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We present a covariant formulation of the Salpeter equation for gg states in order to calculate bound-state
transitions between mesons. The corresponding Bethe-Salpeter amplitudes are reconstructed from equal-time
amplitudes which were obtained in a previous paper by solving the Salpeter equation for a confining plus an
instanton-induced interaction. This method is applied to calculate electromagnetic form factors and decay
widths of low-lying pseudoscalar and vector mesons, including predictions for CEBAF experiments. We also
describe the momentum transfer dependence for the processes 7, n,n —yy*.

PACS number(s): 13.40.Gp, 14.40.Aq, 12.39.—x, 11.10.St

I. INTRODUCTION

In two previous papers [1,2] we presented a quark model
for light mesons based on the Salpeter equation. We investi-
gated a kernel that incorporates confinement and a residual
instanton-induced quark interaction [3-5], which in this
framework leads to the correct masses and flavor mixing of
the 77 and » mesons. In general we obtained a satisfactory
description of the mass spectrum of the low-lying pseudo-
scalar and vector mesons. We also calculated various decay
observables such as the weak decay constants, the
yy-decay width of the pseudoscalars, and the leptonic
widths of vector mesons. A comparison with results of non-
relativistic models revealed the relevance of the relativistic
treatment (including the correct normalization of the bound
states) for the description of these observables, especially for
the two-photon width of the pion.

All these transitions involve a nonhadronic final state and
therefore could be calculated in the rest frame of the bound
state where the amplitudes were determined. A relativistic
quark model, however, should also be able to describe reac-
tions with a mesonic final state. If we consider for example
weak decays of heavy to light mesons or electromagnetic
scattering with large momentum transfer, the outgoing me-
son recoils with relativistic velocity. The calculation of such
transitions between mesonic states therefore involves a boost
of at least one of the meson amplitudes. In the present con-
tribution we will give a covariant formulation of the Salpeter
equation [6], which enables us to treat this boost correctly
and thus to investigate the region of large momentum trans-
fer available for instance in CEBAF experiments in the near
future [7-9].

A second important ingredient of any relativistic quark
model is an adequate treatment of the off-shell properties of
the quarks. Especially for mesonic states with large binding
energy the negative-energy Dirac components become essen-
tial. If one considers form factors at high momentum trans-
fer, the quarks are highly off shell. The Salpeter model in the
form presented here allows for a consistent inclusion of these
effects.

In Sec. II of this paper we repeat the covariant formula-
tion of the Salpeter equation and the construction of a four-
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dimensional Bethe-Salpeter amplitude as well as its transfor-
mation properties. In Sec. III we present our ansatz to
calculate the electromagnetic current in the Mandelstam for-
malism. Finally in Sec. IV we show our results for the elec-
tromagnetic 0" —0~ and 1~ —0~ form factors, the corre-
sponding decay widths, and the form factors for the

processes 70,7, 7' — yy*.

II. COVARIANT FORMULATION OF THE SALPETER
EQUATION AND RECONSTRUCTION OF THE
BETHE-SALPETER AMPLITUDE

The Bethe-Salpeter equation for the amplitude

[xp(x)]ap= (0| T¥ L(7,x)¥5(— 7,x)| P), (1)

reads in momentum space [10,2]:

d4 ’
XP(P)=SlF(p1)J ﬁ [—iK(P.p.p )xp(p')]
X S5(=p2), )

where p;=mn,P+p, pp=n,P—p denote the momenta of
the quark and antiquark, respectively, P is the four-
momentum of the bound state, and S¥ and K are the Feyn-
man propagators and the irreducible interaction kernel. Here
71,7M, are two arbitrary real numbers satisfying
mt =1

In our model, both S and K are given by a phenomeno-
logical ansatz described as follows: We introduce the com-
ponents of the relative momentum p parallel to the total mo-
mentum  p = pP/\JP?  and perpendicular to it
p =pP— (pP/P*)P, and assume that the interaction kernel
only depends on the components of p and p’' perpendicular
to P [6], ie.,

