chew theory, with effective K-N-hyperon ver-
tices and a cutoff naturally provided by the smallest size of
the intervening hadrons.

Exotic reactions like those studied in the present work,
where the antiquark s cannot annihilate with any of the
quarks intervening in the reaction, essentially involve five-
quark irreducible amplitudes without s-channel resonances,
which then can be thought as an effective K-N-K-N vertex
which lies outside Chew theory. This is one of the reasons
why, to our knowledge, the E-N exotic S-channel I= 1, 0
phase shifts have not yet been theoretically understood. This
is the more striking as these phase shifts provide a demand-
irig test for the effective microscopic q-q potential. K-N
scattering, being exotic on one hand, that is, without
S-channel q-q annihilation amplitudes, and on the other hand
having no T-channe1 exchange of pions (because of G par-
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ity), should constitute a "clean" reaction, to be described
solely in terms of overlap kernels and the microscopic quark
forces. In this respect K-N scattering is much simpler to
study than the ~-N reaction which is nonexotic; i.e., it pos-
sesses extra quark-antiquark annihilation amplitudes (which
are also naturally present in the Hamiltonian) on top of those
quark-antiquark scattering amplitudes already contributing in
K-N. It happens that these annihilation amplitudes do not
contribute to the K-N scattering amplitude. Second, in K-N
reactions we do not have to take into account the quasi-
Goldstone pion characteristics, which differ from the kaon in
one crucial point. The reactions where the kaon participates
can be well described with just one Salpeter amplitude for
the kaon (the so-called positive E-spin amplitude), the nega-
tive E-spin contribution being much smaller ( —10%).The
same considerations do not apply to the pion. Its negative
E-spin Salpeter amplitude is similar in strength to the posi-
tive E-spin amplitude and in this case we had to take into
account, just for the diffractive part, at least four different
~-N amplitudes instead of just one in the case of K-N scat-
tering. Finally, as consequence of the quark-antiquark anni-
hilation amplitudes, we still have to consider the intermedi-
ate s-channel N resonance in order to have an "accurate"
picture of the physics involved in ~-N scattering, which we
can see to be clearly more complicated than the K-N reac-
tion. More generally, in hadronic reactions the strong inhu-
ence of the mechanism of spontaneous chiral symmetry
breaking is self-consistently exerted in two separate sectors:
in the asymptotic Salpeter amplitudes of the intervening had-
rons and in the effective modifications it introduces in the
quark-quark microscopic potential. In K-N scattering, due to
the presence of a strange quark, the former of these two
sectors is rendered trivial and we therefore could concentrate
on the effects of chiral symmetry breaking in the micro-
scopic potential. Once this study done, we could then turn to
the effect of more complicated Salpeter amplitudes; that is,
we can go from the kaon to the pion. In this respect, the
present calculation can be regarded as a stepping stone to the
more elaborate ~-N calculation.

Because the overlap kernel contributions to the total K-N
force get mixed with the q-q force, it is important to be able
to disentangle these two types of contributions in order to
isolate- quark dynamics from the "Pauli forces. "For this pur-
pose we used some years ago [15] a general method which
allowed for the separation between dynamics and these geo-
metrical overlaps. This method allowed for a systematic
study of, at that time, popular quark potentials [21]. The
conclusions were that K-N phase shifts could not be ex-
plained by the interplay between the Pauli principle and
quark-quark interactions fitted to the spectroscopic sector.
Not only did the sizes of the intervening kaon and nucleon
turn out to be too big but also the strength of the microscopic
hyperfine force appropriate to fit the hadron spectroscopy
was much larger than needed to describe the K-N repulsion.
Therefore, if we insisted in getting the spectroscopy right, we
got far too much K-N repulsion. Conversely, if we fixed the
K-N repulsion, we got, in the framework of an effective
nonrelativistic Hamiltonian, hyperfine splittings which were
much too weak. All in all the naive quark model (NQM) KN-
phase shifts were bad. Of course it was known that the physi-
cal nucleon had more to it than to be a simple three-valence-

quark bound state. The Nm and A~ virtual channels were
bound to force down whatever three-quark nucleon bare
mass we found which in turn meant that this mass ought to
be larger than 938 MeV [22].And a larger bare mass would
have implied a small bare nucleon size. How big should this
mass be we could not really know because in the NQM we
cannot theoretically treat quark-antiquark pair creation or
have (in the same theory) any means to describe the pion.

As we already said this failure of the constituent quark
models could be anticipated because all these models miss
the physics of spontaneous chiral-symmetry breaking (y SB)
which is a basic tenet of strong interactions. From the point
of view of y SB the K meson does not differ too much, with
the notable exception of its negative energy component, from
the quasi-Goldstone pion and therefore it is only natural to
expect the chiral condensate to inhuence the K-N phase
shifts, this being mainly due to the presence in the kaon of a
light quark. In fact it is a double inhuence because the phys-
ics of chiral symmetry also forces the nucleon to be far from
being a simple three-quark bound state squeezed as it is by a
pion cloud (which is largely invisible to the K meson be-
cause of G parity). In other words the kaon will act as a
probe for the bare nucleon component of a multichannel
physical nucleon. Therefore because the size of the partici-
pating hadrons is important in the evaluation of phase shifts,
we must resort to a specific field-theoretical model if we
want to study the K-N scattering. At this stage and in order
to better understand the physical issues involved, extracting
them from a background of already quite extensive calcula-
tions, we feel that it is important and perhaps essential to
study relatively simple dynamical models not only consistent
with the requirements of y SB, but still able to give a fair
spectroscopy of light mesons. Furthermore, in these models
it is quite easy to turn on and off the mechanism responsible
for the y SB, and to see whether, and how much, this affects
the phase shifts. Finally, we still have to compare several
such models in order to distinguish the general physical is-
sues from the particular details of a given model. For this
matter we considered the cases of the harmonic and linear
confining quark potentials. By contrasting the results of these
two cases, we could understand the K-N phase shifts in
terms of two simple (and related) parameters: the size of the
bare nucleon and the extent of the chiral condensate. With

