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A recently proposed baryon mapping of colorless three-quark clusters is applied to a three-color delta model
in the infinite nuclear matter limit, to assess its usefulness in the presence of spatial three-quark correlations.
Treating the resulting baryon Hamiltonian in Hartree-Fock approximation exactly reproduces the energy per
quark of the model through second order in the density. Deviations show up in higher orders, however, most
likely reflecting the need for an improved description of the short-range repulsion between baryons beyond that
of the Hartree-Fock approximation.
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I. INTRODUCTION

It is generally accepted that the strong interaction is re-
sponsible both for building nucleons and for the residual
interaction between nucleons that leads to nuclear stucture.
Recent experiments suggest, however, that these two features
of the strong interaction are not completely decoupled, as is
traditionally assumed in nuclear physics. This has motivated
much recent effort to derive nuclear properties directly from
the established theory of strong interactions —QCD. To date,
however, significant progress along these lines has only been
made within the framework of constituent quark models, and
even there only for few baryon systems [1].

A possible advance in the description of multinucleon sys-
tems starting from constituent quarks has been provided by
the development of baryon mapping methods [2—5], analo-
gous to the boson mappings used in traditional nuclear phys-
ics [6].Before these methods can be applied with confidence
to real nuclear systems, however, it is important to test them
in the context of exactly solvable models that incorporate to
as large an extent as possible the correlation structures of
relevance to realistic systems.

Several such tests have already been reported for a variety
of models [2,4,5]. None, however, contained spatial three-
quark correlations, which are clearly a central ingredient of a
proper quark description of nuclei. In this work, we report an
application of baryon mapping techniques to a three-color
delta model of interacting quarks in the infinite nuclear mat-
ter limit [7,8]. Although this model involves quarks moving
in one dimension (whereas real nuclei exist in a three-
dimensional world) and does not contain the physics of
quark confinement, it nevertheless has several features that
make it attractive as a testing ground of baryon mapping
methods: (1) in the limit of very low density, it leads to
spatially localized three-quark clusters (nucleons), (2) in the
limit of very high density, it leads to a free quark gas, and (3)
it can be solved exactly.

The current analysis is a natural follow-up to an earlier

application of boson mapping techniques to a two-color ver-
sion of the same model [9].As we will see, mapping tech-
niques seem to be even more suitable for the three-color
model, in large part because of the role played by the Pauli
principle at the baryon level.

The structure of the paper is as follows. In Sec. II, we
briefIy describe the three-color delta model, and discuss its
exact solution at low densities. In Sec. III, we review the
consistent baryon mapping developed in Ref. [5] and then

apply it to the model Hamiltonian. The resulting baryon
Hamiltonian cannot be diagonalized exactly. Thus, in Sec.
IV, we consider an approximate treatment of the baryon sys-
tem based on the (nonunitary) Hartree-Fock method [2]. It
turns out that effects due to the residual interaction between
baryons are suppressed at low densities, simplifying the
analysis dramatically in that regime. When all is said and
done, we find that our results for the energy per particle at
low densities (p) are in perfect agreement with those ob-
tained by exact solution through second order in p. Devia-
tions begin to show up at third order, however, most likely
rejecting the need for an improved variational approxima-
tion beyond the Hartree-Pock approximation to treat the
strong repulsion between baryons originating in quark ex-
change. In Sec. V we extend the analysis to the high-density
regime and in Sec. VI summarize the principal conclusions
of this work.

II. THREE-COLOR QUARK MODEL

A. The model

In this model, a system of N nonrelativistic quarks, with
no spin-flavor degrees of freedom, move in a one-
dimensional box of length L subject to an attractive delta-
function interaction. Subsequently, the infinite-matter limit is
achieved by letting N, L~~ in such a way that p=N)L re-
mains finite. Exact solutions for this model have been re-
ported by Koltun [7].
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For our purposes, it is most convenient to formulate the
model in second-quantized momentum-space representation,
defined in terms of the creation and annihilation operators
qtik and qik. Here, the first subscript denotes the SU(3) color
quantum number (which can take three possible values) and
the second the linear momentum k. The linear momentum is
quantized for finite L and continuous in the infinite-matter
limit. The fermion nature of the quarks is expressed by the
anticommutation relations

F(k, K)dk,

F 1 1 3

NMg2 3 2M2g2pJ K
F(k, K)k dk,

where the density function for triplet clusters F(k, K) satis-
fies the relation

(qik q2k )=Iqik q2k')=0

(q1k q2k') ~12~kk'

In this representation, the quark number operator is given

27rF(k, K) = 3 —2

2Mg
+

(2Mg) +(k —cu)2
'

Mg

, .'"'(" '(M, ) +(k-.)

(7)

by

and the Hamiltonian by

qikq 1k
1 k

These equations scale with the dimensionless parameter
p= p/Mg. From this, it is straightforward to obtain the en-
ergy per particle at low densities as an expansion in powers
of this parameter, either numerically or analytically. Here, we
present the analytic results through seventh order in p:

k G~H= ~ ~ q, kq1k
——~ ~ q„q2jq2lqik6;, k2M 2 142 ijkl

(3)

2k

2M qtkqik2M

~123~145q2'q3 'q5lq4k~ +j,k+l4 12345 ijkl
(4)

where e123 is the usual antisymmetric tensor. This is the form
of the Hamiltonian that we will use in the subsequent analy-
Sis.

