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A relativistic mean-field model of nuclear rnatter with arbitrary proton fraction is studied at finite tempera-

ture. An analysis is performed of the liquid-gas phase transition in a system with two conserved charges

(baryon number and isospin) using the stability conditions on the free energy, the conservation laws, and

Gibbs criteria for phase equilibrium. For a binary system with two phases, the coexistence surface (binodal) is
two dimensional. The Maxwell construction through the phase-separation region is discussed, and it is shown

that the stable configuration can be determined uniquely at every density. Moreover, because of the greater
dimensionality of the binodal surface, the liquid-gas phase transition is continuous (second order by Ehren-
fest's definition), rather than discontinuous (first order), as in familiar one-component systems. Using a mean-

field equation of state calibrated to the properties of nuclear matter and finite nuclei, various phase-separation
scenarios are considered. The model is then applied to the liquid-gas phase transition that may occur in the

warm, dilute matter produced in energetic heavy-ion collisions. In asymmetric matter, instabilities that produce
a liquid-gas phase separation arise from fiuctuations in the proton concentration (chemical instability), rather

than from fluctuations in the baryon density (mechanical instability).

PACS number(s): 21.65.+f, 25.75.+r, 64.10.+h

I. INTRODUCTION

The determination of the properties of nuclear matter as
functions of density, temperature, and the ratio of protons to
neutrons is a fundamental problem in nuclear physics. To
achieve this goal, one must study not only the ground and
excited states of normal nuclei, but also highly excited nuclei
created in nucleus-nucleus collisions and nuclei far from sta-
bility, which may be created in radioactive beams. In this
work we consider the properties of equilibrium nuclear mat-
ter at finite temperature and arbitrary proton fraction, and we
describe some new qualitative features that may be relevant
for the energetic collisions of heavy ions.

There have been numerous theoretical studies of the dy-
namics of medium-energy heavy-ion collisions [1—6]. Some
of these are based on equilibrium thermodynamics and focus
on the nuclear matter phase diagram [7—11].The basic fea-
ture is the liquid-gas phase transition at low densities and
moderate temperatures, and how the nuclear system evolves
through various phase-separation boundaries (binodals) and
instability boundaries (spinodals) [7,12,13]. Other analyses
concentrate on the nonequilibrium evolution of the system
by describing the early stages of the collision through cas-
cade simulations [14,15], for example, or the late stages of
the collision using models of fragmentation or nucleation
[16—18]. Although the equilibrium analysis oversimplifies
this problem and is applicable only to certain aspects of the
evolution, it is useful for providing an orientation to the com-
plex dynamics by giving concrete descriptions of the phase-
separation process, which may be difficult to characterize in
more microscopic formulations. Here we will follow the
thermodynamic approach and focus on the qualitatively new
features that arise when a system with two conserved charges
(i.e., baryon number and electric charge) undergoes a liquid-
gas phase transition. These features have been discussed ear-
lier by Barranco and Buchler [19], who use a simple phe-
nomenological equation of state with an interaction energy

that is independent of temperature, and by Glendenning [20],
who focuses on zero-temperature matter and neutron stars. In
a series of papers [21—23], Lamb, Lattimer, Pethick, and
Ravenhall examine asymmetric matter at finite temperature
with a Skyrme Hamiltonian, and more recently [24], Pethick,
Ravenhall, and Lorenz used a similar analysis to study the
composition of neutron star crusts.

The main ingredient in the present analysis is the nuclear
equation of state, and ours is based on a relativistic mean-
field model involving the interaction of Dirac nucleons with
scalar and vector mesons [25,26]. There are several reasons
for choosing this type of model. First, recent developments
in the application of these models:o the structure of nuclei
show that they can provide an excellent description of bulk
nuclear properties throughout the Periodic Table, provided
that nonlinear scalar and vector self-interactions are included
[26—37]. In fact, relativistic mean-field models describe
these properties as well as or better than [38] any other mi-
croscopic model presently available. Thus we have a way to
calibrate our equation of state at zero temperature and nor-
mal nuclear densities, and then extrapolate into the warm,
dilute regime appropriate for the phase transition. Second,
the mean-field approximation is known to be thermodynami-
cally consistent; that is, it satisfies the relevant thermody-
namic identities and the virial theorem [39]. Moreover, al-
though the mean-field approximation oversimplifies the
nuclear dynamics, it allows for easy computations and is
commensurate with our simplified description of the colli-
sion dynamics. Finally, the ability to determine the model
parameters analytically from a specified set of zero-
temperature nuclear matter properties [33,37] allows us to
easily study variations of the model and to assess the sensi-
tivity of our results to the nuclear compressibility and sym-
metry energy, both of which are not particularly well known.

The models we study involve nonlinear scalar and vector
self-interactions through fourth order in these fields, as first
proposed by Boguta and Bodmer [27], and later generalized
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by Bodmer and Price [31,33].The desired nuclear symmetry

energy is achieved using the simplest possible coupling of
the p meson to the nucleon, and there are no p self-
interactions. Although it is known that this way of generating
the symmetry energy is a simplification of more complex
mechanisms (for example, one-pion-exchange in a Hartree-
Fock calculation produces significant contributions [40]),
and that the dependence of the energy on the isovector den-

sity (p&—=p„—p„) may be more complicated when one is far
from symmetric matter, the qualitative features studied here
arise because the symmetry energy is repulsive for aO values
of p3 and this repulsion grows monotonically as

~ ps ~

in-

creases. Thus the present simple description is adequate for
our purposes, and we expect that other models of the sym-
metry energy with these features will produce similar results.
Moreover, we can adjust the symmetry energy to any reason-
able value, and it is straightforward to generalize our model,
which we leave as a topic for future investigations.

Similar relativistic mean-field calculations of warm, sym-
metric nuclear rnatter were performed earlier by one of us

[39], but there the original Walecka model [41] was used,
which allows only a rough calibration to observed bulk
nuclear properties. Here we want to explore arbitrary proton
fractions and to present results for the best relativistic equa-
tions of state available. Moreover, this earlier work concen-
trated on the Lorentz covariance of the relativistic mean-field
theory; the same analysis could be applied to the class of
models studied here, but this is unnecessary, and we carry
out all calculations in the rest frame of the warm matter.
Indeed, even the use of a relativistic mean-field theory is not
essential for our discussion; any equation of state that is ac-
curately calibrated to nuclei should produce similar results.

We emphasize that although we present quantitative re-
sults based on an accurate nuclear equation of state, our fo-
cus is on the new qualitative features that arise in liquid-gas
phase transitions in systems with more than one conserved
charge. We believe that our simplified hydrodynamic, ther-
modynamic, and mean-field description of nucleus-nucleus
collisions is the most transparent way to do this, and we
expect that signatures of these new features will survive in
more sophisticated calculations. In particular, our primary
result is that the liquid-gas phase transition in asymmetric
nuclear matter is of second order, in contrast to the familiar
first-order (van der Waals) transition that occurs in one-
component systems (and in symmetric nuclear matter). If
such a phase transition actually occurs in medium-energy
heavy-ion collisions, then generically it should be smoother
than a first-order phase transition. To be more precise, even if
the assumption of thermodynamic equilibrium is totally jus-
tified, and even if the finite-size effects on the phase separa-
tion are totally negligible, we show that the generic liquid-

gas phase transition must be continuous; for example, it
occurs over a temperature range of several MeV for matter
that is roughly 40% protons. Thus observable signals of this
transition should be more continuous than previously ex-
pected from conventional analyses, which find a discontinu-
ous (first-order) phase transition in the thermodynamic limit
[16].

Furthermore, we find that in asymmetric matter, the rel-
evant spinodal that signals instability to infinitesimal Auctua-
tions arises from variations in the proton concentration at

fixed pressure. This is in contrast to the usual scenario (and
the one relevant for symmetric matter), in which spinodal
decomposition occurs due to fluctuations in the baryon den-
sity at points of mechanical instability. Thus microscopic
models that attempt to describe this decomposition using
nucleation or fragmentation must allow for different proton
concentrations in the liquid and gas phases.

The outline of this paper is as follows: In Sec. II, we
present a general discussion of the thermodynamics of phase
transitions in multicomponent systems. We emphasize that
the stability conditions, conservation laws, and Gibbs crite-
ria produce a set of equations that completely specifies the
thermodynamic variables. (That is, there are equal numbers
of equations and unknowns. ) While some of this material has
been presented elsewhere, we believe this is the first deriva-
tion that proceeds directly from a study of the free energy of
the system. In Sec. III, we describe the relativistic mean-field
model, present the relations that determine the equation of
state, and discuss how the model parameters are specified.
Some numerical procedures used to obtain our results are
also discussed. Section IV deals with a study of the binodal
surface; various phase diagrams and Maxwell constructions
are illustrated, and the evidence for the second-order liquid-
gas transition is presented. In Sec. V, we apply our simple
model to heavy-ion collisions and describe the phase coex-
istence region and the various spinodals. We also consider
how the continuous phase transition may affect the evolution
of the system. Section VI contains a short summary,

As a guide for the reader, we note that the material in
Secs. II through IV is presented before the applications in
Sec. V for both logical and pedagogical reasons. Neverthe-
less, because of the formal nature of the initial discussion, it
may be useful on a first reading to consider Secs. II through
IV briefly and then to concentrate on the results of the for-
malism that are displayed in Sec. V. After gaining some in-

sight into the behavior of a specific two-component system,
one can then return to the formal material and consider it in
more depth.