y SB on, the K-N phase shifts turn out to improve substan-
tially over those obtained in the NQM. On the other hand, if
we turn off the y SB, we see a dramatic change in the K-N
phase shifts. We organize the remainder of this paper in five
sections and three appendixes. Section II is devoted to a brief
description of the microscopic model we will be using. In
Sec. III we introduce the Dyson Bethe-Salpeter equations
both for mesons and baryons consistent with spontaneous
chiral symmetry breaking. Next, in the Sec. IV, we discuss
the derivation of the resonating group method and its appli-
cation to th K-N scattering. In the last section we present and
discuss the results. Finally we have three appendixes which
contain the material needed for Sec. IV. Appendix A is de-
voted to outline the derivation of the resonating group
method (RGM) equation from the Dyson series for the KN-
5 matrix [16].In Appendixes B we discuss the evaluation of
the spin-flavor overlaps [15] and in Appendix C we present
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the graphical rules [23], necessary for the evaluation of space
overlaps.

II. QUARK MODEL
WITH CHIRAL SYMMETRY BREAKING

The microscopic quark forces we will be using have been
extensively studied [17,18,20]. Here we present the basic
ingredients of the model. First let us introduce the Hamil-
tonian of the model which is

H= d x[HO(x)+HI(x)]

spinors whereas for massive fermions and for all momenta
small enough we have y= m/2, and, for this region of mo-
mentum, Eq. (5) becomes a formal identity.

It is worthwhile to digress a little on the physics behind
chiral symmetry spontaneous breaking which hinges essen-
tially on this liberty we have in choosing the fermion Fock
space. It turns out that the Hamiltonian defined in Eqs. (1)
and (2) is invariant (for m~ = 0) under the global symmetry,
lnvolvlng

0' —+exp( —in'T'y5)%, 'Ij'—+'Ifexp( —in'T'ys). (6)

To this symmetry we associate the axial charge Q5,
where Ho is the Hamiltonian density of the Dirac field, and

H~ an effective interaction term, Qs= ] d x 'PypysT"P (7)

Ho(x) = Pt(x)(m P —in 7') P. (x),

ya
H(x)= —.

' d'y V(x—y)0(x) 2
7"A(x)A(y)r'

yax— (2)

Now, using the spinors of Eq. (5) we obtain, for the axial
charge,

Q,'= d'pg cosy(p)(~ p) „,b'(p, s) T'b(p, s')
rSS

harmonic

V(x) =Kux,

linear

K,'/x/.

The k"s are the CJell-Mann color matrices. For V~(x —y) we
study both the harmonic and linear confining potentials:

+ siny(p) p,„bt(p, s) T'dt( —p, s')
—siny(p) p, ,b(p, s) T'd( —p, s ') + cosy(p)

X(o p)*,d ( —p, s')T,d( —p, s),

where p,„ is the pion spin matrix,

With these choices, partly motivated for calculational sim-
plicity, we still obtain a not too unreasonable charmonium
and bottomonium spectroscopy while being able to keep the
masses of the ~, p, and the E meson at their physical values
[17,18,19].In Eq. (2), the field operator Pf, (x) is defined as,

d p
Pf, (x) = „z[u,, (p) bf„(p) + v, (p) df„(—p)]e'

(4)

b and d are, respectively, the quark and antiquark Fock space
operators and they carry indices for flavor, spin, and color.
Summation over repeated indices is used throughout this pa-
per. The spinors u and v and the Fock space operators differ
from those used in free Dirac theory. For u, and v, we have

1 1 1

u, (p)= t[I+siny(p)]&+[1 —siny(p)]&p a)u,
2

1 1 I

v, (p) = ([I + siny(p) ] 2 —[1—sin y(p) ] ' p n) v, ,
+2

(5)

where u, and v, are spinor eigenvectors of yo corresponding
to eigenvalues ~ 1. The function y(p) is called the chiral
angle and indexes the different Fock spaces compatible with
the Pauli principle. This chiral angle has been studied in
Refs. [17,18]. It should be stressed that in the limit of zero
current quark mass and zero potential (which means

y = 0), expression (5) yields the usual massless Dirac

—1 0

Q, io) co, [Q, ,H]=o. (10)

When we apply this commutator to the new vacuum it is
straightforward to see that the only nonzero contribution for

Q5 0) is provided by the anomalous term of Qs which is
none other than the composite operator for the pion creation.
Then at the BCS level Eq. (10) implies that the pion mass
must be zero. This is indeed the case when we solve the
corresponding Salpeter equation for the pion [18,17,20]. As
expected the ~ relative wave function turns out to be given
by siny(k). Finally the nonanomalous terms of Q& simply
describe the g„=cosy coupling of quarks to pions. Only in
the case of the usual Fock space (y=o) do we have that

Qs annihilates the empty vacuum.
Although the actual functional form of y~~~ may vary,

depending on the interaction details, the mechanism de-
scribed above is general: Any Bogolioubov (canonical) trans-
formation on the Fock space of the creation and annihilation
operators can be cast as a rotation through an angle y/2 and
this fact together with the invariance of the field operator

under these transformations produces a corresponding

It is obvious from the inspection of this equation that for non
vanishing y(p) we get Bogolioubov anomalous contribu-
tions for Q5. This fact alone allows us to implement the sine
qua non condition for spontaneous symmetry breaking (in
this case of chiral symmetry):
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counterrotation on the spinorial basis. This is enough for the

Q5 to acquire an anomalous term going like sing, the pion
wave function.