In what follows, we first work with the above discrete-
momentum Hamiltonian (4) and then pass to the infinite-
matter limit by making the replacements

I.
271' J

2'
6(i —j). (5)

B. Exact solution at low densities

As noted earlier, one of the most attractive features of the
three-color delta model in one dimension is that it can be
solved exactly in the infinite-matter limit, using the Bethe
ansatz. The end result is the following set of integral equa-
tions for the ground-state energy per particle [7]:

where G is related to the strength of the delta-function po-
tential g in configuration space by G= glL.

A delta-function interaction has the special property that it
is only felt by particles at the same point in space. As a
consequence, the two interacting quarks must be in a space-
symmetric and color-antisymmetric configuration. This can
be made more explicit by rewriting the Hamiltonian (3) as

F 1 1 7r p vr p 7r p 27r(45 ~)p—5

N Mg 3 486 729 1458 295245

~ (45 —47r )p
354294

m (5670—12337r +22m )p
95659380

III. BARYON MAPPING APPLIED TO THE MODEL

In this section, we first briefly review the subject of
baryon mapping methods and then discuss their application
to the momentum-space Hamiltonian (4) of the model. We
follow the method developed in Ref. [5], which gives a con-
sistent procedure for mapping any colorless Hamiltonian in-
volving up to three-body interactions onto colorless baryons.

A. The baryon mapping

The fundamental problem in trying to treat systems of
interacting quarks is the difficulty in describing strong three-
body correlations with traditional many-body techniques.
Baryon mapping techniques were introduced several years
ago in order to provide a practical means of doing precisely
this.

The basic idea is to replace the original quark problem by
an equivalent one involving interacting baryons. Assuming
that such a mapping can be found, it will lead from the
original multiquark Hamiltonian to an effective Hamiltonian
for the baryons, which rigorously incorporates the physics of
the quark Pauli principle and, furthermore, can be treated
using traditional fermion many-body techniques.

In Ref. [5], it was shown how to consistently map color-
less one-, two-, and three-quark operators onto colorless
baryon operators so as to preserve all of the (anti)commuta-
tion relations of the original quark space. For our purposes, it
suffices to consider the mapping of colorless one- and two-
body operators only, since the Hamiltonian (4) does not con-
tain any three-body terms.
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According to Ref. [5], an arbitrary colorless one-body op-
erator

Direct Exchange

Aab= ~ 9'1aqlb
1

(9)
12

is mapped according to

A,b~3+ A„„Ab,d. . (10)

The operators At, k and A;,„, that appear in (10) create
and annihilate colorless baryons, respectively. They only de-
pend on the noncolor quantum numbers of the original
quarks; all the color information has been separated out and
then explicitly summed over. These operators are fully sym-
metric under the interchange of their indices, i.e.,

~ij k +ikj ~ji k +j ki +kij +kj i ~

FIG. 1. Diagrammatic representation of the baryon mapping
(16) of the colorless two-quark operator (15). Thin solid lines refer
to quarks, thick solid lines to baryons, and dashed lines to the two-
quark interaction. Summations are implied.

and satisfy the anticommutation relation

1
4A;, k, A, „)=—S(iJk, lmn), (12)

where

S(ij k, lmn) = 6,t8J„,Bk„+'8'; 8),Ski+ 8;„8)IBk„,+ 8;t8,„6k

+ c$, 6~Ic$k„+ 6;„6 6'kI.

An important application of (10) is to the quark number
operator, given in (2), which is readily seen to map according
to

only for a delta potential that the two interacting quarks must
have distinct colors and be in a color 3 configuration. More
general interactions can include components in the color 6
channel; they too can be readily treated with the same for-
malism developed in Ref. [5).

B. Mapping of the model Hamiltonian

In order to apply the above mapping to the three-color
delta model, we first rewrite the Hamiltonian (4) in terms of
the colorless one- and two-body operators of Eqs. (9) and

(15), respectively,

Nq +3+ A, b, A—,b, =3Nii,
abc

(14)

k 6
H T V g 2M Akk 4 X Bk,k —k, k —k, k

1 2 3

where N~ is the number operator for colorless baryons.
Thus, the mapping gives the expected result that the number
of colorless baryons is one-third the total number of quarks
in the system.

Next we turn to a colorless two-body operator

Applying (10) to the one-body operator T and symmetriz-
ing, we obtain

I ', + k'2+ k'3

2M AkkkAkkkkkk
1 2 3

, 1 2 3 1 2 3

abed ~ 123~14592 9 3b9 5cq4d
12345

(15) Likewise, by means of (16), we obtain the baryon image of
the two-body term

It too can be mapped onto colorless baryons using the for-
malism of Ref. [5].The resulting expression is

Babcd~ 12K AcbeAcde+ 9 X AeefAbgh(AcdeAfgh
e efgh

k2, kl —k„,k4
1 4

+ A.fgA, dh) (16) 2 k2, k4, k5 kl -k2, k6, k7 1

— 3, 3, 4kl ~k7

Note that the baryon image of a two-body operator is
finite but non-Hermitian. Non-Hermiticity is the means by
which quark Pauli effects are transmitted to the baryon space
in the Dyson approach of Ref. [5].A diagrammatic represen-
tation of the physics contained in the mapping of two-body
operators (16) is presented in Fig. l.