K(P.p.p")=V(p ,.r.,)- (3)
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Furthermore it is assumed that the propagators are given by
their free form Sf(p)=i/(;$—m,-+ie), where m; is an effec- q’P(P“,)ZZ f dPH,,XP(PHP,PM)’ “)
tive constituent-quark mass. From d4p=dpllpd3p” one can
integrate out dp“P and dpl’lp in Eq. (2) by introducing a co-
variant Salpeter amplitude which leads to
|
F d3piP . 2 2 F
Cp(p )= f dp”PSl(P/2+p)J zmF [—iV(p, ,.p. )Pp(p] )]S2(=P2+p), S

where [ dp“P can in principle be calculated for any on-shell momentum P. Though all the quantities have been introduced
covariantly, one has to choose a specific frame for solving the equation. Obviously the rest frame of the bound state is

distinguished, where one has p P:=(0,ﬁ). Hence in this frame the interaction is instantaneous in the original sense of
Salpeter,

V(p 0! p=w.iy=V(:p"), (6)
with the equal-time amplitude
(D(P)i:f dPOXP(PO’p)’P:(M,5)=fdePXP(p”P»PlPNP:(M,d)1 (M
so that from Eq. (5) one arrives at the well-known Salpeter equation [11], i.e.,

d’p’ AT (P)YIV(p.p)P(P)IYAT(—p) [ d’p' AT(P)YIV(p.p)P(P)]YA; (=p)
(2m)3 M+, +w, 2m)? M—-w,—w,

O (p)= ., ®)

with the projectors A" = (w;* H,)/(2w;), the Dirac Hamiltonian H;(p)=y"(yp+m;), and w;=(m>+p?)'2.

The amplitudes ® have been calculated by solving the Salpeter equation for a kernel including a confining plus a residual
instanton-induced interaction. The parameters have been fixed to reproduce the masses of the pseudoscalar and vector mesons,
the weak decay constant of the pion, and the leptonic width of the p meson. The results have been presented in [1], we use
model V1 therein for the calculations presented below. The confinement interaction has been described by a timelike vector

spin structure
| @vviGiee=- [ @p7aG-5mrecny ©)

as a scalar confinement leads to a random phase approximation (RPA) instability of the Salpeter equation [12,13]. The scalar
function 7 in coordinate space is given by a linearly rising potential 7'-(r)=a.+ b.r, in analogy to nonrelativistic quark
models; see, for instance, [14,5]. Note that y°® y° can be written as y”P® Y, p» SO that the previous statements on formal
covariance hold.

In order to reproduce the spectrum of the pseudoscalar mesons, we used an additional instanton-induced interaction given
by ’t Hooft [3-5,1]. It acts only on pseudoscalar and scalar mesons and has the form

f d3p’[Vr(1;,5’)@(5’)]=4Gf &' Vieg(p=p {1 u[®(p) ]+ Y ul®(p") ¥ 1}, (10)

where G is a flavor matrix containing the coupling constants. Here summation over flavor has been suppressed and V., is a
regularizing Gaussian function (see [1] for more details).

To arrive at a fully covariant calculation of transition matrix elements with energy-momentum conservation for both
particles, the Bethe-Salpeter amplitude xp(p) depending on the relative four-momentum p has to be known. It can be
reconstructed from the equal-time amplitude ®( ;;) in the rest frame as follows. From the Bethe-Salpeter equation itself one
finds that the amputated Bethe-Salpeter (BS) amplitude or meson-quark-antiquark vertex function
Cp(p) =[S )1 "xp(P)[S5(—p,)]~" only depends on the variables of a three-dimensional subspace P,

&’p,
PP =Tolp, )=~ | 5 V(p, 0 JPs(p! )] (a1

The vertex function is computed in the rest frame from the equal-time amplitude as
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g . dSP, > >y =y
Co(p, ),y =T == [ ot VG5B, (12)

From the transformation law for the Dirac field operators U,V (x)U X =S XI\I’(Ax) and the corresponding properties of the
bound state |P) with mass M one derives that the Bethe-Salpeter amplitude behaves as

X3 (P)=2 Saxy (AT p)SKI DY (w(ALPY), (13)
W,

under a Lorentz transformation A, where u(A,P):=AX,lJAA p is the corresponding Wigner rotation and the boost Ap is

defined by P=A p(M,0).
For a pure boost A p we can calculate the BS amplitude in any reference frame as

Xp(P)=Sx X/ Ap'P)Sy, - (14)

The covariant transformation law is justified from the covariant momentum dependence (3) of the interaction kernel. The
kinematical boost (14) thus gives the solution of the Bethe-Salpeter equation for any on-shell momentum P of the bound state.