II. PHASE TRANSITIONS IN MULTICOMPONENT
SYSTEMS

We consider a system characterized by a Hamiltonian H
and a set of n mutually commuting charges Q;. Here a con-
served charge does not necessarily imply an independent par-
ticle species; it includes any conserved quantity resulting
from an underlying symmetry of the system, for example,
electric charge, baryon number, total angular momentum,
etc. Moreover, particle numbers may change during a pro-
cess (by decay, for example), and it is actually the conserved
charges that are relevant for the thermodynamic analysis.

The equilibrium state of the system enclosed in a volume
V is completely described by the thermodynamic potential

t 42]

1
A, (T, V, p, , )= ——ln Tr exp —P H gp, ;Q;, (1)—

where P is the inverse temperature. Thus the average charges
and the pressure can be obtained from
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Q, (T, V, p, ;)=-
+j~ T, v, (p, wj)

p(T, V, p, ;)=—
'I', (p, ,)

(3)

In some regions of T, some values of the p, ; may lead to
systems with the same p but different density, and this allows
for the possibility of phase transitions. To be more specific,
let us first perform a Legendre transformation and consider
the Helmholtz free energy F. We assume a system with
specified charges Q; in a large volume V, so that surface
effects can be neglected. We then have
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A(T, U, p, ;) = —Vp(T, p, ;),

Q;= Vp;(T, p, ;),

and correspondingly,

(4)
FIG. 1. Free-energy density as a function of density for a one-

component system at fixed temperature. For clarity, we show
.r" —cop=.&+115.75MeV) p, since the variations in .M are quite
small. The additional term linear in the density has no effect on the
stability conditions or on Gibbs' criteria.

F(T, V, Q;) = V%(T,p;) = fI(T, V, p, ;)+Vg p, ;p;(T, p, ;), Vp;=g V p;,
(o)

with

' B.X(T,p;)
V=+ V.

Bpj T,(p, , i&j)

The system will be stable against separation into two
phases if the free energy of a single phase is lower than the
free energy in all two-phase configurations. This requirement
can be formulated as

Equations (8) and (10) are global criteria for the stability
of the one-phase system. If these inequalities are satisfied,
then it is necessarily true that the symmetric matrix

~pl ~pg

with

p; = (1 —k) p,
' + k p", , 0 ~ X & 1,

(8)

(9)

is positive [43]. In contrast, whenever Eq. (8) is violated, a
system with more than one phase is energetically favorable.
The phase coexistence is governed by the Gibbs conditions

where the two phases are denoted by a prime and a double
prime. In formal terms, stability implies that the free energy
density is a convex function of the densities p, [43].Convex-
ity implies that stability against separation into two phases
also guarantees stability against separation into an arbitrary
number of phases (which we denote by superscripts cr, P,
. . . , cu). That is, by Jensen's inequality on convex functions,
Eqs. (8) and (9) are equivalent to

(10)

with

p;=g) p, and g X =1,
(n) (n)

where the sums are over all phases (cr). The parameters
= V /V specify the volume fraction occupied by each

phase. The second equation (9) or (11) ensures that the over-
all charges are conserved:

(15)

where the temperature is the same in all phases. The local
positivity conditions on,M; give rise to a set of n inequali-
ties that divide the parameter space (T,p, t into stable and
unstable regions. It is important to realize, however, that un-
der conditions of phase separation, Eq. (8) may still be valid
locally (that is, for p,', p", =p;), but it may nevertheless be
possible to find significantly different densities p,

' and p,
"

that violate this condition. This leads to the existence of
metastable states.

These ideas are illustrated for a simple one-component
system in Fig. 1. Here the free energy density at fixed tem-
perature is shown as a function of the density for one of the
models discussed in the following section. At point D, we
evidently have

op
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and the system is stable. At points A and B, ,&~is still locally
convex, but these points share a common tangent (chemical
potential). Thus, although the stability criteria remain valid
locally around A and B, the existence of the common tangent
implies that these two phases with different densities can
coexist. The values of T and p at the points A and B lie on
the binodal surface in the (T,p) plane, which is a one dimen-
sional surface in this simple example. At point C, the free
energy is concave, indicating that this configuration is un-
stable against phase separation. For points between A and B
where the second derivative of,W remains positive, the sys-
tem is metastable and can exist temporarily in a single phase,
allowing for supercooling or superheating. However, there is
an inAection point between A and C, and also one between B
and C, where the second derivative of,W vanishes; these
points lie on the spinodal surface, which delimits the onset of
instability.

According to Gibbs' phase rule [44], at most

K „=n+2

phases can coexist in equilibrium in a system with n con-
served charges. Each single phase is characterized by the set
(T,p, , U ) of n+ 2 variables, so that if there are K phases,
the total number of variables is K(n+ 1)+1. (All phases
have the same temperature. ) We assume that the n total
charges g; and the total volume V are also specified, which
brings the total number of variables to K(n+1)+n+2.
These variables are restricted by the Gibbs conditions (14)
and (15), which provide (K—1)(n+ 1) constraints, and by
the conservation laws (11) on the charges (n constraints) and

(13) on the total volume (1 constraint). We therefore end up
with a set of n+ 2 independent variables, which we can take
to be (T,Q;, V) or (T,P, , V). This result implies that the
number of degrees of freedom in a system with strictly con-
served charges is independent of the number of phases
[4~,46].

It is important to emphasize, however, an important dif-
ference between a multicomponent system and one contain-
ing a single conserved charge. Although the ratios of the total
charges Q;IQ~ remain fixed once the system has been pre-
pared, the ratios can be different in different phases More-.
over, since the independent variables T, g;, and V deter-
mine the energetically stable state of the system, it is
impossible to impose additional constraints. For example, as
shown in Ref. [20], one cannot demand that the pressure
remain constant during a phase transition at fixed tempera-
ture, for this would violate either the equilibrium conditions
or the conservation laws (12). Consequently, the common
(vapor) pressures and chemical potentials vary when the pro-
portions X of the phases change. These results will be illus-
trated explicitly for the case of asymmetric nuclear matter in
Secs. IV and V.

A necessary condition for the coexistence of more than
two phases is that any pair of these phases must be in equi-
librium. In addition, as mentioned earlier, a system that is
stable against separation into two phases is also stable
against separation into multiple phases. Let us therefore fo-
cus on two such phases for a moment, which we will denote
with a prime and a double prime. The two sets of densities
t p,', p", ) that satisfy Eqs. (14) and (15) form a surface in the

-0.8 -0.7 -0.6

0.00

E
-0.25

O
-0.50

-0.75
I

0.05
I

0. I 0
p [fm 1

I

0.15 0.20

FIG. 2. Free-energy density as a function of density and asym-
metry pz /p for a system with two conserved charges at fixed tem-
perature. We again show .W~—cop for clarity. The curve for sym-
metric matter has p3/p=0.

parameter space JtT, p;); this is the phase separation bound-
ary, or binodal. For n conserved charges and two coexisting
phases, Gibbs phase rule implies that the binodal is an n
dimensional surface. We can also show that this surface en-
closes all points satisfying

p;=(1 —k)p,'+ Xp,", 0(k(1,

n

Ti,.)(p ) = X (p p )tj (p )+ ~(&',p, )
i=O

n

=X p;t;(6;) p(r, p,)—
From the first equality, it follows immediately that when
.W~(T, P;) is a convex function of the p, , the tangent plane
will lie below .M~ (the stable region), and when the convexity
of,&~is lost (that is, when, &~acquires a "saddle point"), the
tangent plane will lie above, A~ (the unstable region) [43].
Moreover, from the second equality, the existence of a com-
mon tangent plane connecting two distant configurations im-
plies equal pressures and chemical potentials in these con-
figurations, which are simply Gibbs' criteria for phase
equilibrium. These common tangent planes therefore define a
binodal surface and allow for phase separation; it also fol-
lows that every point in the parameter space that leads to an
unstable single-phase system must lie inside the region en-
closed by the binodal surface. This is evident in Fig. 1 for the
unstable systems in the neighborhood of point C, which lie
inside the binodal surface that contains A and B.

In Fig. 2, we show the corresponding situation for a sys-

that lead to a single (unstable) configuration with a higher
value for the free energy. Although this statement is reason-
able from a physical point of view, it is not immediately
obvious.