It is important to emphasize that the most general color-
less two-body operator need not be of the form (15). It is

From (19), we see that the two-quark interaction maps
onto an operator in the baryon space with both one- and
two-body parts. Thus the complete baryon Hamiltonian can
be represented as a sum of two parts, Hz =Ho+ Vz . The
first part, the one-body operator Ho, collects the baryon im-
age of the kinetic energy operator (18) with the one-baryon
interaction term arising from the two-quark interaction (19),
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k', +k,'+k,
HO X 2M +kkk+kkk

1 2 3 1 2 3
1 2 3

=1 1 3 1 3. 1

—r 1 3 1

~k~, k
)
—k~, k4+k (

—k3, k3, k4.
1 2 3 4

—+1 3 1
2p1+ 4P2» (26)

The two-body operator V~ arises solely from the two-quark
interaction and is given from (19) by

and likewise for the r~ operators.
In terms of the oPerators rp p p

and rp p p, the baryonP1P2P P1P2P '

Hamiltonian (20) and (21) reads

9G
V =— A~ A~ A A8 k2, k4, k5 k

1

—k2, k6 k7 k
1
—k3, k3, k4 k5, k6, k7

kl ~k7
(21) where

Hq=Hp+ Vp, (27)

C. Transformation to Jacobi coordinates

We expect that the structure of the colorless baryons that
dominate in the ground state of the system should be gov-
erned by the relative motion of the three-quark clusters. Thus
we next perform a transformation from the single-quark lin-

ear momenta k1,k2, k3 entering the colorless baryon opera-
tors Ak k k and Ak k k to the Jacobi momenta

1 2 3 1 2 3

P1P2P1P

y= — 2gPQ P 1p2elq2P

2 3 2 1 22P1+ 2P2+ 3P
6P

—3G r~ r

(28)

1 1

P1 2kl 2k2 ~

1 1 2P2= 3ki+ 3k2 —3k3.

P —=P3=ki+k2+k3

(22)

xr
~P2 292 3 {~ ~ 2P~ {q2+ 3P~ {+P~

xr . r rP,{P2+3P),{P—P)
(29)

1 1

kl P1+ 2P2+ 3P3 ~

1 1

k2 P 1+ 2P2+ 3P3 ~ (23)

P2+ 3P3 ~

with p being equal to the total momentum of the three-quark
cluster. The inverse transformation is

IV. HARTREE-FOCK APPROXIMATION

The baryon Hamiltonian derived in the previous section
cannot be diagonalized exactly. In the infinite-matter limit
and at low densities, a natural variational approximation to
consider is that of Hartree-Fock (HF). Since the baryon
Hamiltonian is non-Hermitian, however, it is necessary to
use a nonunitary HF approximation [2], for which we now
develop the relevant formalism.

We denote the creation and annihilation operators for a
colorless baryon with total momentum p and internal mo-

menta pi and p2 by r and l P, respectively. The
P1P2P P1P2P '

anticommutation relations for these operators follow from
the Jacobi transformation (22) of Eq. (12):

A. Introduction of a nonunitary collective transformation

The Hartree-Fock approximation is most readily derived
by introducing an appropriate collective transformation. For
a non-Hermitian Hamiltonian, this transformation is nonuni-
tary and can be written as

1
ti p, p, p I „p p

)=
6 ~pp Q(pip2 p&pz) (24) x r'

+O'P P1P2 P1P2P '
P1P2

&(pal 2 pIp~) = ~„,,;(~„,,;+ ~„,—,;)
X.„=X &, ,„,I„„,

P1P2
(30)

+I% ' i '(8 I ' 3P2 Pl —2P2 Pl —2P1+ 4P2

+6' i„3„)'2pl —4P2

+ $ I f f($ j I 3 k

+~p, , ~pI+3p, )
1 4 2

(25)

Note that the operators y~ and y P of the collective basis
are not necessarily Hermitian adjoints of one another. It is
easy to show that the transformation coefficients X and

P1P2

I'„„satisfy analogous symmetry properties (26) to the op-
P1P2

erators r~
p p and r„.Finally, by imposing the condi-

P1P1P P 1P2P

tion

(31)
In the same way, applying the Jacobi transformation (22)

to Eq. (11), we obtain the symmetry relations we guarantee that the transformation (30) is canonical.
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With the aid of Eqs. (24), (30), and (31), we obtain the
following properties of the collective transformation coeffi-
cients:

I p + I + (0 P)-+ pl, (e, + I)-
P ip2q&q2

I

P&P2 P&P2
P IP2

P) (P2+ 3P)

B. The nonunitary Hartree-Fock method

(38)

X Y„„X~
= 6Q(p)S».pIp2). (32)

They can be used to invert the collective transformation (30),
yielding

In the Hartree-Fock method, the ground state is described
by a Slater determinant built up from single-particle states
with definite momentum p. For a non-Hermitian Hamil-
tonian, the bra and ket determinantal state vectors need not
be adjoints of one another. Thus we introduce separate bra
and ket states

Yclr„„,= Y„„X
P= Pf Pf

x„'Io),

(33)
P= Pf Pf

Xp (39)

where we have assumed that the transformation (or structure)
coefficients are real.

The basic idea will be to substitute (33) into (27)—(29)
and then carry out a nonunitary Hartree-Fock treatment of
the problem. The lowest (n= 1) solution will then define the
collective baryons that dominate in the ground state of the
system. Since we will only be interested in the a= 1 solu-
tion, we simplify the notation by replacing

where pf is the Fermi momentum and the Fermi sea contains
all baryon states with momenta Ipl ~pf occupied.