In terms of the Fock space operators, the Hamiltonian
becomes

1.0

0.8

H=H2+H4,

Hq= d k E(k)[bf"„(k)bf~c(k)+df„(k)df„(k)],
0.4

0.2

(

H4= dp —d k d qV(q)2 J 4 J

4

&& g:0',. , (p, p+ q) 0,', (k, k —q):.

0.0

-0.2
200 600

k [MeV]
800 1200

The two terms H2 and H4 have been normal ordered. The
normal ordering of the potential energy operator introduces
self-energy terms, already included in H2, which contribute
to the quark energy E(k):

E(k) =A (k) sing(k) +B(k) coscp(k),

2 f d p
A(k)=mq+ —

s V(k —p)stny(p),3 J 27r

2 " d p
B(k) =k+ —

3 (k p) V(k —p)cosset(p) . (12)
3 J 27r

There are also constant terms arising from the normal order-
ing of both the kinetic and the potential energy operators.
Their sum yields the energy of the vacuum condensate.

As for H4, and after summing over the indices j and l,
we get ten different terms which can be cast as combinations
of four vertices 0'.

o',', ,(p, p')—= ~', (p')u, (p) bf, , (p')bf-(p)

o'
'

(p, p')—= —U', (p')U, (p) df, .( —p)df, . ( —p')

0, , (p, p )=B,(p )U, (p) bf, (p )df, ( p),

o',', (p p') —= U', (p')u, (p) dfs'c'( p')b f c(p)— .

(13)

For the kernel H4 we can use the Ward identity [24,20] to
obtain, at least at the BCS level, the so-called mass gap
equation

A (k) cosy(k) —B(k) sin&@(k) = 0 (14)

which defines the chiral angle q&(k). Alternatively we can
find the minimum of the vacuum energy in terms cp(k).
These two methods yield the same mass gap equation.

III. BOUND STATE EQUATIONS

In Ref. [17]we studied the light quark mesons, and have
shown that the negative energy component of the wave func-
tion is only relevant for pseudoscalar mesons which play the

FIG. 1. K S-wave functions for harmonic and linear potentials
in arbitrary units.

role of the Goldstone boson when m =0. For quark or anti-
quark current masses bigger than a given scale, which de-
pends on the strength of the particular confining potential
used, we can neglect this negative energy component. This is
the case for charmonium. In the case of the K meson, which
corresponds to an intermediate case with a strange quark
mass of the order of few tens of MeV, the negative energy
wave function to turns out to be small (less than 30%) when
compared with the corresponding positive energy component
whereas in the case of free nucleons this negative energy
component simply does not exist. Although there is in the
K-N system a transition potential connecting the K positive
energy wave function component to its negative counterpart,
it contributes to the K-N scattering with the square of the
ratio of these two wave function components and this
amounts to a multiplicative factor of the order of 10% on top
of the fact that this transition potential is weak. Therefore in
K-N scattering we can discard, both for K and N, these
negative energy components and the bound state equation
can be simply written in the form

H
~ P) = M

~ P)

where
~ P) is an eigenstate of the Hamiltonian, with mass M.

Here we report on our results for bare E and N, i.e.,

without coupled hadronic channels. Hence, we do not con-
sider those vertices which create or annihilate light q-qpairs.
These diagrams contribute to the self-energies of the exterior
hadronic legs and their net effect is to contribute with a nega-
tive shift of the respective bare masses towards the physical
masses. Although this constitutes a small correction to the
kaon mass, it is not so in the case of the nucleon [22]. For-
tunately it is sufficient to have a consistent order of magni-
tude for the bare nucleon mass. This is due to the fact that the
kaon probes essentially the bare component of the physical
nucleon.

A. E meson

Disregarding the negative energy channel, we can write
the general mesonic creation operator as
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+m d p~(pl +p2) P(pl p2) Xf(f2s s bf s c(pl)df s c(p2)

The one-quark part of the Hamiltonian, Eq. (11), acting on the meson states returns

Hzq' I0) —
] d p~(pi+P2)IE(pi)+E(p. )]W(pi P2)Xf,f...,, bf...,(pi)df'. ..,(P.)l0) . (17)

Because in general the quark current masses can be different, their corresponding kinetic energy E(p) may be different; i.e.,

different flavors lead to different chiral angles. Therefore we use the notation E(p) [E(p)] for one of the quarks [antiquarks]
involved in the microscopic scattering. The same is true of the spinors u and v which also depend on the chiral angle;
consequently, we will use U for the second vertex in the potential.

Only one of the ten terms in H4 connects mesonic positive energy states with themselves, namely, the term

:0',',. (p, p')0, , (k, k'):= —ut (p')u, (p)U", (k')U, (k)bft, , (p')df, , ( —k)df, , ( —k')bf, , (p)

When the corresponding part of H4 operates on the meson state the result is

H4+" Io)= —
3 Xf f, , d /p d q8(p, +p2)V(q) P(p, —q, pz+q)u, (p, )u, (p, —q)U, ( —

pz
—q)U, ( —p2)

&& bf'...,(Pi) df'...,(Pz) l
0) (19)

The bound state equation is obtained from (17) and (19),

4 f
[M —E(k) —E(k)]Xf f, , @(k)= —— d q V(q)[u," (k)u, (k —q)ut (k—q)U, (k)]Xf f, , P(k —q) (20)

where @((p—p')/2)=— P(p, p') ~~+~ o. With the negative energy channel excluded, this equation coincides with the Salpeter
equation for mesons.