To prove it, we define a tangent plane T(~ l(p;) that is a

function of the p; and that can be attached to any point in the
parameter space p;. Since the slopes at any such point are
given by the chemical potentials p, ;(p,) [see Eq. (7) and Fig.
1], these tangent planes can be expressed as
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,/p = -0.4

p, /p =0

FIG. 3. The Maxwell construction for symmetric and asymmet-

ric systems. The construction for symmetric matter (p3/P=O) is

indicated by the segment AB and is the same as for a one-

component system. The construction for asymmetric matter with

p3/p= —0.4 is indicated by the segment CF and shows the quali-

tatively new behavior allowed in a two-component system. The

asymmetry is held constant throughout the phase separation. The
(dashed) binodal line is obtained from similar isotherms at other

values of the asymmetry.

tern with two conserved charges at fixed temperature. Here

p denotes the density of the sum of the charges, and p3
denotes the density of the difference; thus, p3 /p is a measure
of the asymmetry. The dashed curve indicates the intersec-
tion of the two-dimensional binodal surface obtained from
the set of common tangent planes with the plane defined by
T= 10 MeV. (The end points of the dashed curve in Fig. 2
correspond to points A and 8 in Fig. 1.) Observe that all

configurations where the free-energy density has a saddle
point are contained within the binodal. Note also that in this

example, the free-energy density is always convex with re-

spect to variations in p3 at fixed p and T.
One feature of the binodal surface is that it may contain

critical points. At the critical points, if they exist, the two
phases can no longer be distinguished by their densities.
Therefore the critical points form a line that divides the bin-
odal surface into different regions describing either a high
density (liquid) or a low density (gas) phase. Finally, we note
that more than two phases can coexist if and only if each pair
of phases form a binodal, and if all these binodals have a
common region of intersection [44].

The binodal surface determines the stability boundaries of
the system, but it remains to show how the system behaves
inside, i.e., how to interpolate within the metastable and un-

stable regions using a Maxwell construction. To explain this
in more detail, we consider an isothermal compression in a
situation where the system can separate into two phases.

We begin with the familiar case of a one-component sys-
tem, as illustrated by symmetric nuclear matter in Fig. 3.
Suppose that during the compression, the system encounters
the binodal at some point A in /tT, p j space. At this point, the
whole volume is occupied by a phase with density p", and a
second phase with density p is about to emerge in an infini-
tesimally small volume. The two phases at A and B are con-
nected by the Gibbs conditions, so that they have equal tem-
peratures, pressures, and chemical potentials. In a one-
component system, B is the point at which the system leaves
the two-phase region; on the (p, p) diagram of Fig. 3, A and

B are connected by a horizontal line, the well-known Max-
well construction. In a multicomponent system, however, as
depicted in the upper portion of Fig. 3, the ratios of the
charges in the emerging phase at D are generally different
from those in the original preparation at C, thus violating the
conservation laws. The system must therefore evolve instead
through configurations that maintain the ratios of the total
charges (the curve CF), and it leaves the instability region at
the point F, which lies together with C on the line of con-
stant ratios Q;/g . At this point, the original phase is

present in infinitesimal quantities with densities ip, ), while

the newly created phase has evolved to point F. The con-
figuration at F is consistent with the conservation laws, and
in general, the pressure and chemical potentials in the coex-
isting phases have changed throughout the transition.

To determine the nature of the system between these ex-
treme values, we must solve

p, = ( 1 —k )p,
' + k p", (18)

for given values of p;, with p,
' and p"

, lying on the binodal
surface. It is important to realize that Eqs. (18) are indeed a
set of n equations in n unknowns, since the p; are specified,
and among the 2n+1 variables p,', p',-', and P, n+1 can be
eliminated by virtue of conditions (14) and (15). Moreover,
these equations yield solutions with qualitatively different
characteristics. If the solutions yield all values of k in the
interval [0,1], so that

p,'=p, for X=0, p", =p, for P =1,

then the system has undergone a phase transition. However,
anticipating the subsequent discussion, there are also solu-
tions with 0(P ~X „(1.In this case the system becomes
unstable to phase separation, but undergoes a retrograde con-
densation: after occupying a maximal volume fraction

„, the new phase begins to disappear, and the system
leaves the instability region in the original phase. In either
situation, Eq. (18) provides the desired Maxwell construction
that determines the free energy in the transition region ac-
cording to

B=N +N„= Vp

and the total charge, or equivalently, the third component of
iso spin

N —N 1
I3 = =——Vp3.2 2

(2o)

Thus we have

A(T, P, P3) = P(T,. /L, /J. 3)+PP+ P sP3. —(21)

Densities related to other extensive quantities can be com-
puted accordingly.

We close this section by specializing the general formal-
ism to asymmetric nuclear matter, a system of interacting
neutrons, protons, and mesons. Such a system is character-
ized by two conserved charges: the total number of baryons
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The stability condition (8) implies the following set of in-
equalities on the convex free energy density: &=0 7, i~"—g.V"——g r b' —(M —g.,W) 0

(22)
1

2 1 1 1
+ —(8 @d"P m—P ) ——~@ ——li. @ — F—,F~'

p 3 f 4f 4PP

8,A B,w~ )
8p gp3

g2~~ ) 2

L, ~P3~P]
(23)

1 1 1
+ —m V V~+ —jg (V V~) ——g, .gv'

U P 4f U P 4 Pv

N

N, +N„
P+P3

2p
(24)

and to rewrite the free-energy density as

To make the physical content of these conditions more
transparent, it is convenient to introduce the proton fraction y
defined by

1
2+ —I b~ b". (29)

The scalar, isoscalar-vector, and isovector-vector fields are
denoted by P, V", and b~, respectively, and the vector me-
son field strengths are F" = 8~V' —8 V~ and
8~'= B~b' —8'b" —g b"X b'. We work in natural unitsP
with fi = c = kz,&„,„„=1.

In the mean-field approximation, the pressure p and the
energy density 8 are easy to compute and can be written as
[25,26]

~(T P, P3) = &(T P y). (25)

It is straightforward to show that the conditions (22) and (23)
are equivalent to

( OIP l

pl 2 )0
(~p)Ty l ~p lr,

2 2

2g 2g 6g 24g,
44 (30)

1
c~'= 2[H5(v„,M*)+H5(v, ,M~)+M* H3(v, M*)

1
p= ~ [H5(v, M*)+H5(v„,M")]+ 2 W + —W3~' 2g, 24

~dp, ~ (ap, „~)0 or &0, (27) 2

+M*~H3(v„,M~)]+ Wp —
z

W2 ——W4
U

where we have introduced chemical potentials for protons
and neutrons defined by

1
2 2

+ —g RI, — ', Z'+ ', e'+, e'+ 4e',

pp= p+ p3, pn= p p3. (2g) (31)

The first inequality is the familiar requirement that the iso-
thermal compressibility is positive, that is, the system is me-
chanically stable. The second condition rejects the special
character of the binary system. It expresses "diffusive stabil-
ity,

" which guarantees that energy is required to change the
concentration in a stable system while holding the remaining
variables (pressure and temperature) fixed [45].

III. RELATIVISTIC MEAN-FIELD EQUATION OF STATE

with the conserved baryon density

1
p =

2 [G3(v„,M*) + G3( v, , M*)]

and isospin density

1

P3 =
2 [G3( vp, M ) —G3( v„,M*)].

(32)

(33)

To describe the nuclear equation of state, we use a rela-
tivistic mean-field model containing nucleons, neutral scalar
and vector fields, and the isovector p meson field [25,26].
The neutral meson fields are self-interacting, including terms
through fourth order in the fields, as proposed by Bodmer
and Price [31,33]. (For simplicity, we omit couplings be-
tween the scalar and vector fields. ) The p meson is intro-
duced in a minimal fashion, as discussed in the Introduction.
This model can reproduce the observed properties of nuclear
matter, and recent calculations show that it also gives an
accurate description of the bulk and single-particle properties
of nuclei throughout the Periodic Table [37].

The Lagrangian density for this model can be written as

(34)

1
v=p, —W ——R, (35)

1
v, =—p,„—W+ —R.

Here, following Bodmer [33], we define the scaled meson
fields ~Ii—=g, @, W—:g, Vo, and R= g~bo, with bo th—e time-
like, neutral part of the p meson field.

The baryon effective mass and effective chemical poten-
tials are defined in terms of the meson mean fields as
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TABLE I. Mean-field parameters.