The variational condition that defines the structure coeffi-
cients Xp p and Yp p involves minimizing the quantityP)P2

F~~ )(X,Y)=E))(X,Y)——kN~(X, Y)

(40)

X~= ip~XP

Xu=ip~XP

subject to the constraint that the number of baryons equals
one-third the total number of quarks N,

(34) (41)

Y —+Yp p.p)P2 P&P2
The expectation value of the baryon number operator

NB taken between the trial states (39) is

The part of the baryon Hamiltonian that only involves the
dominant collective baryons and their structure coefficients
is

t

Na(X, Y) = Q g X„„Y„„.
P= Pf ) PiP2

(42)

where

H~=Hp+ V~, (35) On the other hand, the structure coefficients Xp p andP l P2

Y„„must be normalized according to Eq. (32), which for
P&P2

n= 1 becomes

2 3 2 & 22P )+ rP2+ 3P

P &P l,p2
P]P2

(43)

3& Yp p Xp p XpXp (36)

Taking the infinite-matter limit (5) leads to a simple rela-
tion between the quark density

1 (ylNIP) . 3 (@INaly)p= lim —= lim- lim—
N, L~~ N, L~~

(44)

and the Fermi momentum pf, namely,
~a= —

2 X X f(J.Q P)X(0+»X(p p)XQ—Xp-
p PQ

with

3pf
(45)
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[EB(X,Y) —XNIi(X, Y)]= 0,
P]P2

[Eii(X,Y) —XNii(X, Y)]= 0,
P)P2

(46)

With this relation between p and pf, the constraint condition
(41) reduces to the normalization condition (43).

Summarizing, to find the collective structure coefficients
X and Y, we must solve the system of equations

P&P2 P lP2'

where

Eii(X, Y)= = E()(X,Y) + Ev(X, Y), (47)
(&IH.l~)

such that the solution is normalized according to Eq. (43).

C. Application of the Hartree-Fock approximation
to the three-color delta model

Pf

Pf P&P)Pz-

2 3 2 12P]+ rP2+ 3P
2M

X. Complete equations

A straightforward calculation, using the particular form of
the Hamiltonian (35)—(38) and the Wick theorem, which is
valid for the trial states (39), gives the energy functional

—3G X„/ Y (48)

9G
1 1 1 1

I:
—~i |—4i ~+q2+6(Q —P)I, ( —i |—2&2+3(Q —P))~.Q — Pf P~q~P2q2

1 1 1 l Y 1 j
I.
—zi ~

—4s2+q2 3(Q —P)1.(——s ~

—
2~, ) Ii ~+2(Q —P)l, (& 2+3(Q —P)l] i i q q (49)

In order to obtain the explicit form of the variational
equations (46), we first substitute Eqs. (47)—(49) and (42) in
Eq. (40) and then minimize the resulting expression for

EiI )(X,Y) with respect to X~ „and Y„„.Due to the sym-

metry properties of the structure coefficients [see Eq. (26)
and the comment after (30)], we use the derivatives

(2p, + —,p2)+ a

B&v
+

pL BY

+qi +Yi

(51)

ax
=

aY =6 ~(p'p'~'q')' (5o)

where the derivatives of Eq. (49) are implicitly given and

with Q(p, p2, q, q2) defined by Eq. (25). The resulting sys-
tem of nonlinear equations for the structure coefficients then
reads

Pf

2
Py
9 (52)

(2pi+ ~zp2)+a

=G g (X„„+X„,' „+X„-,' „)
3 BEv

+
pL BXp p

Due to the complex structure of the derivative terms
BEv(X, Y)/BY„„and BEv(X, Y)/BY„„, Eq.(51) is not in

general analytically solvable. We will see, however, that it is
analytically solvable for the energy per quark through third
order in p. Higher order contributions to the energy per par-
ticle require numerical analysis. For our purposes, however,
it suffices to study the solutions through O(p ).
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) = X("+p) ")+p'Z("+ p') ("+O( p ). (53)

Inserting (53) into the normalization condition (43) and

equating powers of p leads to the relations

PIPE

PiPz

2. Expansion in powers of the density

To study the solution at low densities, it is useful to ex-
pand the various quantities of interest in powers of the den-
sity p:

not have relative momentum 0. Thus the power series expan-
sions for the full integrand begins with the linear term in

Q —p
It is straightforward to demonstrate that all odd terms

from the power series expansion (56) give a zero contribu-
tion to Ev(X, Y) when integrated over Q and P Th.us the
lowest nonzero contribution to the total energy comes from
the term (Q —P), and it is of O(pf). From this, we con-
clude that the lowest nonzero contribution to the energy per
particle arising from the two-baryon interaction is of
O(p3). Furthermore, to calculate the energy per particle up
to this order in p, we need to know the zeroth order wave
functions X and Y only.P )P2 P)P2

Exactly the same analysis can be applied (albeit with a bit
more difficulty) to the two partial derivatives entering the
system of equations (51) for the structure functions X and Y.
The partial derivatives get their first nonzero contributions at
O(p ). Thus the two-baryon interaction first contributes to
X and Y at third order in p. To make this evident, weP)P2 P)P2
rewrite Eq. (51) schematically as

»P2
(2pl+ zp2)+&

2M
—X X„p=G g (X

P]P2

=0. (54)

P I 2 tt(, P2

+Xl ,'q, I,+,)+-P-'Dp, v,

An analogous expansion of the nonlinear equations (51) is
more difficult, since it is not a priori obvious what density
dependence is implicitly contained in the partial derivatives
of E~. As a reminder, Ez involves integrations up to the
Fermi momentum pf, which is related to the density. As we
now show, however, the first nonzero contribution from these
terms is of O(p ).