With the harmonic potential it is simple, starting from (20) to obtain a second order differential equation for the K S-wave
function,

q&' (k)+ q' (k) sing(k) sing(k) —1
2 + M E(k) E(k)—— — + (21)

In this last equation all momenta, energy, and masses are given in units of (4/3)" KH . P(k) represents the reduced K S-wave
function. This equation can be solved using the numerical method of Ref. [17].For the linear potential the derivation of this
equation is far more complicated and we now get, for the So mesonic bound states, an integro-differential equation instead of
the simple differential equation of Eq. (21):

2k' I- 2k'
[E +E ]@ — dk 2 2 2 f[(1+Spq)(1+Sq )(I +S(pg)(l +Scpq) ][2(1—Srpq)(1 —Syq)(I —S q&g)(1 —S yg)]'j37r Jp q

—k

q+k
&+q2 2 ln

k —
q I

&&4k+ dk + 2 2 2+ 2 t[(1+Spi)(1+Scp )(1—S cp~)(1 —S q&q)]'+[(I —S(pI)(1 —Scpq)37r go 2q q
—k 2q

&&(I+Sq&)(1+Sq )2]) &P„=MC, , (22)

where for instance Sq&„stands for sin[q(k)]. 4&k represents
the 'So mesonic wave function; k is the quark-antiquark mo-
mentum. In Fig. 1 we show two solutions for the kaon wave
function, one for each of Eqs. (21) and (22). The correspond-
ing potential strengths are given in Eq. (45).

B. Nucleon

The formalism used to derive the bound state equation for
mesons can be easily generalized to bound states of three

quarks. As was already mentioned the wave functions of
baryons have no contribution from negative energy channels.
Furthermore, in this paper we will restrict our treatment to
baryons with quarks of the same current mass, leading to
only one chiral angle p, the same dispersion relation E(p)
for the three quarks, and only one set of spinors u in the
vertices 0. We will also restrict the baryonic wave function
of the nucleon to the simplest S-wave configuration, and dis-
card, in what this paper is concerned, coupled channels
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which means that we will be considering bare nucleon
masses rather than the pion-dressed physical masses. It turns
out that typically the nucleon bare masses are a few hundred
MeV larger than the physical masses. As we said this consti-
tutes a reasonable approximation because the kaon is quite

insensitive to this pion cloud and probes the bare nucleon
which when seen as the bare component of the physical
nucleon (with the right experimental mass) has a smaller size
than the physical Nucleon.

Then, the creation operator for baryons has the form

+b d p ~(pl+ P2+ P3) P(pl «P2 «P3) c c2c3 Xflf2f3sls2s3bf, s c (Pl)bf2s2c (P2) f s c (P3) (23)

The anticommutation relations for the quark operators ensure antisymmetry as required by Pauli exclusion. Since the color part
of the wave function, E. .. , is completely antisymmetric, the fiavor-spin-momentum wave function Xlts can be taken to be

2 3

symmetric.
The one-quark part of the Hamiltonian acting on the baryon state gives

H2q bio) — d'p 6(pl+p2+p3)[E(pl)+E(p2)+E(p3)]

P(pl «P2 «P3) ~c&c2c&Xf&f2f3s&s2s& f1slcl(P1) f&s2c2(P2) f&s&c&(P3) Io)

Without coupled channels, we have only to consider the following vertex product in the interaction

:8,', (p, p')0,', (k, k'): =u, (p')u, (p)u, (k')u, (k)bf, , (p')bf, , (k')bf s c (k)bf s c (p) (25)

which leads to

f
H4%'„l0)= —2E Xf f f d p d q8(p, +P2+p3)V(q)P(p, —q, p2+q, p3)

(pl)u. (Pl —q)u. ', (P2)u, (P2+ q)]bf, , (pl)bf, . (P2)bf (p3)lo) (26)

The resulting bound state equation for baryons is

[M —3E(pl)] X...,,, 0(pl P2 p3)

f
d'q 1'(q) [u,', (Pl)u, ,(pl —q)u. ',,(P2)u, ,(P2+q)]X....,,,O(pl —q P2+q, p3), (27)

with p, + p2+ p3 =0, for any fiavor indices in the function X. As in the case of mesons, Eqs. (21), (22), the potentials defined
in (3) lead to the following differential equations:

harmonic

d (k4)
+ 2kcos(y)—

cos(y) 2[1 —sin(y)] 2+, (kC ) = —M(kC ), (2g)

linear

2kl t 4q sin[@(q)]
kcos[y(k)]C (k) — dq 2 2 2 C (q) — . 4 (k)

2m Jp q
—k sin y k

3'7T g p

ln
qcos[9 (k) —V(q)] qcos[0 (k)+ ~ (q)]

k(q —k) k(q —k)

k+q
q

—k
«sl:~(k)]cos[v (q)] [@(q)—+(k)]

4k', 1
+ dq 2+9m]o k

k+q
(k +q )ln

q —k

2k q

2M
(1 —sin[q&(k)]/(1 —sin[y(q)]$41(q) = 4(k), (29)
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where 4 represents the quark wave function inside the
nucleon. In Fig. 2 we plot the solutions of Eqs. (28) and (29)
for the parameters of Eq. (45). We can see that for the same
nucleon bare mass we obtain a much larger nucleon core in
the case of the linear confining potential than in the harmonic
case.