C2

374.77

C2
U

260.57

C

106.91

v/M

3.0809 8.106 0.02364

co / 1
71 1

P~~~I, ~~—&]+eG„(p,, M)—=
Jo

We also define the required integrals over the thermal distri-
bution functions as

1
2 [H5(vE, M*)+H5(v„,M*)+M~ Hq(v„, M*)

2 2

+M" H3(v„,M*)]+ 2 W + —W + 2p32g„8 8m

l + P[z(k, m)+ ~] (37) I2
K

+ +2+ +3+ +4
2g, 6g, 24g,

(47)

k" 'dk ( 1

~, E(k,M) 1+e)st'(' )-~l

1
+ P[E(k,M)+p]) '

where 4 and W are understood to satisfy the equations given
above. Finally, the entropy density follows from the Gibbs
relation:

BG„+i
=nH„+)+(n —1)M H,

Bp,
(39)

BG„+i
BM

= —(n —1)MG„ (40)

8H„+ i
(41)

BH„+ i

BM
= —(n —1)MH„

Thermodynamic equilibrium requires that the thermody-
namic potential A be stationary with respect to changes in
the mean fields, which leads to the self-consistency equations

m,
2

24+ 34 + 44 P, , (43)

(

W I+ 2
—8' = 2P,

m, 6
/ m,

(44)

2
gpR= 2P3,2m

(45)

where the scalar density is given by

M*
p, =

2 [H3(v„,M*)+H&(v„,M*)].
7T

These equations allow the fields to be held fixed when com-
puting thermodynamic quantities as derivatives of the ther-
modynamic potential. Moreover, they allow the energy den-
sity to be expressed as

where E(k,M)—= (k +M )", and n~0 to ensure conver-
gence is understood. Note the important sign differences in
these two relations. These functions obey the useful recur-
sion relations (valid for n) 1)

~=(p+ & /, p, —/. p.)»— (48)

Note that none of the previous relations involve thermal
contributions from the mesons, since their masses are too
large for these to be relevant. Indeed, at the temperatures of
interest in this work, the antibaryon contributions are negli-
gible as well.

To specify the parameters, we observe that models that
successfully reproduce bulk and single-particle properties of
finite nuclei share characteristic properties in infinite nuclear
matter [35,47]. After taking the zero-temperature limit of the
preceding results, one can obtain an explicit set of transcen-
dental equations that determines the parameters for the de-
sired choice of nuclear matter properties. (We will not ex-
hibit these equations here; see Refs. [33,37].) The parameters
so obtained are listed in Table I. Note that the nucleon and
vector meson masses are chosen to take their empirical val-
ues (M = 939 MeV, m, = m = 783 MeV, m = 770 Me V),
and only the ratios of couplings to masses (denoted by
C, —=g, M /m, ) are needed in infinite matter. The resulting
properties of nuclear matter, as well as the properties at the
critical point in symmetric matter, are given in Table II. To
generate acceptable bulk nuclear properties, it is important to
accurately reproduce the nuclear matter equilibrium density,
energy/nucleon eo, baryon effective mass M*, compressibil-
ity 1/Kv, [48] and bulk symmetry energy a4. The first three
of these are tightly constrained [35], whereas the latter two
are not. We will begin by studying warm nuclear matter for
the values of Kz and a4 given in Table II and later examine
the sensitivity to reasonable variations in these values. The
observant reader will notice that the model has six free pa-
rameters (in nuclear matter) that are determined by only five
constraints. Thus there are actually an infinite number of
parameter sets that will reproduce the equilibrium properties
listed in Table II. These sets differ in the way the nonlinear
meson interactions are split between the scalar terms (lr, k)
and the vector term (g). To arrive at the parameter values in
Table I, Dirac-Hartree calculations of finite nuclei were also
performed in this model [37], and the parameters were tuned
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TABLE II. Nuclear matter properties.

1.30fm ' 0.1484 fm

Equilibrium properties:

kF

0.60

eo

—15.75 MeV

Ky

250 MeV

a4

35 MeV

Critical values:

14.40 MeV 0.04661 fm

M,*/I
0.8543 0.2010 MeV/fm

to give optimal bulk- and surface-energy systematics. ' This
allows us to proceed with the most realistic mean-field
nuclear equation of state possible.

We close this section with some remarks concerning the
numerical procedures. Although the solution of the self-
consistency equations (43)—(45) is straightforward in prin-
ciple, the analysis becomes involved due to multiple roots.
For example, at low temperatures, a given set (v„,v„) leads
to either one or three solutions for the scalar field in Eq. (43).
We resolve this problem using the crucial fact that any quan-
tity can be uniquely and continuously parametrized in terms
of the effective mass M*=M —4. To give a concrete ex-
ample, consider the equation of state at constant pressure and
proton fraction. In this case we need to solve three equations,
namely, Eq. (30) with a given value of p on the left-hand
side, an equation that fixes the proton concentration y,

Gs( v~, M*)
Gs( v~, M*) + G3( v„,M*) '

and Eq. (43). This set is solved for a given value of the
effective mass leading to a unique root of the form
(v~(M*), v, (M*),T(M*)}, which can in turn be used to
evaluate all the remaining quantities of interest, e.g. , the den-
sity and entropy. Once the solutions have been obtained for a
given M~, we can proceed to map out all the desired vari-
ables by making small incremental changes in this parameter.

The main ingredient in our thermodynamic treatment is
the binodal surface, namely, the collection of points in pa-
rameter space that satisfy the Gibbs conditions (14) and (15).
Numerically this surface is most easily parametrized in terms
of the pressure, so that the equations we solve simulta-
neously are

for given values of p and T. This procedure works well
except near the critical points, where the two solutions coa-
lesce. Correspondingly, results in this region must be ob-
tained by interpolation, after one determines the location of
the critical points using Eq. (54), below.

IV. APPLICATION TO ASYMMETRIC NUCLEAR
MATTER

Phase transitions in binary systems are more complex
than in one-component systems. In the case of nuclear mat-
ter, as discussed in Sec. II, the global instability boundary
forms a two dimensional surface in (T,p, y) space, enclosing
the region where either mechanical instability [Eq. (26)] or
diffusive instability [Eq. (27)] occurs.

To be more specific, Fig. 4 shows the pressure as a func-
tion of the baryon density at fixed temperature but for differ-
ent proton fractions, using the parameter set in Table I. For
small y, and in particular, for pure neutron matter (y=0),
the pressure increases monotonically, so the matter is stable
at all densities. In contrast, for y~0.2, the compressibility
becomes negative, indicating a mechanical instability. The
full complexity of the binary system is indicated in Fig. 5,
where chemical potential isobars for neutrons and protons
are shown as a function of y at fixed temperature. Above a
certain critical pressure p, , the matter is stable, but for
p(p, , the second condition (27) is violated, and the system
becomes chemically unstable. The critical isobar p, is deter-
mined by the existence of an inflection point:

p =p( v„', v„',M*'),

p =p( v„",v„",M*"),

p,„v(v„', v„',M*') = p„~(v", v„",M*"),

(49)

(50)

(51)

2

2 4&'+ 34' + 44' =p, (v', v„',M*'), (52)

0.20

E 0.10O

0.00

2

2
4"+ 34" + „4"=p„(v„",v„",M*"), (53)

gs S S

-0.10
I I I I I I I I I I I

0.00 0.02 0.04 0.06 0.08 0.10 0. l 2
p rfm]

'The authors are grateful to R. J. Furnstahl for his assistance in

obtaining the parameter sets.
FIG. 4. Pressure as a function of baryon density at fixed tem-

perature for various proton fractions y.
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FIG. 5. Chemical potential isobars at fixed temperature as a
function of y. The curves labeled a through e have pressures

p = 0.25,0.198,0.15,0.10,0.075 MeV/fm, respectively. The curves
labeled b are at the critical pressure p, = 0.198 MeV/fm .
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This isobar marks the upper boundary of instability with re-
spect to the pressure and defines a critical point (p, ,y, ) for
a given temperature [45].

The Gibbs conditions (14) and (15) for phase equilibrium
demand equal pressure and chemical potentials for two
phases with different concentrations. Thus the two desired
solutions form the edges of a rectangle and can be found by
means of the geometrical construction shown in Fig. 6
[19,21]. The collection of all such pairs y i(T,p) and

y2(T,p) form the binodal surface. For a given temperature,
the two-phase region is limited from below by the pressure at
equal concentrations p,q, which corresponds to symmetric
nuclear matter (y=0.5). Correspondingly, the rectangle in

Fig. 6 shrinks to a point at this particular pressure, and the
system becomes stable again for p (p,q. We did not find any
cases of three-phase coexistence, which would require two
rectangles with a common side.

FIG. 7. The binodal surface indicating the two dimensional
phase-coexistence boundary is shown in (p, T,y) space. The critical
temperature T, (y = 0.5). , the line of equal concentrations (LEC), the
line of critical points (LCP), and the line of maximal asymmetry

(LMA) are indicated. T is in MeV, p is in MeV/fm, and y is

dimensionless.

gp'I
=0

8y )
(55)

The phase-separation boundary, or binodal surface, ob-
tained from the preceding geometrical constructions [see
Eqs. (49) through (53)] is indicated in Fig. 7. (The shape of
this surface has been previously described as a "filet mi-
gnon" [19].) Several slices at constant T are indicated, and
one observes that the enclosed area in these sections de-
creases with increasing temperature until it vanishes at the
critical point T, of symmetric nuclear matter. This is also the
point at which the lines LCP and LMA meet at y = 0.5. The
line of critical points (LCP) is determined by the solutions of
Eq. (54), and it can be parametrized uniquely by just one of
the coordinates (T,p, y) The LCP be. gins at the critical point
of symmetric nuclear matter (y=0.5,T=T,) and ends at
y=y0=0. 057 at T=O. Note also that for a given tempera-
ture, the critical point determines the maximum pressure in
the two-phase region.