To see this, we first rewrite Eq. (49) schematically as

(2p', + —,'P2)+a
2M

—~ yl „=G X (y) +q,„
q = —oc

+y) 'q) +q)+p'-F-l (

(57)

Pf

Ev(X y)= X 2 IB(pl p2 ql q2 Q
P 0= Pf P~q~Ppq2

C(P1 P2 ql q2 Q —P)l.

Both Q and P are limited in magnitude by pf . Thus, at low
densities, we can perform a Taylor series expansion of
B(pl,p2, ql, q2, Q —P) and C(pl, p2, ql, q2, Q —P) in

powers of Q —P, viz. ,

B(pl p2 'ql q2 Q —P) = 2 b.(pi, p2 ql q2)(Q —P)
n=O

C(Pl P2 'ql q2 Q ) 2 (Pl P2 'ql q2)(Q )
n=O

(56)

The functions D and F„„depend of course on X and Y.P)P2 P IP2

When the zeroth-order approximations X and Y are
used, they have no density dependence. Higher order ap-
proximations yield higher powers in the density.

3. Zeroth order wave functi-ons and chemical potential

Inserting the expansions (53) into (51), isolating the term
that varies as p, and taking the infinite-matter limit, we see
that the zeroth-order wave functions X( )P and Y~ ) both

P )P2 P lP2

satisfy the same integral equation:

'2P'+lpga ' g-
+X

2M ) )'~)'2 7r q
"& ~ "' r~ —

~ ~ l2 v-. —

+X i )dq,
(O)

2 0 P2+6'

By looking at the explicit forms for
B(pl,p2, q, , q2, Q —P) and C(pl, p2, ql, q2, Q —P), we see
that they are identically equal at Q —P=O. The reason for
this can be directly traced to the Pauli principle between
baryons. Two baryons with the same internal momenta can-

2 3 22pl+ zp2 g o
) (o) i y(o) ( y(o) + y

2M i I'~"2 7rg vl+ "& l i

—20 P

+Y | )dq.
(0)

PI 2 q'P2+q
(58)
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Equation (58) is the integral equation that arises in Fadeev
theory for three particles interacting via a delta-function po-
tential. It is straightforward to show that its eigenvalue is

4. The first a-nd second or-der wave functions
and chemical potentials

Next, we turn to the first- and second-order variational
equations. At first order, the equations that result are

z(0) = —Mg2

and that the corresponding eigenvectors are

(59)
~2 '+-' '

(o) i
(&) (t) (o) — (&)—k X„„—X X„„(X„+

and

where

x'" =a&"z
PlP2 X PlP2

Y My Zp p cp

(0) (o)

(60) +X i +X i )dq,
(&) (o)

2q P2
—

q Pl —2q I 2+q

fm
y(0) y(&) y(&) y(0)

2M

(~) (&)+I'
~ +Y i )dq.

P1 2 q'P2 ~ P1 2 O'P2+q

(1)(I'p +q p

(64)

c (6c +2p&+ 2p2)

(c +Pa)[c + (P t 2P2) ][c + (P t+ 2P2) ]
(62)

Multiplying the first equation by X( )„(or the second byPlp2

Y„„)and then integrating over p t and p2 yields (after some
P&P2

changes of variables)

and c =Mg.
Note that there are two independent norms that appear.

The reason is that it is only the product of the two functions
that must be normalized. From the zeroth order normaliza-
tion condition of (54), we find that

Z(') =0 (65)

Inserting (65) back into (64), we find that X(')„and
P)P2

Y(')„satisfy exactly the same integral equations (58) as thePlp2
corresponding zeroth-order wave functions. Thus they are
both proportional to the same wave functions as given in
(60) and (61), viz. ,

6
0) (0) (63)

(j) (&)X„' =~x Z

We discuss shortly how we fix the one remaining undeter-
mined quantity, the ratio of the two normalization constants
.W" and~( .

y(t) ~t)z (66)

A similar analysis can be carried out at second order in
p. The equations for the structure coefficients are

(2p2+» '( (
g() X() )()

2M )

g
2

X (X + +X 1 +X 1 )dq,
(2)

162M) P~P& qr J P~+'» p~ Yq.pi qp~ 2q p2+q—

g(o) y() ' )()
2

162M) p~p2 qrg ~+ '"2 p&
—2q pz —q» zq p2+q

(67)

where we have already used the fact that k ' =0.
Precisely the same strategy as was used in first order

shows that

equations as the corresponding zeroth- and first-order wave
functions. Thus they can be written as

2
y(2)—

162M (68)
x,"', =M"z, „,

and that Xp p and Y satisfy exactly the same integralP lP2 P IP2
(69)
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As discussed earlier, the first- and second-order contribu-
tions to XP P and Yp P have no effect on any properties ofP1P2 P1P2
the system. Thus their normalization coefficients are indeed
completely arbitrary. We now show, however, that in the pro-
cess of removing the arbitrariness in the zeroth-order normal-
ization coefficients, we also ren1ove the arbitrariness in those
that arise in first and second order.

1
Qk k k 62 123I Ik I2k I 3k

123

1a. . .=62
123

(71)

5. Imposition of a physical condition

Arbitrary relative normalizations are an unavoidable con-
sequence of using a nonunitary variational principle, with
distinct right and left vectors. In analogous work carried out
on the use of the nonunitary Hartree-Bose approximation
following a boson mapping [10,9], it was shown how to
remove this arbitrariness by introducing a physical condition.
Here, too, we follow a similar strategy.