C. Quark kernels

The bound state equations (21), (22), (28), and (29) re-
semble Schrodinger equations with effective spin-spin inter-
actions. However, all of these interactions have been derived
from a single potential term of the Hamiltonian, and contain
the "same" information of the chiral angle: for mesons,

d'q V(q)[ut (k)u, (k —q)v, (k —q)v, (k)]3 J
(30)

for baryons,

2
d q V(q)[u (pt)u, (p, —q)u, (p2)u, (p~+q)] (31)

In what follows, we will only consider the hyperfine interac-

tion. It corresponds to the effective S ~ S interaction: har-
monic,

A A

p;. pj
V;, = [1—since'(p, )][1—sing(p j)]S; S,

P IP)
(32)

linear

f oo 1

Jo

k+q
(k +q )ln

q
—k

2k q
(1 —sinqk)

X(1—sincp~)S; S, (33)

At this stage it is important to emphasize the conclusions of
Ref. [19].It is the fact that these interactions act in a space
given by the direct product of the SU(2) representation for
the spin and another SU(2) representation for the F spin, the

latter being necessary to accommodate the negative energy
components of the Salpeter mesonic amplitudes, which al-
lows for a small hyperfine potential but still responsible for
the p —~ mass difference. This is a consequence of the spe-
cial status of the pion as a Goldstone boson and does not
depend on the actual form of the microscopic potential pro-
vided it supports spontaneous chiral symmetry breaking. The
above kernels can be thought of as a dynamical translation of
this symmetry requirement through their explicit dependence
on the chiral angle. This, together with the question of had-
ronic sizes, is crucial to understand the E-N phase shifts.

IV. K-N RGM EQUATION

For pure S-wave asymptotic hadron clusters we will only

be needing the S.S-type forces. The spin-orbit and tensorial
forces, which are responsible for angular excitations, will not
play a significant role in the low-energy elastic K-N S-wave
phase shifts or, for that matter, the spin independent forces.

To study the K-N elastic scattering, we make use of the
appropriated RGM equation [25] which, in turn, can be
traced back to the Wick ordering of quark fields, and it is
given by

1.0

(KN~(H F)W~KN~(Z)) =O, —

M= (1 —3H~' )(1+&~~), (34)

0.8

0.6

0.4

0.2

0.0

-0.2
0 600

k IMev]
1000 1200

FIG. 2. N S-wave functions for harmonic and linear potentials
in arbitrary units.

where the first quantization operator M~ stands for the anti-
symmetrizer; M' forces the interchange of quark 1 E
N(1,2,3) with quark 4+I'(4,5) and .Hz~ forces the inter-
change of clusters E and N as a whole. The coordinate rep-
resentation of the kets ~K) and ~N) is given by the respective
Bethe-Salpeter (BS) amplitudes in the spin representation. H
and F stand, respectively, for the total Hamiltonian and en-
ergy. See Appendix A for the derivation of Eq. (34).

It is worthwhile to emphasize that the RG method, first
introduced by Wheeler as a variational method solely based
on a specific choice of a many-body trial wave function, can
be entirely cast in second quantization formalism without
resorting to the use of the exchange operators M~~ j. In other
words, the RG method is the first quantization integro-
differential equation we obtain when we solve, in field
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theory, the corresponding Dyson equation for bound state
scattering. Equivalence between these two methods is
achieved once we use BS amplitudes for the asymptotic
bound states (instead of ordinary wave functions) together
with the corresponding BS kernel for the RGM potential

V(q;q, ) and the quark energy E(k) that we obtain when
solving the mass gap equation. Then, to describe the K-N
scattering, it suffices to use the RG method with the kaon
and the nucleon represented by the corresponding Salpeter
amplitudes which are, respectively, the solutions of Eqs.
(21), (28) for the harmonic potential or the solutions of Eqs.
(22), (29) for the linear case. For the quark free Hamiltonian
we use the E(k) of expression (12).Then the Hamiltonian of
Eq. (34) is simply given by the sum of the quark free Hamil-
tonians F(k;) plus the sum of all q;-q, kernels of expression
(32) or (33). In this way we ensure that our calculation of
K-N scattering is fully consistent with the requirements of
spontaneous chiral symmetry breaking.

In turn, from Eq. (34) it is straightforward to deduce the
associated Schrodinger equation

J=O'

10=

~~op

3

7~op
9

w„=&c IV„Ie). (38)

And we see that in terms of 'P it is simple to obtain the
associated S-wave K-N effective potential VI.

V, = v /(1+ o-),

7~op 7 ~pp
I I= (0,1). (39)

Finally the isospin-dependent K-N scattering lengths az are
simply given by

I:(Tt+ T2 —&~)(I+~l 4') &+ I)+ v
I
@)&+'I] lx) =0,

1 4vrp VI
I

o. +4m2 p, VI
(40)

v
I
C') &@ I

= «&I
ij; i eEj EN

(35)

where p, is the reduced mass of the K-N system. For instan-
taneous interactions this expression is absolutely general.

V. RESULTS AND DISCUSSION

In general U and o. are matrices associated with the spatial
excitations of the asymptotic clusters. For ground states they
are c numbers (see Appendixes B and C for a guide in cal-
culating these numbers). They also depend on the isospin
channel we are considering and are given in Eq. (38). Within
each of the microscopic potentials studied in this work, both
the kaon BS amplitude and the three-quark BS component of
the nucleon wave function are, to a good approximation,
given by the ground state harmonic oscillator wave function

with the same string constant u which coincides with the
inverse radius of the nucleon.

It is convenient to use I'P) =
I

I + o.
I 4)&4 ] I y) instead of

Ig). They yield the same phase shifts but it is much simpler
to work with I'P). We have

We have seen that the Salpeter equation provides an alter-
native and equivalent way of finding the pion wave function
(and indeed all other quark bound states of the theory). The
sizes of all these bound states will be similar and related to
the potential strength which constitutes, together with the
current quark masses, the only existing scales of the model.
Therefore we can establish a link between the bare sizes of
the hadrons and the extent of the chiral condensation. The
details may vary depending on the particular form of the
interaction but this self-consistent link, ensured by the mass

gap equation, is generic. In particular the size of the bare
nucleon is approximately the same as the size of the pion.
This link can be written as

f oo

&PP) = —
2 dkk sin(cp),

gp
(41)

1
Go= (36)

where sin(cp) is the pion wave function. We can parametrize
this function as

/
2 2

sin(y) = e (42)

Ik) represents the free plane wave with momentum k. I%')
can be solved to give

Ie)= /)+G, ~gk),

v /(1+ o.)
I —&+IGOI@)v /(I+~r) (37)

is the T matrix. Then, the phase shifts are given by
Bo = arg&~(on mass shell). We have

to obtain a simple expression relating the bare size of the
hadrons and the quark condensate,

n = —~sr(4& Pt/I)/3) 3. (43)

The accepted literature-average value of the quark conden-
sate is ( —250 MeV) which yields a=500 MeV.