In addition to the LCP, we have also indicated the points
on the binodal surface with the maximal asymmetry (LMA),
or minimal proton fraction y;„, at each temperature. Any
system with y(y;„ is external to the two-phase region and
is therefore stable. Moreover, since y;„ is a monotonically
increasing function of the temperature, the LMA determines
the maximum temperature T „ofphase separation at any
given y [19].The LMA also begins at the critical point of
symmetric nuclear matter and descends to a small, positive
value of y;„at T=0. This implies that pure neutron matter
is stable at all temperatures in this model.

Configurations that separate into two phases each having
equal numbers of neutrons and protons form the line of equal
concentration (LEC). In these cases, the binodal section at
any T degenerates into a point, at which the relation [44,46]

0.0 0.1 0.2 0.3 0.4 0.5

is satisfied. (This is an example of the Gibbs-Konowalow
rule [46].) The LEC coincides with the projection y = 0.5 in

FIG. 6. Geometrical construction used to obtain the proton frac-
tions and chemical potentials in the two coexisting phases at fixed
T= 10 MeV and p =0.1 MeV/fm .

As with all results in this section, our analysis is symmetric with

respect to protons and neutrons, so that only the physically useful

regime O~y~0. 5 need be considered.
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FIG. 8. Binodal section at T= 10 MeV. The points A through D
denote phases participating in a normal phase transition. The critical
point (CP) and the points of equal concentration (EC) and maximal
asymmetry (MA) are also indicated.

our model, which implies that only symmetric nuclear matter
will separate into phases with equal concentration [19,21].
Since symmetric matter behaves as a one-component
system, one observes how the phase separation simplifies in
this case: in an isothermal compression, the system evolves
until it encounters the binodal (which is just the LEC) and
then remains there until the transition is complete. In con-
trast, for y40.5, the system encounters a two dimensional
section of the binodal surface. Since the energy contains a
term proportional to p3 [see Eq. (47)], it is energetically
favorable for asymmetric matter to separate into a liquid
phase that is less asymmetric and a gas phase that is more
asymmetric, rather than into two phases with equal concen-
tration. This leads to more complex phase separations, as we
discuss shortly.

For a given temperature, the binodal section is divided
into two branches by the critical point and the point of equal
concentration. One branch describes the system in a high-
density (liquid) phase, while the other branch describes the
low-density (gas) phase. These two branches contain the be-
ginning and ending configurations of the phase transition.

We now return to the behavior of the matter under iso-
thermal compression, to illustrate the different phase-
separation scenarios. Consider the situation in Fig. 8, which
shows a section through the binodal surface at
T=10 MeV. The critical point CP, the point of maximal
asymmetry MA, and the point of equal concentration EC are
indicated, and the validity of Eq. (55) is apparent. Assume
that the system is initially prepared in the low-density (gas)
phase with proton fraction y=0.3. During the compression,
the two-phase region is encountered at the point A, and now
a (liquid) phase with a higher density begins to emerge. The
geometrical construction described above determines the

Strictly speaking, symmetric nuclear matter is an azeotrope. Dur-

ing the liquid-gas phase separation, all equilibrium configurations
have two phases with the same composition (y = 0.5). This type of
phase equilibrium is called "indifferent equilibrium" [46].Since the

liquid-gas phase equilibrium in a one-component system is also
indifferent, symmetric nuclear matter behaves as a one-component
system.

FIG. 9. Isotherms for a normal phase transition at T= 10 MeV
and initial condition y=0.3. The Maxwell construction produces
the curve AC. Note that y&40.34yh.

density and the proton fraction y~ of this new phase, which
occurs at the point labeled B. As the system is compressed,
the total proton fraction y remains fixed, as dictated by the
conservation laws, but the gas phase evolves from A to D,
while the liquid phase evolves from B to C. At the point C,
the system leaves the region of instability. The original (gas)
phase is about to disappear, and it exists in an infinitesimal
volume with a density and proton fraction yD corresponding
to the point D.

To evolve the system between configurations A and C, we
must solve the equations

p= (1—k) p'+)ip", (56)

p3= (1 —X)ps+ k p3, (57)

according to (18), for densities that lie on the binodal sur-

face, and for given values of p and p3 ——(2y —1)p. The re-
sult is the generalized Maxwell construction in the binary
system. The corresponding isotherms are drawn in Fig. 9.
The dotted line between A and C is the unphysical course of
the pressure at the fixed total proton fraction, and the nearly
straight line connecting A and C is the interpolation due to
the Maxwell construction, which corresponds to the stable
configuration at each intermediate density. The volume frac-
tion X starts with X=O at A and runs through the whole
interval [0,1], ending with k= 1 at C. Since the points A

and C lie on different branches of the binodal surface (as
defined above), the matter has undergone a phase transition
from a gas to a liquid phase.

Interestingly enough, the geometry of the binodal surface
offers a second possibility. In the previous example, there is
a transition between the two branches of the binodal surface
because the value of y in the original phase is larger than

y, . For y~y, , however, the system enters and leaves the
two-phase region on the same branch, so the system remains
in the same phase.

This situation is depicted in Fig. 10. We consider the
T= 10 Me V isotherm and prepare the system with
y=0.15(y, . The system becomes unstable at the point A,
and as before, a liquid phase with a higher density begins to
emerge at B. The system is compressed at fixed total y, with
the liquid phase evolving from B to D, and the gaseous
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FIG. 10.
D en

. Binodal section at T= 10 MeV. The point A th h

denote phases participating in a retrograde phase transition.

p ase, from A to C. At C the system crosses the binodalhase f
again, but this time on the same branch, that is, still in the
original (gas) phase. The high-density (liquid) phase, now at
D, vanishes at this stage. The Maxwell construction for the
corresponding isotherms, which follows from the solution of
Eqs. (56) and (57), is represented by the solid line connect-
ing A and C in Fig. 11. Note that this new phenomenon is
caused solely by a diffusive instability. The matter remains
mechanically stable throughout the entire process, as indi-
cated by the dotted curve, but it is energetically favorable to
separate into two phases with different proton fractions. In
contrast to the previous case, one also finds a different be-
havior for X. The initial value X =0 at A increases up to a
maximal value X „(1 and then decreases to zero when C is
reached. Thus, although a second phase is present between A
and C, the system does not convert completely; on the con-
trary, the second phase vanishes steadily after having occu-
pied a maximum volume fraction (X,„). This retrograde
condensation is unique to the binary system and does not
occur in one-component systems.

A more complete picture of the different Maxwell con-
ig. ~ay, we considerstructions is shown in Fig. 12. In Fig. 12~ ~, d

ifferent proton fractions at a fixed temperature. At y=0.5
(symmetric matter), we obtain the familiar result with a con-
stant vapor pressure, represented by a horizontal line. With
increasing asymmetry (decreasing y), the compression in-
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0.2
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y= 0.4-0.3

'. . T = 5MeV. '

I i I i I
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e vapor pressure is nocreases in the two-phase region as the
longer constant. Foror p;„&y&y, , the matter is mechanicall
stable an~, and the system undergoes retrograde condensation.
Finally, the system becomes completely stable for

g ~ ~ shows similar Maxwell constructions on differ-
, a e ory y~,„.

ent isotherms at fixed proton fraction y=0.4. For a more
thorough discussion of the variation of the densities in the
two phases throughout the transition, see Ref. [19].

To close this section, we consider the order of the liquid-
gas phase transition. First-order phase transitions in single-
component systems are characterized b d 1scontlnultles ln
certain physical quantities. This occurs because quantities
like the density and the entropy are different in the two dis-
tinct phases, but they remain constant throughout the phase

n e inary system,transition. This behavior does not occur in th b'

because the constraints of charge conservation and Gibbs'
criteria force the density (and pressure) in each individual
phase to change throughout the transition. We might there-
ore expect the transition in the binary system to be

"smoother. " To make this point more precise, we consider
the Gibbs free energy (or free enthalpy) per nucleon

FIG. 12. ~a~, Maxwell constructions at fixed temperature for
various proton fractions. (b) Maxwell constructions at fixed proton
fraction for various temperatures.

I ~ f I

0.00 0.02 0.04 0.06 0.08 0.10 0. l 2
p [fm]

G(T,p, N, N, )
g(r, p, y) =yp, +(I —y) p—,„, (58)

FIG. 11. Isothermserms for a retrograde phase transition at
T= 10 MeV and initial condition y=0. 15. The Maxwell construc-
tion produces the curve AC.

which allows us to discuss isobaric processes as a function of
temperature.
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FIG. 16. Specific heat capacity as a function of temperature for
several proton fractions. For clarity, the curves for asymmetric mat-

ter have been sca e y el d b th factors indicated in parentheses. Note
the logarithmic scale on the left.
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between. Thus, according to Ehrenfest's definition of phase
transitions [49], the first order phas-e transition in symmetric
matter becomes a second-order transition in the asymmetric
case. In particu ar, in e1, '

the ~resent model, the phase transition
occurs over =1.5 MeV for matter that is 40% protons and
over =5 MeV for rnatter that is 30Vo protons. The latter con-
centration mig e o

'
ht b btained in energetic collisions with ra-

dioactive ion beams.