III. TRANSITION AMPLITUDES IN THE SALPETER FORMALISM

The general prescription for calculating any current matrix element between bound states has been given by Mandelstam
[15], see, e.g., [16] for a comprehensive presentation. Consider for example the electromagnetic current operator: It may be
calculated from the BS amplitudes and a kernel K as shown in Fig. 1. K denotes a kernel irreducible with respect to the
incoming and outgoing quark-antiquark pairs, i.e., it includes all diagrams that cannot be split by just cutting the quark and the
antiquark lines.

To lowest order the kernel shown in Fig. 2 reads explicitly

—1 -1
KP(P.g.p.p')=—e V'S5 (=PR2+p)d(p' —p+ql2)—esy' VST (PR+p)d(p'—p—ql2), (15)

where p and p' denote the relative momenta of the incoming and outgoing gg pairs, e, and — e, are the charges of the quark
and antiquark, and g=P— P’ is the momentum transfer of the photon. Without loss of generality we use ;= 7,=1/2, as the
result is independent of this choice.

For identical mesons in the initial and final state and vanishing photon momentum, this is consistent with the general
normalization condition for bound states given by Cutkosky [17], which we already used in [1,2]. In that way the form factor
is properly normalized.

For the electromagnetic current coupling, e.g., to the first quark we have explicitly

a* _
PLOIP=—e, | Gy WEr(p=al2),, )SE(PR+ p=q) 1, ST(PR+PITa(p JSE(=PR+P)}  (16)

in terms of the vertex functions given in the previous section.

These amplitudes depend only on three components of the

P’ X relative momentum variable. This is a direct consequence of

2 our covariant Salpeter ansatz. In our model it is thus assumed

that the dependence of the vertex function on the component
parallel to the total momentum is negligible.

Y'q = K (Y)W\J W, q From the transformation properties given in Eq. (13) one

can show that the matrix elements of the current transform

P/2+p
+ ¥

P % K(Y)m - %W + HM +..
Yy

FIG. 1. The electromagnetic current in the Mandelstam formal-
ism calculated from the Bethe-Salpeter amplitudes xp,xp: and the FIG. 2. Lowest order terms of the perturbative expansion of the
kernel K?. The relevant momenta are also defined. kernel K(7; the solid circle denotes an inverse quark propagator.
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covariantly and thus can be evaluated in any reference frame.
For instance the Lorentz transformation A of spinless me-
sons with momenta P and P’ gives

(Pju(0)[P)y= (AT (AP |j (AD)AP).  (17)

We have chosen to perform the calculation in the rest frame
of the incoming meson. According to Eq. (12) the vertex
function of the initial meson depends only on the three-

momentum ;; and not on p°. In the case of elastic transitions
with Q%: = —(P—P’_)2=O we have P’ =P=(M,0), so that
the outgoing vertex I'= — y,I"* y, [2] is only a function of

p. Since the p° dependence is contained only in the one-
particle propagators, the integral may be calculated analyti-
cally by contour integration according to the Feynman pre-

scription. The remaining integration on | P | is done
numerically.

For spacelike momentum transfer Q2>0 or nonidentical
mesons, the outgoing amplitude has to be boosted according
to Eq. (14). This gives the vertex function an explicit depen-
dence on the energy component p° of the relative momentum
of the incoming quark-antiquark pair. There are, however, no
singularities on the real p°® axis. We thus cannot close the
contour in the p° plane, as we do not know the analytic
structure of I' in the whole complex plane.

We therefore proceed as follows. The p° integral has the
generic form

oo £(p%
dp® — 18
f—w P Hi:1,6(p0_p?il€) (18)