Next we choose to fix the potential strengths KH (har-
monic) and ICI (linear) as to give the same value for the bare
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nucleon mass m~ which we know to be larger than its physi-
cal counterpart by hundreds of MeV. This difference is a
consequence of the coupling to N~ channels which consid-
erably lowers the bare mass. A fairly independent model [22)
puts this shift at ( —300,—400) MeV. Some time ago we did,
for the quadratic potential, a thorough calculation of the p
mass negative shift due to pion coupling [16].We also found
it to be of order of —400 MeV. A complete calculation of the
physical nucleon mass, including the N~ channels will be
even more involved but unnecessary since it suffices to have
an order of magnitude for this shift. It happens that in the
nucleon case, and for the same parameters used in the p
calculation, this shift should be somewhat larger than in the

p, because there are more diagrams for the (N~ AN) coupling
than for (p~7r7r) Ther. efore we expect a somewhat larger
negative shift for the nucleon at around —500 MeV. So we
make an educated guess for the nucleon bare mass to be
1500 MeV. The picture for the nucleon which emerges from
this class of models is not dissimilar of that provided by the
chiral bag model: a small nucleon core surrounded by a pion
cloud. This bare nucleon mass is consistent with a mean
radius of =0.4 fm, about one-half of the electromagnetic
mean square radius, which does not differ too much from the
cuttoff of 450 MeV already quoted in Chew's paper [1].
Moreover the bare 5 —N mass difference 6&z is simply
given by

my m~ — Wpp. (44)

To have this bare nucleon mass we must set KB=408 MeV
nd PL=492 MeV.

At this stage it is important to point out that the question
of obtaining a correct f is strongly connected both with the
question of the nucleon core size and a covariant description
of the quark potential. With our relatively small size for the
nucleon bare wave function, necessary to obtain a reasonable
K Nscattering le-ngth, we obtain a f of around 40 MeV as
compared to usual value of 20 MeV quoted in the literature
[18], which is obtained using bare hadrons. The importance
of considering ~-N coupled channels lies in the fact that now
we are forced to raise the potential strength in order to obtain
the correct hadron spectrum and this fact alone improves

0.0

0

-0.2-
harmonic

-0.4

Vi'

CO

-0.6 linear

-0.8-

-1.0
100

I

200 300
klab [MeU]

500

FIG. 4. I=0, 5-wave K-N phase shifts for the harmonic (solid
line) and linear potential (dashed line). The experimental data are
represented by circles.

Next, with these values for EH and Kl and using Eqs,
(38), (42), and (43) we can obtain the following values for
—T()p, and n:

0.0

-0.2-

f noticeably. Admittedly this value falls short of the experi-
mental value of 90 MeV. However, it should be stressed that

f is very sensitive to the ratio of positive to negative E-spin
energies of the pion. Horvat et al. [18], using a covariant
description of the same microscopic potential and still with-
out considering coupled channels, found an f = 34 MeV.
Therefore it seems probable that taking into consideration
both these effects, covariance of the potential together with
m-N coupled channels, will bring a very reasonable result for

-0.4

ll

CO

-0.6

aive QM -0.8- &
linear

0 S

100 200
v [MeV]

300 -1.0
100 200 300

k lab lMeV]
400 500

FIG. 3. The positions of linear, quadratic, and naive quark
model in the plane defined by the inverse nucleon radius u versus
the hyperfine potential strength v. The curve where the experimen-
tal K-N scattering lengths are reproduced is also shown.

FIG. 5. 1= 1, S-wave K-N phase shifts for the harmonic (solid
line) and linear potential (dashed line). The experimental data are
represented by circles.
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-04 .
FIG. 7. Examples of interaction diagrams contributing to the S

matrix of the K-N system.
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ki» [MeV]

k

400

FIG. 6. K-N S-wave phase shifts with ySB turned off as com-

pared with the experimental values.

model harmonic linear

0.49KH(200 MeV) 0.67KL(180 MeV)

u 1.23KB(500 MeV) 0.73rtl(210 MeV)

6g~ 200 MeV 180 Me V.

(45)

The effect of coupled channels should also contribute to
the physical 6 Nmass differenc-e. In Ref. [22] this contribu-
tion is set to (100—200) MeV.

From Eq. (40) it is simple to obtain the elastic I= 1,0 ICN-
ratio for the scattering lengths,

Ql —
1

&I=a

Vi ~3 5
Vo

(46)

in good agreement with experiment. Now if we use the

physically correct I= 1 K-N scattering length of 0.32 fm in

Eq. (40) we obtain a relation between n and Pos allowing us

to characterize several quark models as it is done in Fig. 3.
From Fig. 3 it is clear that the naive quark model is bound

to fail to reproduce these scattering lengths no matter which
parameters we might use. This is due to the fact that in the
naive model Woo and n are fixed, respectively, by the experi-

mental 5 —N mass difference and the inverse electromag-
netic radius of the nucleus. It turns out that this yields a
much too large scattering length al. The experimental scat-
tering length can only be reproduced for smaller Woo and
larger n. This is precisely what spontaneous ySB does. We
require much less hyperfine splitting, maintaining at the
same time a strong ~N coupling. As for the linear confining
potential it yields a relatively large nucleon and a small chi-
ral condensate. Therefore it should not come as a surprise
that in this case we are, for all hadronic phenomena other
than the pion mass, closer to the naive quark model and,
therefore, the associated K-N phase shifts should become
worse.