V. HEAVY-ION COLLISIONS

FIG. 15. Specific entropy as a function of temptern erature for dif-
f '

b . (a) Symmetric nuclear matter with y=0.5. The pres-erent iso ars.
sures on the curves labeled a through e are p =
0.15,0.20, 0.25 MeV/fm, respectively. Curve d is at the critical

,=0.20 MeV/fm . (b) Asymmetric nuclear matterpressure p =p, =
with y =0.3. The curves are labeled as in (a), and the critical pres-
sure (curve dj is sti p, =( d)

' t'll =0.20 MeV/fm (to two significant g-
ures).

and thus some fraction of the energy is used jd ust to heat the
system, as is evi en romd t f om Fig. 14. The concept of latent heat
is therefore not strictly applicable to the transition in the
binary system. we — n. A 11-known example of this behavior is the
distillation of alcoholic beverages; the concentration of alco-
hol in the liquid changes throughout the distillation, w ic
produces a change in the boiling point.

Figures 15(a) and 15(b) show the entropy as a function of
temperature for several different isobars in symmetric and
as mmetric matter, respectively. By examining the curves atasymm
the critical pressure p, , one observes that ~ s p y
comes infinite in symmetric matter, while it remains finite
and positive in the asymmetric case.

Finally, the distinct behavior of the binary system has an
even more dramatic impact on the heat capacity per nucleon:

C ~ as'I
P

&p+&. i ~T)

which is illustrated in Fig. 16. In symmetric matter, the dis-
continuity in the entropy produces an undefined heat capac-
it at the transition temperature. In contrast, in the genera
case, there are finite discontinuities in the heat capacity at the
end points of the transition region, with finite values o c„ in

We consider the energetic collision of two heavy ions
within our simple thermodynamic, hydrodynamic, and mean-
field picture, and concentrate on the new features that arise
as a function of proton fraction. Although our discussion o
the theory will encompass the entire regime of y(0. , to
obtain reasonable estimates for the empirical size of the new
effects, we will restrict consideration to . -y- . , h

~ ~ 0.3«0.5, where
the lower value might be obtainable with radioactive ion
beams. We sha11 assume that the combined system is corn-
pressed and heated and ultimately reaches equilibrium at
some finite temperature, density, and pressure. As is we
k th question of whether the system actually reaches
such an equilibrium state is a difficult one, which we wi no
attempt to answer here. We simply assumee that such a state
arises and follow the subsequent expansion and cooling of
the nuclear matter.

The properties of the system can be deduced from Figs.
17 through 19, where the pressure is shown as a function of
the baryon density for various proton fractions, temperatures,
and specific entropies. Also indicated are the coexistence
curves or binodals, which are determined by the Gibbs cri-
teria discussed earlier. The spinodals that determine the
boundaries of the unstable region now generally come in
three varieties, one arising from a mechanical instability, one
arising from a thermal instability, and one arising from a
diffusive (or chemical) instability. The conditions that. deter-
mine the different spinodals will be discussed shortly. T e
region between the binodal and the most extensive spinoda
contains metastable states, which correspond either to super-
heated liquid or supercooled (supersaturated) vapor.

The metastable states play a key role in understanding the
phase transition. In stable configurations, q.E . 8 is satisfied,
so that
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FIG. 17. Pressure as a function of density at fixed temperature
for various y. The critical point (CP), coexistence curve (CE), dif-

fusive spinodal (DS), and isothermal spinodal (ITS) are indicated.
The dashed curves are discussed in the text.

A.A~„—= (1 —X) M~(T, p', y ') + X.W~(T, p",y") —.A~(T, p, y) ~0
(64)

FIG. 19. Pressure as a function of density at fixed y =0.3, The
solid curves are labeled by the specific entropy. The critical point

(CP), coexistence curve (CE), diffusive spinodal (DS), isothermal
spinodal (ITS), and adiabatic spinodal (AS) are indicated. The
dashed curves are discussed in the text.

holds for all densities that obey the conservation laws

p=(1 —~)p'+~p yp=(1 ~)y p +~y p" (65)
v"=a+ ~c" y"=y+~y".

(66)

In the metastable region, two phases can be found that pro-
duce A.&~b&0, but the energy barrier A,Wb remains positive
for small variations in p and y about the single-phase values.
Thus the free-energy density is locally convex, and the en-

ergy barrier prevents phase separation from infinitesimal
fluctuations. Eventually, A, A& becomes negative as the sys-
tem enters the labile region, signaling the instability even to
infinitesimal fluctuations. We postpone a discussion of the
various mechanisms that can produce the phase separation
and concentrate here on the behavior of the free energy in the

region of the spinodals.
According to the discussion in Sec. II, A,W&)0 far small

fluctuations around the equilibrium density and concentra-
tion in the stable and metastable regions. The content of this

inequality therefore becomes more transparent if we consider
the variations

0.4
0.3

An expansion through second order in small quantities pro-
duces

(67)

where b, p" (Ay") has been eliminated in favor of k and
5p' (b y') using Eq. (65). Consistent with our general dis-
cussion, this bilinear farm will be positive if

api )0
Bp/

0.2
0.1

0.0
-0.1

-0.2
-0.3
-0.4

and if

(api (ap,„i (ap, „i , (ap,, i

Bp
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FIG. 18. Pressure as a function of density at fixed y =0.3. The
solid curves are labeled by the temperature (in MeV). The critical
point (CP), coexistence curve (CE), diffusive spinodal (DS), and

isothermal spinodal (ITS) are indicated. The dashed curves are dis-

cussed in the text.

Therefore, as long as the conditions (68) and (69) are valid,
the system remains on a parabolic free-energy surface, with a
minimum at 5p= Ay =0.

The spinodals are defined by the densities at which these
inequalities become invalid. As is clear from Fig. 17, there
are generally four such densities of interest in an isothermal
expansion, corresponding to the intersections of the isotherm
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( apb

iaP) TY

( a2p1
=Q.

k~p JTy

with the spinodals. Each of these four densities marks a
change in the sign of the derivative (ap~/ay)T„. At the
largest density, this derivative changes sign from positive to
negative, indicating the onset of the diffusive instability;
nevertheless, the compressibility remains positive, so that
only the second inequality (69) is violated. This also implies
that the free-energy density now has a saddle point, being
stable against density fIuctuations at fixed y, but unstable
against fluctuations in concentration at fixed pressure.
Through continued expansion, one next encounters the me-
chanical instability, at which point (ap/ap)T Y

becomes
negative, but (ap,„/ay) r „now becomes positive again, so
that both conditions (68) and (69) are violated. Thus the
free-energy surface still has a saddle point, but it has rotated
in the (p, y) plane. As the density decreases further, one
eventually reaches densities where the derivatives change
sign in reverse order, producing the remaining two intersec-
tions of the spinodals with the isotherm.

The conclusion from this analysis is that the spinodal
structure is qualitatively different in the asymmetric system
than in the symmetric one. There are now ~o types of Auc-
tuations: one corresponding to changes in p (isoscalar) and
one corresponding to changes in y (isovector). Due to the
form of the nuclear symmetry energy, the diffusive spinodal
(DS) encloses more of the configuration space than does the
isothermal spinodal (ITS). The DS passes through the critical
point and includes all densities where there is also a me-
chanical instability, which occur in the region bounded by
the ITS. Therefore the diffusive instability defines the rel
evant spinodal for the asymmetric system The mecha. nical
instabilities are restricted to isotherms with y~y~, where

y~ is defined by the inflection point

s=(1 —k)s'+ks", u=(1 —k)u'+ku",

y = (1 —X)y'+ ky",
(71)

where X [see Eq. (60)] determines the fraction of particles in
each phase.

As in the case of the free-energy density, the global crite-
rion Eq. (70) can be reformulated in terms of local condi-
tions, namely,

(ap\ )0, (72)

1 (ap~ )0
cp 'L ap),

Y

(73)

1 (apl (ap, \ )0,c, iap)„i ay ),„
(74)

1 ~ap 1 I'ep~

c (ap c (ap)
(75)

to rewrite Eqs. (73) and (74) as

where c„ is defined in Eq. (63). The first two inequalities are
relevant for both symmetric and asymmetric systems, and the
third embodies the diffusive or chemical stability criterion
that arises for asymmetric matter. Thus there will generally
be three spinodals, as indicated in Fig. 19.

To connect this to our earlier discussion of isothermal
processes, we use the relation [50]

As expected, both spinodals coincide at y=0.5, where only
mechanical instability is possible. Note also that there are
isotherms that pass through the metastable region and never
intersect either spinodal. These isotherms, along which ret-
rograde condensation is possible, never become labile and
allow for the system to evolve completely through the meta-
stable region, if the process is carried out carefully enough
(or fast enough).