where f(p°) is a regular function containing the spin term of
the one-particle propagators and the vertex functions. The six
poles correspond to the denominators of the three propaga-
tors. The integral can be decomposed into a contribution
from the residues and a principal-value integral. We retain
only the contribution from the poles because the principal-
value integral should vanish in a consistent covariant field
theory in order to yield a Hermitian current (in fact the
principal-value term corresponds to the expectation value of
an anti-Hermitian operator). Within our model the prescrip-
tion is actually an additional assumption supplementing the
Mandelstam formalism. We checked numerically (see Sec.
IV) that the principal value indeed does not vanish.
Apparently this non-Hermitian contribution is induced by
the wrong analytic structure of the vertex functions inherent
to the neglect of retardation effects. Indeed, a calculation of
the form factor for bound states of scalar massive particles
with a massless scalar exchange with retardation (Wick-
Cutkosky model [18]) along the same lines shows that the
unphysical non-Hermitian part of the current vanishes [22].
For the numerical calculation of the spin part of the cur-
rent we use an angular-spin decomposition of the Bethe-
Salpeter amplitudes for particle-antiparticle states presented
in [2]. The trace of the products of Dirac matrices is evalu-
ated with standard algebraic software. The remaining inte-

gration on |p| and cos®, is performed numerically by a
Gaussian integration routine with variable step size.

The radial part of the vertex functions as well as the Sal-
peter amplitudes has been expanded in a basis of 11 Laguerre
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FIG. 3. The pion form factor at large momentum transfer com-
pared to results from pion electroproduction; see [19] and the ref-
erences given therein. The solid curve represents the calculation
with the correct boost of the vertex function, the dashed line is
obtained by neglecting the dependence on the time component of its
relative momentum.

functions. The results are found to be stable within a large
range of the scale parameter of the basis.

As our model includes confinement, we can also have
mesons with mass M larger than the sum m;+m, of the
constituents. The pinching singularities, which appear in
general for such states at values of the relative momentum

1; where both the particle and the antiparticle are on their
mass shell, are canceled by the zeros of the trace of the spin
part, so that the integral remains well defined. In fact, the
projection of the vertex function on positive energies
Toos(P):=AT (7)) Y°T(p)¥°A; (—p) vanishes if both the
quark and the antiquark are on shell. This means that the
amplitude for the bound state decaying into a free quark and
antiquark vanishes, so that confinement in this channel is
guaranteed.

The present formulation of the Salpeter equation and the
corresponding electromagnetic current in terms of the four-
dimensional Bethe-Salpeter amplitude thus constitutes a co-
variant framework for the calculation of transitions between
bound states which seems an interesting alternative to the
existing calculations in the Salpeter model; see, for instance,
[23,24]. There an effective current is introduced in terms of
the three-dimensional equal-time amplitudes; four-
momentum conservation is spoiled by integrating only in a
three-dimensional subspace and therefore the formulation
cannot be made covariant. ’

However, it should be noted at this point that our current
given in Eq. (16) will in general not be conserved. Yet, the
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FIG. 4. The pion form factor at small momentum transfer
[19,20]: Because of the large binding energy, the shape of the pion
form factor becomes very sensitive to the form of the potential; this
indicates the limits of the Salpeter approach for very deeply bound
states.

contraction of the current matrix element with the momen-
tum transfer vanishes in the special case of a transition be-
tween identical pseudoscalar mesons or between a vector and
a pseudoscalar state. This can be shown analytically from the
formal covariance, time reversal, and parity, and is also ful-
filled numerically in our model. Therefore the violation of
current conservation does not affect the transitions that will
be studied in the following.

IV. RESULTS AND DISCUSSION

As already mentioned in Sec. II, the parameters of the
model were adjusted in a previous work [1] (model V1) to
reproduce the mass spectrum and the decay observables with
nonhadronic final states of the pseudoscalar and vector me-
sons. We refrained from readjusting them in order to illus-
trate the predictive power of our approach. The electromag-
netic transitions calculated below thus have no free
parameters, and give a further test of the Salpeter model for
mesons as well as predictions for future experiments.

A. Form factors M—M' y*

The electromagnetic form factor F(Q? of pseudoscalar
mesons is defined by

(P'ju(O)|P)=ef(Q*)(P'+P),, (19)

with e the total electric charge of the meson. Consider first
the pion which in a constituent-quark model is the most

1.1 T T

N u | |

0‘

— cale.
O Dally et al. 80
4 Amendiola et al. 86 M

0.8 ]

0.00 0.05 . . 0.10
Q°[GeVT]

FIG. 5. The charged kaon form factor at small momentum trans-
fer compared to data from electron scattering [26,27].