For the l=0; 1 S-wave phase shifts see Figs. 4 and 5. For
the quadratic potential the theoretically obtained phase shifts
turn out to be quite reasonable, the more so because they
strongly depend on the chiral angle which in turn is obtained

by solving the mass gap equation. This is not so in the linear
case where we found quite large (negative) phase shifts. This
result could be antecipated from Fig. 3. The linear potential
only supports a small quark condensation and produces rela-
tively bigger bare nucleon radius. To see the influence of the
chiral condensation in the E-N phase shifts it suffices to turn

off the mecanism for ySB and plot the resulting phase shifts.
This we have done in Fig. 6. for the harmonic case which
gave the results closest to the experimental ones. We ob-
tained quite negative phase shifts. Of course in the linear
case the effect of turning off the ySB would have made the
resulting phase shifts still more negative.

APPENDIX A: THE RGM EQUATION

See Fig. 7 for examples of the diagrams we have to con-
sider for the K-N system. These diagrams can be divided
into several classes such as any two diagrams of a given
class must commute. If we do not consider quark exchange,
the 5 matrix for this system is simply given by

~KN . g +~ ~ICN ~

of all irreducible diagrams of Fig. 7

of the product of all pairs of commuting diagrams

+g of all triple products of commuting diagrams (A1)

In Eq. (Al) we denote by g the the product of the five free quark propagators,
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Gq & Gq2 Gq3 Gq4 Gq5 (A2)

The mass. gap equation provides a key ingredient to the
evaluation of Eq. (Al). It allows the separation of the quark

free Feynman propagator (pf, (x) pf, (x)) into two separate
propagators, one for quark fields Q(x) and another for the
antiquark fields AQ(x),

Next, if we allow quark exchange (which corresponds to
consider all the Wick orderings) we have, for the complete
K-N quark free propagator,

~= (1 —~c"—~' —~') (1+&~+)

llif, (x) = Qf, (x) +A Qf, (x),
GKN=-~ g (A5)

d p
Qf, (x)=,,2,, 3~2 u, (p) bf„(p),j2~j

Gg(X) —X2) =(Qfc(X&) Qfc(X2)),

( ~fc(XI ) ~fc( 2) ) (Qfc(X& ) Qfc(X2) )

(~ Qfc(xt ) ~ Qfc(x2)), (A3)

where G&(x, —x2) is the quark propagator. This a direct con-
sequence from the fact that the mass gap can be understood
as a diagonalization condition on the Feynman propagator,

(pf, (x) pf, (x)), as it is depicted in Fig. 8. Upon integra-
tion in the energies fiowing in the propagators Gq' we also
find

SKN GKN+ '~ SKN . (A6)

has already been defined in Eq. (Al). Multiplying Eq.
(A6) by GSz~ we obtain

(1 —.&)S „=Mg. (A7)

where the so-called exchange operators 9 are introduced to
keep track of the Wick orderings. 9KN corresponds to the
exchange of quark content of K and N as a whole. The
operator, A is the antisymmetrizer.

Now, with quark exchange, the Dyson equation for the
SKN matrix is

E—E —EK N
(A4)

It can be shown with all generality that

Sx~= y)~N(1, 2,3) K(4,5)) (K(4,5)N(1,2,3)~(y~,
K N

where y represents the K-N relative motion and ~K) and ~N) stand for the Salpeter wave functions for the K and N.
Substituting Eq. (AS) into Eq. (A6) we can obtain

H= EK—EN —A

(N(q 1 q2 q3)&(q4 qs) +(&—H) l&(q4 qs)N(q & q2 q3)) Ix) = o, (A9)

which is known as the ROM equation. H is symmetric in all
quark indices and therefore, A commutes with H which in
turn allows us to write Eq. (34).

where Df, ,Ff, stand for the mixed symmetry Yamanouchi
symbols, D and F, respectively in Aavor and spin space.
Explicitly,

APPENDIX B: COLOR FLAVORS SPIN OVERLAPS

Antisymmetry of the nucleon wave function and the fact
that it is a color singlet force us to to write the flavor spin
(aspace wave function as a completely symmetric one. We
make the (negligible) approximation of having a symmetric
wave function for the direct product of fiavor spin. In prin-
ciple we could have more complicated configurations but
they would correspond to excited states of the nucleon and
are not expected to contribute for the low-energy K-N scat-
tering. Therefore we have

1
Vs„„~,p,„~,p„,(123)= (DfD„+FfF,)S(123),

2
(B1)

1
D."p,.= (l T T+ T l T

—2T T l),
6

1
F."p,.= (l T T

—
T l T)

2
(B2)

S(123) stands for a symmetric space wave function and the
same for .F&„„,D&„„provided we make the substitutions
T~u, l~d in the case of protons and T~u, l~ —d in the
case of the neutrons. The kaon wave functions we will be
needing in this paper are
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K

H. C. + V+
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FIG. 8. Quark (antiquark) propagator before diagonalization.

1
(Tl —lT),

2

1
(Tl —lT) (B3)

The total wave function, when projected in the appropriate
isospin channel, is given by

For the fIavor it is simpler to use the wave function explic-
itly. We get, for I=(1,0),

(FKIA IFK) =(1, 1), —

(DKI &"4IDK)I= ( l.1) (B7)

Putting everything together we finally get, for o.,

~=(K N13&&'N K),

FIG 9 Redrawing an intercluster interaction as an intracluster
interaction.

I= 1:K+P, (K N 3.J~~ 41N K)=(-,',0), I=(1,0). (88)

I=O: (K+N KP). —
2

(B4)
Finally, in color space the expectation value of (00~.:/ ~00)
for color singlets is —,.