So far, we have considered only isothermal processes, but
in fact, the equilibrium evolution of the system will depend
strongly on the variables that actually remain fixed during
the process. As we have noted, it is not clear that any ther-
modynamic variables can be assigned to realistic situations
encountered in warm, expanding nuclei. Nevertheless, intra-
nuclear cascade calculations [8,14] suggest that this expan-
sion will be isentropic. To discuss isentropic (adiabatic) pro-
cesses, we must generalize our formalism slightly. The
appropriate state function to describe trajectories at constant
specific entropy s = S/B is the energylbaryon, EIB
= e(s, u, y), where u = 1/p. The corresponding stability con-
dition can be formulated as

e(s, u, y) ~(1—k)e(s', u ', y')+Le(s", u",y"), (70)

with

1 (apl )0,c. iap),

1 I gp'I gp )0.c LBp/ oy )
(77)

The equivalence of these two ways of writing the stability
criteria implies that the stability boundaries are independent
of the actual process. Moreover, since in our model (see also
Ref. [19]), c,=T(as/aT),

Y
is always positive, the condi-

tions (76) and (77) reduce to those discussed earlier in Eqs.
(68) and (69). Thus, phase separations in isothermal pro-
cesses in symmetric rnatter occur only due to mechanical
instabilities (density fiuctuations), as determined by the ITS.
In asymmetric systems, the final stability condition is also
relevant, leading to diffusive instabilities and the appearance
of the DS as well.

In contrast, c undergoes several sign changes in an adia-
batic expansion, so that all three criteria (72)—(74) must be
considered. One sign change accompanies a sign change in
the isothermal compressibility [or (ap/ap)T ], and one ac-
companies a corresponding change in the adiabatic com-
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pressibility [or (Bp/Bp), ]. The resulting situation is de-

picted in Fig. 19.The outermost spinodal (DS) defines where

Eq. (74) is violated, which occurs due to the diffusive insta-

bility, since both c~ and the compressibilities are all positive
here. The middle spinodal is determined by condition (73),
which is violated when c becomes negative; because of Eq.
(75), this curve is identical to the ITS, since c, and

(Bp/Bp), ,
~ are still positive, so (Bp/Bp) T Y

must also become
negative. In other words, the ITS encloses the region of me-
chanical instability in an isothermal expansion and also en-
closes the region of thermal instability in an adiabatic expan-
sion. The mechanism for this thermal instability is
interesting, because c~ changes sign by passing through in-
finity rather than zero. Thus a small thermal fluctuation at
constant pressure near the ITS creates a density fluctuation,
but leaves the temperature unchanged (since c„ is very
large); since the isothermal compressibility becomes nega-
tive, the system is unstable to the induced density fluctuation.

Finally, the innermost curve is the adiabatic spinodal
(AS), which determines when Eq. (72) is violated, signaling
the onset of mechanical instability in the adiabatic process.
Here c„becomes positive again by Eq. (75), since both com-
pressibilities are negative here. Note also that, as discussed
earlier, (Bp,„/By)T ~ changes sign from positive to negative
at the DS and then changes back again at the ITS, so that
once any stability criterion (72)—(74) is violated, it remains
invalid as one proceeds deeper into the unstable region.

Just as we found in the case of isothermal processes, the
DS separates the metastable and labile regions in isentropic
processes. Configurations that indicate sign changes of the
compressibilities and of c„are included by this boundary.
We also observe that even in symmetric nuclear matter, the
ITS determines the boundary of the labile region in both
isothermal and isentropic processes, which has often been
overlooked in previous studies [7,8, 11,12,39,51]. Although
this result apparently implies that the AS is irrelevant, this
conclusion is premature, since the actual mechanism for
spinodal decomposition depends on the relative rate of ther-
mal and mechanical fluctuations as the warm matter expands
through the spinodal region.

Armed with this understanding of the spinodal structure,
we turn now to the evolution of the warm matter. The rela-
tion between the evolution and the thermodynamic variables
can be studied using Fig. 20, which shows the properties of
the matter for this equation of state in the T, p plane for two
different values of y. Equipotential surfaces and adiabats are
also indicated. The relations used to determine the nuclear
matter properties at very low densities are given in the Ap-
pendix.

The solid curves in the lower-left corners of Figs. 20(a)
and 20(b) determine the phase behavior. The outer curve
labeled CE is the coexistence curve, which is simply a sec-
tion through the binodal surface at fixed y=0.3,0.5. Inside
this curve, the stable configuration is a mixture of liquid and
gas. Also shown is the diffusive spinodal (DS), which is
determined by the condition (Bp,„/By) T „=0, as discussed

Note that the usual definition of the isothermal compressibility

[50], +T—= —(BU/Bp)r/V can be rewritten as p(Bp/Bp)T= 1///T.

Analogous expressions hold at fixed entropy.
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FIG. 20. Properties of nuclear matter as functions of tempera-
ture and density. The dotted curves are contours of equal energy/
baryon (in MeV), and adiabats are shown as dot-dashed curves. The
solid lines denote the coexistence curve (CE), the diffusive spinodal

(DS), the isothermal spinodal (ITS), and the adiabatic spinodal
(AS). (a) shows results for asymmetric matter with y = 0.3 and (b) is
for symmetric matter (y = 0.5) .

earlier. Between the spinodal and the CE, the system can
exist in metastable superheated or supersaturated states.

There are several qualitative differences between the
curves for asymmetric matter and for symmetric matter (see
also Fig. 8 in Ref. [39]).First, the most extensive spinodal is
defined by the diffusive instability rather than by thermal or
mechanical instabilities. (We note that mechanical instability
is often assumed to be the relevant one even in asymmetric
systems. ) Second, as is evident from Fig. 7, the critical tem-
perature T,(y) is not unique, but varies with the concentra-
tion along the LCP. Finally, the maximum temperature of
phase separation does not occur at the critical point, but
rather along the LMA; it is apparent from Fig. 20(a) that this
occurs at a lower density than the density at the critical point.
We observe, however, that although these differences exist in
principle, for physically accessible systems, the temperature
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differences are small. For example, in the present model, the
critical temperature changes from T,(0.5) =14.4 MeV to

T,.(0.3) =13.1 MeV, and T,„,„(0.3) —T,(0.3) =0.2 MeV.
Since statistical fluctuations near the critical point are ex-
pected to prevent the determination of the critical tempera-
ture with an uncertainty smaller than 1 or 2 MeV [16], it is

unlikely that these small temperature differences can be di-

rectly observed. Nevertheless, a trend in the observable sig-
nals characteristic of the critical point as a function of in-

creasing asymmetry may be detectable.
The evolution of the system is a complicated process that

involves hydrodynamic fIow and expansion, together with
dissipative effects and nonequilibrium processes like nucle-
ation and fragmentation. As the system expands, internal en-

ergy is transformed into collective motion, which manifests
itself as local How velocity. If the expansion is highly
damped, the energy of motion is rapidly transformed back
into internal energy; the resulting expansion is therefore slow
and proceeds along an equipotential surface. The expansion
continues until p= 0, after which the warm nuclear fIuid re-
mains at rest and evaporates particles until it is cool, In con-
trast, if the motion is undamped, the expansion carries the
system past hydrostatic equilibrium, where it begins to slow
down as the energy of motion is returned to internal energy.
Since there is no dissipation, the expansion is isentropic, and
the motion is bounded by the equipotential surface of the
initial hot configuration.

As noted earlier, intranuclear cascade calculations [8,14]
suggest that the expansion will be isentropic. The system will
expand adiabatically into the coexistence region and become
either superheated (for small specific entropy) or supersatu-
rated (for large specific entropy). If the expansion is slow
enough to allow for nucleation, bubbles of gas form or the
system separates into droplets and vapor. If the nucleation is
relatively slow, which is more likely, and the expansion halts
before a spinodal is reached, the direction of motion is re-
versed and the system vibrates, ultimately evaporating neu-
trons to cool down. In contrast, if the system crosses a spin-
odal, fragmentation occurs; the relevant mechanism for the
decomposition (that is, which spinodal is the relevant one)
depends on the relative rates for isovector, isoscalar, and
thermal fluctuations.

With our simple picture that focuses on equilibrium states,
it is impossible to say anything definitive about the dynamics
of the phase separation. This is especially true since it is
unlikely to occur through a sequence of equilibrium configu-
rations and will involve instead superheating, supercooling,
or spinodal decomposition. Nevertheless, the dynamics of
the phase separation is intimately linked to the character of
the phase transition; since the phase transition in asymmetric
matter is not of the usual van der Waals type, there could be
observable consequences in the signals used to detect the
phase separation, such as the distribution of emitted mass
fragments. In particular, unlike the van der Waals case, the
pressure, temperature, density, and concentration of the gas
and liquid phases can change throughout the phase separa-
tion process. Moreover, since the spinodal decomposition oc-
curs generally through a diffusive instability, any micro-
scopic model of the fragmentation process [16,52—54] must
allow the gas and liquid phases to have different concentra-
tions.
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FIG. 21. Binodal sections at T= 10 MeV for different a4. The
nuclear symmetry energy a4=30,35,40 MeV for the solid, dotted,
and dashed curves, respectively, and the critical points (CP) are
indicated in each case.