deeply bound state. In Fig. 3 we compare our results (solid
line) for Q% f(Q?) with experimental data up to 10 GeV?
[19]. The agreement is rather good even for high momentum
transfer. The error bars for some of the data points are still
very large, but an experiment planned at CEBAF [7] should
improve the situation. Obviously f(Q?) behaves as 1/Q? for
large 2, which supports a statement by Isgur and Llewellyn
Smith [21] that the form factor in this region should be ex-
plained by nonperturbative effects. We would like to mention
similar calculations in the quasipotential formalism by
Tiemeijer and Tjon [23] and in a separable ansatz including
chiral symmetry breaking by Ito, Buck, and Gross [25]. Their
calculations show a stronger falloff at higher momentum
transfer. To analyze this effect we performed a calculation
where the p° dependence of the outgoing vertex function is
neglected (dashed line): The form factor is strongly sup-
pressed at high Q2. Our results at high momentum transfer
thus depend importantly on the particular covariant treatment
of the relative momentum dependence.

Yet, for small momentum transfer of the order of the
quark mass the form factor of the pion is not strictly mono-
tonic as one would expect, e.g., from a naive vector-
dominance model, so that the determination of the charge
radius seems ambiguous; see Fig. 4. We find that for states,
where the binding energy is very large, as in the case of the
pion, the shape of the form factor becomes sensitive towards
the form of the interaction potential. By decreasing, e.g., the
range of the instanton induced interaction, the maximum at
0.1 GeV? is less pronounced, but still present. We thus find
that the Salpeter approach is limited for the calculation of the
charge radius of very deeply bound states. The 1/Q? behav-
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FIG. 6. The charged kaon form factor at large momentum trans-
fer (solid line) compared to a p pole motivated by the VDM (dashed

line).
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FIG. 7. Comparison of the normalized wy* form factor (solid
line) in the spacelike region with an extrapolation of experimental
data in the timelike region [29] (dotted line) and with a p-pole
ansatz motivated by vector dominance (dashed line).
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FIG. 8. The normalized pmy*(wy*) form factor at large mo-

mentum transfer.
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FIG. 9. The normalized neutral (dotted line) and charged (solid

line) K*K y* form factors compared to VDM (dashed line).
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TABLE 1. Dependence of the K and K* mass, weak decay constant fx, charged kaon radius, decay
widths, and zero of the form factor for K**— K™y on the ratio of the strange and nonstrange constituent-
quark mass m/m, (masses and decay constant given in MeV).

myim, My  M§  fx (re)[fm]  Tgue_g=, [keV]  Tgaogo, [keV]  QF [GeV?]
3.0 535 895 179 0.61 78 114 2.1
2.3 510 880 183 0.60 64 112 2.7
1.8 485 865 185 0.59 52 111 4.8
1.5 475 860 187 0.59 45 110 >10
1.0 465 855 189 0.57 27 109 -
Experiment 495 892 164  0.58%+0.04 505 117+10

ior at high momentum transfer, on the other hand, is deter-
mined by the covariant boost of the vertex function and in-
dependent of the form of the interaction potential, so that we
consider our results to be reliable.

One should also keep in mind that in our calculation the
matrix element of the electromagnetic current contains an
unphysical non-Hermitian term, which we dropped in a
rather ad hoc manner. Its size is about 10% of the pion form
factor at Q*=0.5 GeV? and 30% at Q>=10 GeV?. As al-
ready mentioned, we consider this as an estimate of the ac-
curacy of our approach.

In the case of the kaon we obtain a very good description
of the form factor at small momentum transfer; see Fig. 5.
We find an electromagnetic charge radius for the charged
kaon of (rit iﬁc=0.60 fm as compared to (rii)é,ﬁ,FO.SS
+0.04 fm [26] or (ri=)ie=0.53%0.05 fm [27] both from
electron scattering data. For the neutral kaon we obtain
<r?(0>calc: —0.070 fm? as compared to <r?(0>expt: —(0.054
+0.026) fm® [28]. The reliability of these results is not af-
fected by an unnatural shape found for the pion form factor,
as the binding energy of the kaon is much smaller, so that the
Salpeter approach is justified.

In view of these agreements it is interesting to investigate
the charged form factor in the region of high momentum
transfer, which will be accessible in a CEBAF experiment
[8]. Our prediction is plotted in Fig. 6 and compared to a
vector dominance model (VDM). A deviation from a simple
p-monopole ansatz f(Q%)=1/(1 +Q2/M‘2,) is predicted to
appear for 0?>1 GeV?2.