The Hartree-Fock solution represented by the bra and ket
vectors

l P) and (Pl, respectively, refers to a system with
Nz baryons. For the discussion to follow, it is useful to in-
troduce the following state vectors for a system of Nz —1

baryon s:

l 0) = xol ti')

(70)

These state vectors are obtained from the HF solution for
N& baryons by simply removing the collective P =0 baryon.

Consider now the colorless three-quark creation and anni-
hilation operators

Using the mapping equations of Ref. [5], we obtain for their
baryon images

~k)k2k3 Qk)k2k~ ~k)k2k3+ ~ (~k4k5k)+k2k~k6
4 5 6

k4k5k2 k3k 1 k6

+k k k +k)k2k6)+k4kgk6»

Qk(k2k3 Qk)k2k3 +k)k2k3. (72)

(73)

The relation between the X and Y structure coefficients
that results from imposing this condition is

The physical condition that we impose is that the matrix
elements of these two baryon operators (transformed first to
Jacobi coordinates), taken between the above states of Nz
and N~ —1 baryons, are the same; viz. ,

Pf
1 + 1 3 2 1 ~ 2 1 —+ 1 1 + + 1 1

v= pf s

1

3 v+P1 2P2 P1 P2"'3 '+P1 2P2 ' P1 2P2 2P1+ 4P2 3 "+P1 2P2"' 3 '+» 2P2 ~ P2 P1 3 v+P2 5 3 v+P2

—Y, ,'„+ J'~ p x, —,'„„p ]. (74)

We can analyze this equation in much the same way as we
analyzed Eq. (55). The conclusion is that the sum of six
terms of the form YYX does not contribute until third order
in p. Thus

6. The energy per particle through O(p )

We have shown that to determine the energy per quark up
to third order in p we only need the zeroth-order approxima-
tions to X and Y. The total energy through that order can
thus be obtained from

X' =Y', for I'=0, l, and 2.P1P2

From Eqs. (75) and (54), we see that

(75)

E=E (xt', J'f' ) +E,(x ', J'&' ), (78)

and

X(o) —Y(o)
P1P2 P1P2 (76)

with the functions Eo and Ev given by Eqs. (48) and (49),
respectively.

Using the explicit results for X and Y given in Eqs.
(60), (61), and (76), we find that

X~') =X~" =Y~" =Y~" =O.
P 1 P2 P1P2 P 1P2 P 1P2 (77) 2p2 47 2497T2p3

N M 3 486 5668704

Thus the physical condition removes the ambiguity in the
relative normalization of X and Y and fixes the first- and
second-order contributions to X and Y to be identically zero.

These results are plotted in Fig. 2 along with the exact results
(8) for the model.
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Comparing Eq. (79) with Eq. (8), we see that Hartree-
Fock approximation carried out in the baryon space (with the
assumption that the internal structure of all collective bary-
ons is the same) reproduces the exact results through second
order in p, but begins to deviate at third order. The HF analy-
sis yields too much repulsion at third order, by roughly a
factor of 6.

It is not surprising that deviations begin to show up at
third order. As we have seen, it is not until third order that
effects due to the residual interaction between baryons con-
tribute. The baryon-baryon interaction that derives from the
model Hamiltonian is repulsive, refIecting quark exchange
effects. Most likely, a Brueckner-like treatment is needed to
better incorporate the short-range correlations that result
from this repulsive interaction. A similar finding emerged in
the study of boson mappings applied to the two-color delta
model [9], although there the repulsive boson-boson interac-
tion contributed to the energy per particle already at first
order in the density.

It is gratifying that, even at the level of the Hartree-Fock
approximation, we are able to reproduce the results through
second order in p and obtain some (though not all) of the
correlations that arise in higher orders. To the best of our
knowledge, no approximate treatment has yet been carried
out for this problem that extends beyond second order in the

density. The method reported by Tosa [8], for example, was
only able to extract information on E/N through second or-
der in p. Most importantly, as we show shortly, the baryon
mapping procedure permits us to readily determine the re-
sidual interaction between collective baryons, as required to
go beyond the Hartree-Fock approximation.

~B —
2 X X f (p.0 P)X(0——,lX(p+, lXgrp,

p PQ

where, in terms of the scaled variables z =p/M g and
6 = {Q—P)/Mg, the interaction amplitudes are

A(z, h)f( )(z, A) =11 664
z j

(81)

7. The structure of the baryon-baryon interaction

Once we have defined the structure of the dominant col-
lective baryons, we can readily determine from Eqs. (37) and

(38) the interaction between them. In what follows, we as-
sume that the structure of the collective baryons is as given
by our zeroth-order approximation. Then

A (z,5) = 1 534 329 216+46 912 6086 + 500 904& + 2718& + 6 & —[64 746 864k+ 1 308 9606 + 10 8095 + 33k ]z

+[119497680+3 182328~ +23 733~ +773 ]z —[3 9307686, +364506, +1065 ]z +[2904336

+52272k +1286, ]z —[505175+1575 ]z +[23 085+1735 ]z +136hz +48z, (82)

and

B(z,h) =(81+6 )[81+(6—2z) ][36+(5—z) ][144+(6—z) ](9+z )(36+z ) [36+(b,+z) ] . (83)

The above two-baryon interaction, limited to momenta
less than pf, was used in the calculation of the Hartree-Fock
energy (79). The same interaction can be used in many-body
approximations that go beyond Hartree-Pock, but which still
work within the subspace of collective baryons only. With it,
for example, we should be able to incorporate the effects of
short-range baryon-baryon correlations via Brueckner theory.