1. Norm kernels

It is convenient to work with. A~ which is diagonal in the

F,D space for the quark numbering 123:nucleon, 45:kaon. It
should not matter as all the contributions must be the same
regardless of the i(nucleon)j(kaon) quark pair. Therefore at
the end of any calculation involving W" it suffices to multi-

ply the obtained results by 3, the number of all quark permu-
tations acting in the K-N system to get the corresponding
"physical" value.

Now, K being a spin singlet, and observing that

s; s, =-'(wj —-') (135)

The factorization properties of both the nucleon and kaon
wave functions in terms of (fiavor spin)cm space allows for a
considerable simplification when evaluating the various
overlap kernels of Eq. (34). This is the more so because we
can redraw all the Feynman diagrams with intercluster V;,
(i.e., i ~ K; j ~ N) to an equivalent diagram now with an

intracluster insertion (in this case it is convenient, i E K; j
E K). See Fig. 9 for an example. This fact allows us to
completely disentangle the Aavorspin overlaps from the
space overlaps, the latter being simple space norm kernels,
i.e., space wave function expectations of the exchange opera-
tor .M~ which can be readily solved using the graphical rules
of Appendix C. As for the fIavorspin we have to evaluate
not only norm kernels but also the contributions of the
quark-quark potentials which, because they relate only to the
kaon wave function are trivial to get.

2. Contributions from the hyperfine quark-quark potentials

We have four distinct types of contributions of V;, inser-
tions for the K-N scattering kernel, &':

.W~= (N( 1,2,3) K(4,5)1.'A V; N( 1,2,3) K(4,5) ) .

(B9)

=(K~ V(4's)~K),

(Kiv(„) K)=(e civic ), (1310)

where 4 is the kaon Salpeter wave function, n the string

constant, and V4s one of the potentials of Eqs. (32) and (33)
amputated of the S S k k factor.

N N N

/

/X
1

K K K

I

K K

N N

I 1:
K K K

To evaluate the kernels M we can choose the quark pairs

(ij) = (1,4),(3,5),(3,4), (1,5). The other two possible quark
pair contributions will be identical to one or another of the
above four types.

We can describe these various contributions by the dia-
grams of Fig. 10. It can be shown that all of them are pro-
portional to the kaon expectation value of the microscopic
potential V;,

we obtain

(FKPP 'iFK) „,„=(DKi.&41DK) „,„=—,'. (B6)
FIG. 10. Contributions to the potential kernel .W~ of the RGM

equation.
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FIG. 11. Generic diagram for the graphical rules for space over-

laps.

FIG. 12. Generic diagram for the vertex recoupling in the

graphical rule diagrams.

This proportionality can be traced back to the freedom we
have in redrawing the above diagrams.

Then, Woo is defined by

~oo
I=O, v=—

F oo=(4 i
V 4 ).

We summarize the results:

(Bll) 7 T()o
(B12)

type weight 1=0

(3,5)
(1,4)
(1,5)
(3,4)

1

18
1

3
1

3
1

18

1

6

1

67

where by "weight" we mean the number of distinct diagrams
belonging to a particular type times the number of distinct
quark permutations —H which is —3. We have to add the
columns of I= 1 and I= 0 to obtain

APPENDIX C: GRAPHICAL RULES AND SPACE
OVERLAPS

These rules [23] allow for an easy evaluation of overlap
kernels induced by unitary nonlocal operators like, for in-

stance, the exchange operator W . Although it is general and
usable for an arbitrary number of clusters, each having an
arbitrary number of particles, in the present paper we restrict
the discussion to the concrete case of K-N. We are interested
in evaluating,

R= (N[(n, l, m);(n, l, m) z]IC[(n, l, m), ]P[(n, l, m)~] JW'
( @[(n' l'm ')~]K[(n ', I ', m '),]N[(n ', l', m ');(n ', l', m ')z]).

(Cl)

Above, (n, l, m) stand for the harmonic oscillator quantum numbers which provide a complete Hilbert space for space wave
functions. p, X, e, and R stand for the appropriate Jacobi coordinates. They are defined in terms of the r; coordinates as

0 0

p

—2
0 0

0 0 0
1

+2
(c2)

2 2 2 —3 —3

+30 +30 +30 +30 +30

1

. Js
1

Qs

1

Qs

1

Qs

1

Qs.

In short [(]=[0] [r]. Knowing in the [r] representation the matrix elements of M~', we obtain easily the corresponding
elements in the [j] representation,
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[,g~l 4] g [@~14] g T [~g.14]f(] f ] ' ([](4])

0 0 0 1 0

0 1 0 1 0

0 0 1 1 0

1 0 0 1 0

0 0 0 1 1

1

6
3

—+IS
0

s

—Qs +is

—+IS O-

o

+is o

1 0

0 6
(C3)

The importance of the [;A~' ](&) matrix elements is that these
are the only numbers that are process dependent and that we
have to know to be able to evaluate any space overlap kernel,
to an arbitrary degree of precision no matter how compli-
cated it may be. The number CP and all the nonlocal kernels
thereof obtained from Eq. (Cl) by failing to integrate in one
or more coordinates are given by the value of the diagram
depicted in Fig. 11, where the dashed lines stand for the
propagators, connecting vertices ij, contributing with

(C4)

and the typical vertex is depicted in Fig. 12, with the vertex

nalama
nlm —~

n, l,m

In Fig. 11 sum over all the quantum numbers n;, l;,m;
Aowing in the propagators except for the particular set of
propagators we decided to amputate, (((n, l, mJ) . . j), to
obtain a corresponding set of separable kernels
rJ'(t(n~, ljmj) )) which are functions of those quantum
numbers associated with the amputated propagators.
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