We studied the effects of the relativistic treatment by cal-
culating only the contributions, where the quarks have posi-
tive energy. Apart from the noncovariance of the calculation
this would correspond to using a reduced Salpeter equation.
We find that the contribution of the negative energy states to
the charged kaon form factor (and therefore to the normal-
ization) is 25% for zero momentum transfer. It gives a radius
of (r?g=) i cergy=0.67 fm, which is off the experimental
error bars. Relativistic effects thus play an important role for
light mesons even at small Q2.

The form factor f,,(Q%) for the process p— my* (or
w— my*) can be defined as

2
<w(P')|j,4(0>|p(P,x)>=ef"—}'\(49—) € vor€’(PN) PP,
’ (20)

where e(P,\) denotes the polarization vector of the p (or
w) meson with spin projection \.

The transition w— 7y* has been measured in the time-
like region via the decay w— 7%u™ ™ [29], where the nor-
malized quantity F . (Q?):=f,.(Q*/f,-(0) is fitted by a
simple pole ansatz F,.(Q*)=1/(1+Q%A2_) with
AOP'=(0.65+0.03) GeV. In Fig. 7 we compare the experi-
mental results and the simple fit to our calculation in the
spacelike region.! Our curve corresponds to a pole at
A¢=0.63 GeV. The extrapolation of the data to the space-
like region and our prediction thus agree excellently and dif-
fer from the vector dominance model which corresponds to a
p pole at AYPM=0.77 GeV, far off the experimental data.
Thus we have found a process where a relativistic quark
model is superior to the phenomenological vector dominance
model even at small momentum transfer.

The p— ary* form factor, which in our model is degen-
erate with w— 7ry*, is particularly important for calculating
meson-exchange current corrections to the deuteron form
factor. As there is also a direct experimental interest in this
quantity [9,30], we plot our prediction for large momentum
transfer in Fig. 8 and compare it to a simple p pole and to the
pole fit of [29] for w— 7%y* discussed above.? At momen-
tum transfer larger than 1 GeV2, which is particularly rel-
evant for relativistic effects in the deuteron, we find a devia-
tion even from the simple pole fit. Ito ef al. [25] obtained
similar results for p— 7ry*. These authors also discussed
contributions beyond the impulse approximation including
an interaction current [31]. They however neglect the con-
finement problem. Our absolute value of f,,(0) will be dis-
cussed in the context of the electromagnetic decay widths.

In the strange sector the form factors K**—K* y* and
K*0— KOy are extremely interesting quantities, as the cou-
pling of the current to the quark and the antiquark differ
because of their unequal masses. Our results in Fig. 9 show a
nearly VDM-like behavior for the neutral process at least at
small momentum transfer. However, the picture is totally dif-
ferent for the charged kaons: The negative interference be-
tween the two currents leads to a zero in the form factor at
Q§= 2.7 GeV?, a region which is already highly relativistic.
The effect may be understood qualitatively in a VDM-type

TA calculation of the quantity F,.(Q?) becomes meaningless in
the timelike region, as our model does not guarantee confinement in
the p—mgqg channel, so that the graph diverges for
QZH—(mq+m(;)2.

2Assuming SU(2) flavor symmetry for F,, and F pm Which of
course might not be true experimentally.
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TABLE II. Comparison of experimental and calculated electro-
magnetic meson decay widths.

Mesonic decay width [keV] Experimental [32] Calculated
T(p=—m*7y) 68 = 7 38
'(p°—7ny) 121 = 31 38
FNwo—my) 717 = 43 335
I(K**—=K*y) 505 64
I(K*°—K°%y) 117 * 10 112
I'(p—7ny) 58 = 10 50
I'(w—77) 40 * 1.7 5.6
T(¢—77) 56.9 + 2.9 60
(7' —wy) 59 * 0.9 12.7
L(n'—py) 59 £ 6 122
T(p—7'y) <18 0.18+0.02

model, where the coupling to the quark and antiquark is as-
sumed to be proportional to their respective magnetic mo-
ments and to a propagator of the corresponding vector me-
son, p, or ®. The result, however, depends sensitively on the
ratio of the mass of the strange (m;) and nonstrange (m,,)
constituent quark. We varied these masses keeping the sum
of them as well as the other parameters fixed and obtained
the dependence on the m/m, ratio shown in Table I. Our
original fit in [1] corresponds to m,=170 MeV and
my=390 MeV, i.e., a ratio m;/m,=2.3.