8. Quark occupation numbers

The most troublesome feature of mapping techniques,
whether to baryons or bosons, is the existence of unphysical
states after the mapping. Only when the mapped Hamiltonian
is diagonalized exactly, as can never be done for real prob-
lems, is there a complete separation of these unphysical
states (which do not preserve the original quark Pauli prin-
ciple) from the physical states of interest. In the Hartree-
Fock approximation, for example, there is invariably some
admixture of unphysical (or spurious) components in the
wave function(s) describing the ground state.

The mapping developed in Ref. [5] has the feature that
unphysical states are pushed up in energy, providing some
hope that their admixtures in the HF ground state (and ap-

proximations to other low-lying states) may be small. Nev-
ertheless, in some cases, this is not enough. In Hartree-Bose
studies following a Dyson boson mapping [10],for example,
it was shown that the variational solutions provide a good
approximation to the exact results only if they do not over-
populate any of the original fermion states. Similar conclu-
sions were reached in an early application of baryon map-
pings [2] to the Bonn quark shell model [11].

To address this issue in the context of the current analysis,
we calculated the number of quarks with a given momentum
k implied by our HF solutions. Only if this number remains
less than 3 for all k can we have confidence in our solutions.

The number operator for quarks with momentum k can be
expressed as

(84)

Mapping this operator to the space of colorless baryons,
transforming to Jacobi coordinates, and truncating to the
dominant collective baryons yields
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FIG. 2. The energy per quark (E/N)(1/M g ) for the three-color
delta model as a function of the scaled density p= p/Mg. The solid
line gives the exact results; the dotted line gives the results obtained
in the Hartree-Fock calculations described in the text.

F 1 m p
N Mg 54 (88)

~kkklO). (89)

This is precisely the energy per quark for a free quark gas.
That the system behaves in this way at high densities follows
from the fact that the model scales as p/Mg, which tells us
that the limit of very high density (p~O) is equivalent to the
limit of very weak interaction (g~O).

The baryon mapping written down in Sec. III applies
equally well at all densities. As we now show, however, it is
not particularly useful at high densities.

At very high densities, where only the quark kinetic en-
ergy term needs to be considered, it is simpler to carry out
the mapping to the original one-baryon creation operators
A& k k and not to implement the Jacobi transformation. In

1 2 3

terms of these operators, the physical ground state of the
system can be represented in the baryon space as

&(&) 3X X( /2)(k —.) k+.—(2/3)„

~(1/2)(k —s),k+ s —(2/3) pk'prYp . (85)

+(~) 2 X ()/2)(k —s),k+s —(2/3)p

Evaluating the expectation value N(k) of this operator in
the Hartree-Fock ground state gives

In this state, there are precisely three quarks with all mo-
menta up to pf, and thus no violation of the quark Pauli
principle. Furthermore, it is straightforward to show that this
baryon state has an energy per quark in exact agreement with
(88).

It is important to realize, however, that this is not the
ground state of the baryon system, nor could it be realized in
a variational treatment. To illustrate this point, consider an-
other baryon state

—oo p: —pF

~(1/2)(k —s),k+s —(2/3)p ' (86)
l
O2&= (90)

We have evaluated N(k) from this expression using the
zeroth-order HF solutions, viz. ,

co pF

The energy per quark associated with this state is

E' 1 mp
N Mg2 162 (9l)

( ) /2) (k —s),k+ s —(2/3) p ~—oo p:—pF
(87)

The results are plotted in Fig. 3 for p up to 0.7. For larger
values of p, X and Y are not good approximations to the
self-consistent HF solution, since terms of O(p ) no doubt
contribute significantly.

For all values of p that are considered, the quark occupa-
tions never exceed 3. Thus the zeroth-order HF solution
never overpopulates any quark state at those densities for
which it is a good approximation to the full self-consistent
solution. Most likely, the Hartree-Fock solutions continue
not to violate the quark Pauli principle up to somewhat
higher densities, as long as their higher-order contributions
are properly taken into account.

a factor of 3 lower than for the physical ground state (89).
The state (90) is itself not the HF solution of the system.

There are independent-baryon states even lower in energy.
For the purposes of this discussion, however, it is unneces-
sary to construct the HF solution. What is already clear is
that the Hartree-Fock approximation carried out in the high-

V. THE HIGH-DENSITY LIMIT

We have focused our analysis on the low-density limit of
the model, in part because real nuclei exist in a relatively
low-density world. Here, we would like to briefly discuss the
high-density limit for the sake of completeness.

The three-color delta model can also be solved analyti-
cally in the high-density limit. The energy per quark in this
limit is given by

0
0

FIG. 3. The number of quarks with momentum k contained in
the zeroth-order Hartree-Fock solutions discussed in the text. Below
each curve is given the scaled density p= p/Mg to which it refers.
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density limit will of necessity lead to a solution that is well
below the physical ground state. As such, the Hartree-Fock
approximation is useless in this regime.