Because of the good agreement with the experimental de-
cay widths (see next section), we consider these calculations
to be even more reliable than in the p7ry case. We therefore
encourage an experimental investigation of the strange form
factors, e.g., at the CEBAF facility to provide empirical in-
-formation on the ratio of the constituent-quark masses.

B. Decay width M —M' y for the ground state mesons

There exist several measurements of an excited meson
decaying to a state with lower mass by emission of a single
real photon [32]. These processes provide a suitable test of
the Bethe-Salpeter amplitudes especially for resonances
where no detailed study of form factors is available. The
results for the transitions between vector and pseudoscalar
mesons are summarized in Table II. If the mass difference is
large, the final meson is emitted with relativistic velocity, so
that a covariant framework is essential.

In the semirelativistic ansatz of Godfrey and Isgur [33]
the nonrelativistic decay formulas have been modified by
terms (m/E)", where m is the quark mass and E its energy.
These corrections involve new ad hoc parameters n. The
relativistic framework presented here includes these effects
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FIG. 10. Feynman graph for the decay into two photons.
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FIG. 11. The 77'0,77, and %' — yy* form factors compared to
experimental data [34,35].

automatically, without free parameters.

The widths for decays with a pion in the final state are
generally underestimated by a factor of 2.3 Our results are
consistent with those of Tiemeijer [24] in a similar equal-
time formalism. This again indicates that the. Salpeter for-
malism is not fully satisfactory in the case of very deeply
bound states.

The rates K*— Ky are in excellent agreement with mea-
surements for both the neutral and the charged strange me-
sons. This, together with the good results of the form factor,
indicates that the kaon is well understood in the Salpeter
model. Again the width for the charged decay depends on the
ratio of the constituent-quark masses (see Table I). A ratio of
mg/m,=1.5-1.9 is favored, whereas the neutral decay is
almost insensitive to this quantity.

The electromagnetic decays involving a 7 (#’) meson in
the final (initial) state are a sensitive test of the nn and ss
component of their Bethe-Salpeter amplitude and therefore
of the interaction which induces flavor mixing. The decays
p,w— 77y involve the nn component, ® — 7y the s5§ com-
ponent. The agreement is excellent for these three rates, con-
firming the good description of the mixing coefficients for
the # given in [1]. For the %’ decaying into p or w, our
calculated rate is too large by a factor of around of 2, con-
sistent with the fact that in our model the nn component of

3From SU(2)-isospin symmetry the decay width p®— 7%y should
be the same as for p*— 7=y and by a factor of 9 smaller than the
width for w— 7° v, and therefore this experimental value has to be
considered with care.
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the n' is larger than the semiempirical value extracted from
JIV decay [1].

Our prediction for the decay width ®— %’y includes the
estimated error from the inaccuracy in the calculated meson
masses which enters the transition matrix elements. As we
underestimate the ss component of the ' only by a small
amount [1], we expect our result for this experimental value
to be quite accurate.

C. Form factors M — yy*

The structure of the Bethe-Salpeter amplitude for neutral
pseudoscalar mesons may be tested by the production via a
virtual and an (almost) real photon as done in y7y experi-
ments at e "e~ colliders [34,35]. To lowest order the process
is given by the graphs shown in Fig. 10. If one of the photons
is on shell, i.e., q%=0, the amplitude can be parametrized as

Tyl q1.92)= €uvapd a5 u(Q3). 21)

As in the analysis of the experimental data given in [34,35],
we define a width

M3
L(Q%)= g7 (2, (22)

which for Q?=0 gives the actual decay width for a pseudo-
scalar into two real photons.

The calculated values of I'(Q?) for the 7°, #, and 7’ are
shown in Fig. 11 and compared to the experimental results
[34,35]. The decay widths have already been published and
are in good agreement with experimental data [1].

The width for the process 7°— yy* depends sensitively
on the quark mass, a result already found by Ito et al. [25].
Their optimal value of the nonstrange quark mass
m,=250MeV is in rough agreement with our result of
m, =170 MeV, which had been adjusted to obtain the cor-
rect pion decay constant.* As in the case of the charged pion
form factor we find a structure for I' ,0_,,.(Q?) for low mo-
mentum transfer, which, however, is much less pronounced.
We thus again find that the Salpeter approach reaches its
limits for states with extremely large binding energy. The
width for this process is also somewhat underestimated at
larger momenta.

The structure of the » form factor can be rather well
described up to 4 GeV2. This supports the conclusion based
on other observables that the 7 meson is well understood.
Although the #’ width is too small by about 30%, the de-
pendence on Q2 is well reproduced up to 8 GeV?.

V. SUMMARY AND CONCLUSION

The first part of this paper contains a covariant formula-
tion of the Salpeter equation, in order to describe transitions
between bound states with large momentum transfer. The key
issue in this respect is the interrelation between the equal-
time Salpeter amplitude and the meson-quark-antiquark ver-
tex function. The former allows for the formulation of the

‘A larger quark mass would give a smaller width at zero momen-
tum transfer, but also a smaller slope.

Salpeter equation as a well defined eigenvalue problem for
the meson masses and amplitudes; the latter allows for the
reconstruction of the corresponding Bethe-Salpeter ampli-
tude. With the formalism developed by Mandelstam one can
use the vertex functions, which depend only on the coordi-
nates of a three-dimensional—although covariant—
subspace, to calculate mesonic transitions and decays. This
procedure respects covariance and current conservation for
the transitions studied. However, in order to obtain a Hermit-
ian current we have to adopt the additional prescription to
take only the residue contributions of the one-particle propa-
gators, as otherwise the neglect of retardation effects would
yield a anti-Hermitian principal-value integral.

Applying this ansatz to a relativistic quark model that
includes confinement and an instanton-induced flavor mixing
interaction, we investigated the electromagnetic properties of
the light pseudoscalar and vector mesons for the scalar and
isoscalar states. To demonstrate the predictive power of our
approach, we used the Bethe-Salpeter amplitudes calculated
in a previous work [1], and thus all the present results were
obtained without any additional free parameter.

We find an excellent description of all observables mea-
sured so far, especially for the # and K meson, and also for
the lowest vector mesons. The flavor mixing of the », which
can be measured in the decays p,w,®— 7y, is correctly
reproduced. The kaon form factor at small momentum trans-
fer as well as the K*— Ky widths is in very good agreement
with the data. Our quark model prediction in the spacelike
region of the w— 7y* form factor agrees with the phenom-
enological extrapolation from the data in the timelike region,
but differs significantly from the standard vector dominance
model. We present predictions for the processes p— wy*
and the kaon form factor in the large Q2 regime which will
be measured at CEBAF in the near future. We showed that
the transition form factor K**— K*y* represents an inter-
esting observable, as its form depends strongly on the ratio
of strange and nonstrange quark mass. Because of the nega-
tive interference of the quark and the antiquark currents, one
obtains a zero in the amplitude, which we predict at
Q(2)~2.7 GeV?. From the decay width into a real photon we
find my/m,=1.9-1.5.

The description of the 1/Q? behavior of the charged pion
form factor in the region of high momentum transfer are
sensitive to the formally covariant boost and our treatment of
the time component of the relative momentum. Further work,
however, is needed to assess the reliability of our model for
evaluating the form factor. At present we are therefore study-
ing electromagnetic transitions in a similar framework on the
basis of the Wick-Cutkosky model [22].

In our opinion, we reach the limits of the Salpeter ansatz
in the case of the pion, due to its strong binding. We find that
the shape of the charged and neutral form factor on the scale
of the quark mass becomes sensitive to the interaction. In our
model there are structures which are not seen in experimental
data. We could not find a kernel that includes confinement
and describes the form factors in this region. This strong
dependence is only present for states with extremely large
binding energy and therefore does not, e.g., affect the kaon
properties.
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The results show that a relativistic treatment of constitu-
ent quarks in the framework of the Salpeter model for me-
sons, including a relativistic normalization and a covariant
boosting of the amplitudes is able to describe quantitatively
various properties of the ground state pseudoscalar and vec-
tor mesons. In view of this success we shall devote future
work to apply the formalism to a detailed study of the com-
plete meson spectrum using the one-gluon-exchange poten-
tial for heavy systems.
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