The fact that the Hartree-Fock approximation gives a re-
sult significantly lower than the exact energy in the high-
density limit is easy to understand. It too can be traced to the
fact that the high-density limit is equivalent to the weak-
interaction limit. In the absence of an interaction between
quarks, the baryon system that results from a mapping of
necessity has an unphysical ground state, with the Pauli prin-
ciple violated at the quark level. This is clearly the case for
the state (90), and it is likewise true for the HF ground state.
It is the non-Hermitian mapping of the two-body interaction
that pushes up unphysical states, through implicit inclusion
of quark Pauli effects. - When there is no active two-body
interaction, there is no mechanism to push up unphysical
states. Thus, if we carry out a Hartree-Fock analysis subse-
quent to the mapping of this model in the high-density limit,
we should expect to obtain an energy much lower than that
of the real ground state. And we do.

The message to be learned from this is that baryon map-
pings are only useful in a regime in which the interactions
between the constituents are sufficiently strong so as to pro-
duce meaningful cluster correlations. When this is the case,
as in the low-density limit of our model, the non-Hermiticity
of the effective baryon-baryon interaction will serve to push
up unphysical states that violate the Pauli principle at the
quark level, so that variational methods (such as HF) can
yield meaningful approximations to the physical ground state
of the system.

VI. SUMMARY AND CONCLUDING REMARKS

In this work, we applied a recently developed method for
mapping constituent quark models onto colorless baryons to
a three-color delta model of quarks in the infinite-matter
limit. The three-color delta model has several features that
make it particularly attractive as a testing ground for baryon
mapping methods: (1) it is exactly solvable, and (2) at low
densities it admits strong spatial three-quark correlations. All
earlier tests were carried out on models that do not admit
spatial three-quark correlations, although in real nuclei they
prevail.

One of the more interesting conclusions of this work is
that effects due to the two-baryon interaction, arising from
quark exchange, are suppressed at low densities. More pre-
cisely, we find that such effects do not begin to inhuence
either the wave functions or the energy per quark until third
order in the density. This result, which was traced to the
important role of the Pauli principle between baryons, may
have important consequences in efforts to build real nuclei
from quarks, since for such systems the densities are rela-
tively low. The same conclusion was also noted in Ref. [8].

Baryon mappings, by themselves, are not especially use-
ful. They only become useful when they can be reliably com-
bined with variational many-body methods. Here, we fo-
cused on the low-density limit of the model and considered
the use of the Hartree-Fock approximation on the baryon
Hamiltonian resulting from the mapping. Several promising
features emerged.

(i) We were able to reproduce the energy per quark of the
model through second order in the density exactly.

(ii) Because of the strong spatial correlations within the
baryon, correlations that are preserved at low densities, our
variational Hartree-Fock solution did not overpopulate any
quark state, an important criterion for it to provide a reliable
reproduction of the exact quark dynamics.

On the other hand, deviations between the exact results
and our HF results did begin to show up at third order in the
density. This is not terribly surprising. The repulsive baryon-
baryon interaction should at some level produce short-range
correlations between baryons, which the HF approximation
is unable to treat. Most likely, a Brueckner treatment is re-
quired to incorporate these correlations, and efforts along
these lines are currently under way. As discussed in the pa-
per, our baryon mapping provides a natural prescription for
building the two-baryon matrix elements required for such
extended many-body approximations.

Many of the conclusions reached here are similar to those
that emerged from an earlier application of boson mapping
methods to a two-color version of the same model. There,
however, deviations began to show up at first order in the
density, precisely because there is no Pauli principle active
between bosons to suppress these very low-density devia-
tions,

Assuming that we can improve our description of the low-
density behavior through a many-body treatment that incor-
porates short-range correlations, we will (in our view) have
gone a long way towards demonstrating the utility of baryon
mapping methods to derive real nuclei from constituent
quark models. Preliminary investigations [12] suggest that
these methods can be extended to three-dimensional systems,
albeit with major computational effort.

Of course, all of this is predicated on the assumption that
constituent quark models are a proper starting point for a
quark description of nuclei. This is by no means firmly es-
tablished yet. Constituent quark models, by their very nature,
are limited in their inclusion of several important ingredients
of QCD, e.g. , confinement (approximate) chiral symmetry,
and relativistic effects. An important question still to be ad-
dressed is: Is it possible to establish more direct contact be-
tween QCD and constituent quark models? Considering the
successes of constituent quark models in describing one- and
two-baryon systems and the now-present possibility of using
baryon mapping Inethods to build many-nucleon systems
from them, we believe that this question needs to be seri-
ously addressed.

It is important to stress, however, that modern constituent
quark models do incorporate at some level many of these key
features of QCD. The physics of confinement, for example,
is often modeled through a quadratic term of the form

ar, [1], or sometimes through a linear or logarith-
mic term. Likewise, partial restoration of chiral symmetry
can be achieved through the introduction of one-pion and
one-sigma exchange [13].These are the models that we en-
visage using in more realistic calculations of the quark struc-
ture of nuclei.

Another key issue still to be addressed is: What new phys-
ics would be present in a quark description of finite nuclei
that is not already contained in the traditional picture of
nucleons interacting through the exchange of mesons? The
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usual view is that explicit quark effects will only show up in
processes that probe the high-momentum structure of nuclei.
Our view is that a theory that is able to incorporate on the
same footing both the quark structure of the nucleon and the
intimately related interactions between nucleons, while at the
same time accurately describing traditional nuclear proper-
ties, can provide a unique handle on where precisely to
search for explicit quark effects in nuclear physics. Perhaps
they will indeed be limited to high-momentum effects and
perhaps not. It is our hope and in fact the ultimate goal of
this work to shed light on this fundamental issue in nuclear
physics.
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