Finally, we discuss how the properties of the phase tran-
sition depend on reasonable changes in the nuclear matter
symmetry energy and compressibility. The symmetry energy
can be varied by changing the coupling C, and we chose
the values a4 = 30, 35, and 40 MeV for illustration. (All other
couplings in Table I were held fixed. ) In Fig. 21, we show the
variations in the binodal surface as the symmetry energy is
changed. As expected, as the symmetry energy increases, the
minimum y (maximal asymmetry) at which phase separation
occurs increases, but only by roughly 10%. The critical pres-
sure at fixed temperature increases somewhat more
(=40%), but the shape of the binodal surface is qualitatively
similar; the increased symmetry energy evidently has more
effect on the gas phase than on the liquid phase. This result is
consistent with our earlier discussion that it is energetically
favorable for nuclear matter to separate into a less asymmet-
ric liquid and a more asymmetric gas. As the symmetry en-

ergy increases, one finds a larger region of configuration
space where this phase separation is favorable, particularly
for retrograde condensation. The critical temperature at

y =0.35 decreases from T,(0.35) =13.77 MeV for a~=30
MeV, to T,(0.35) = 13.71 MeV for a4= 35 MeV, to
T,.(0.35) = 13.66 MeV for a4 ——40 MeV, which is a relatively
small amount. These modest changes as the symmetry en-

ergy is varied support the claim made in the Introduction that
our simple model of the isovector mean-field dynamics is
adequate for a discussion of nucleus-nucleus collisions.

We also studied the binodal surface for compressibilities
Kv =200, 250, and 300 MeV. (We return to our original
value of the symmetry energy, a4 ——35 MeV. ) The qualita-
tive structure of the surface was unchanged, and the most
significant feature was a shift in the critical temperature of
symmetric matter from T,.(0.5) = 13.35 MeV at Kz =200
MeV to T,.(0.5) =15.75 MeV at Kv = 300 MeV. Changes in

T, for other values of 0.3~y~0.5 were similar. As noted
earlier, these variations of 1 or 2 MeV are unlikely to be
observable, due to statistical fluctuations near the critical
point. We therefore conclude that the observation of the
liquid-gas phase transition in nuclear collisions is unlikely to
provide definitive information on the nuclear matter symme-
try energy or compressibility, although the critical tempera-
ture is apparently more sensitive to the latter.
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VI. SUMMARY

In this paper we studied the liquid-gas phase transition in
warm, low-density nuclear matter as a function of the proton
fraction. The new ingredient in the analysis was the careful
treatment of the two conserved charges, baryon number and
isospin, which shows that the phase transition does not ex-
hibit the usual van der Waals behavior. An examination of
the stability criteria on the free energy, together with the
charge conservation laws and Gibbs' criteria for phase equi-
librium, reveals that the system can be specified by the same
number of input variables (temperature and densities) regard-
less of the number of phases. The equilibrium conditions
determine the region in parameter space where separation
into two phases is energetically favorable, as well as the
boundary of this region, the binodal surface. This surface is
two dimensional for a two-phase system with two conserved
charges, in contrast to the familiar one dimensional surface
when there is but one conserved charge, and this leads to
qualitatively new behavior, such as retrograde condensation.
For specified input variables, the number of equations deter-
mining the properties of the phases is equal to the number of
unknowns, allowing for an unambiguous Maxwell construc-
tion of the equilibrium state at any point during the transi-
tion. In contrast to the usual van der Waals case, we learned
that in general, the pressure, temperature, density, and con-
centration of both the gas and liquid phase can vary through-
out the transition. Moreover, both the Gibbs free energy and
entropy are continuous throughout the transition, showing
that it is second order (by -Ehrenfest's definition) rather than
first-order.

To apply these results to nuclear matter, we used a rela-
tivistic mean-field model involving the interaction of baryons
with scalar and vector fields. This model allows for an accu-
rate description of the bulk properties of nuclei and of sym-
metric nuclear matter, which lets us calibrate the model and
then extrapolate to subnuclear densities and arbitrary proton
fraction. Although our discussion focused on the qualita-
tively different aspects of the liquid-gas transition in binary
systems, the quantitative numerical results are obtained with
an equation of state that is as accurate as any currently avail-
able. By studying reasonable variations in the nuclear matter
symmetry energy and compressibility, we found that these
are unlikely to have significant qualitative impact on the sig-
nals of the phase transition.

This thermodynamic mean-field model was then used to
study the warm nuclear matter that will be produced in en-
ergetic heavy-ion collisions. Although the assumption of
thermodynamic equilibrium oversimplifies the collision dy-
namics, we believe it is useful for providing a concrete de-
scription of the bulk properties of the warm matter and for
examining qualitative features that should have remnants in
more microscopic calculations. For example, there are sev-
eral significant differences between the phase diagram for an
asymmetric system and the one for symmetric matter. First,
the critical temperature T, is different for different values of
the proton fraction y, and for y 4 0.5, T, is not the maximal
temperature at which the phase separation can occur. Second,
the most extensive spinodal determining the instability
boundary in an asymmetric system is determined by a diffu-
sive (chemical) instability, rather than by a mechanical insta-

bility signaled by a negative compressibility or by a thermal
instability signaled by a negative heat capacity. Thus, in gen-
eral, the system is unstabie to isovector modes of separation
rather than to isoscalar modes. We also observed that in
symmetric matter, the isothermal spinodal determines the re-
gion of instability for either isothermal or adiabatic expan-
sion. (The diffusive and isothermal spinodals coalesce as
y~0.5.)

Finally and most importantly, the dimensionality of the
phase-separation region is larger in an asymmetric binary
system, which implies that the phase transition is continuous,
and which allows the thermodynamic properties of the
phases to change throughout the transition. Although the
changes in the thermodynamic variables are small for realis-
tically observable systems (0.3(y(0.5) in the model stud-
ied here, the resulting spread in the thermodynamic variables
will increase the variations expected from a study of statis-
tical fluctuations alone. Moreover, the increased dimension-
ality of the phase-separation problem could generate signifi-
cant changes in the observable s calculated in a more
microscopic treatment, for example, one based on fluctua-
tions and spinodal decomposition. At the least, one must al-
low for different proton concentrations in the liquid and va-
por when dealing with asymmetric systems, rather than
including fluctuations only in the density.
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APPENDIX: THE LOW-DENSITY LIMIT

Here we derive some useful results for computing the
low-density limit of the equation of state defined by Eqs.
(30) and (47). For densities p(0.005 fm, the results in
Sec. III lead to numerical inaccuracies that can be overcome
by making an explicit low-density expansion. In general, one
has to distinguish between two limiting cases: (i) p —+0 at
finite T and (ii) the nonrelativistic limit. We will consider
these two cases in turn.

At fixed temperature, zero density requires v „—+0. We
therefore consider

&p, n= ~~p, n and M*=MO + e AM* for @~0,

where M& is the effective mass at zero density. Using the
recursion relations in Eqs. (39)—(42), expansions of the den-
sities are readily obtained:

p =
2 ( v„+ v„)t 2H3(O, Mo )+M f H, (O,Mq )]+O(e ),

(A 1)
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p3 ——
2 ( v„—v„)[2H3 (O,Mf ) + M(~) H 1 (O,Mp ) ]+ 0 ( e ),

(A2)

/

T(2MT)t""-') F,„„, , ( )+( —2)
TIM ~0

which gives

M0
p, =2 2 H3(O, Mp)+O(e ),

'7T
(A3)

X F„/2(rI)+ O(T'IM'),
4M

with the Fermi integral [21]

(AS)

v —& i
1+

Pp+ P~ f

for p~o. (A4)

Cl

F (rg)—= dx
J p 1+e'

The effective mass M0 is determined by the corresponding
limit of Eq. (43):

To lowest order, this yields the familiar Fermi gas results for
the densities:

I2
K

2 (M —M11)+ 3(M —Mp) + 4(M —M11)
Ns S S

M*
0=2 2 H3(O, Mp), (AS)

(2MT)
P P .2 2 I F1/2( 7p) + F1/2( 7n)]

and for the entropy

(2MT)
2 (sIF3/2(ri )+F3/2(rI )]

(A9)

which is independent of the proton fraction y. By inspecting
the lowest-order corrections in e, it follows that +=2, i.e. ,

—3
I rI„FU2( r7, ) + ri.F 1/2( rl. ) ]) . (A10)

M*=Mp +O(p ).
The effective mass in these expressions has been replaced by
the nucleon mass M, since

Moreover, by observing that

W = O(p) and R = O(p),

2

M~=M ——

2 p,I (A 1 1)

p~0 p —+0

2 I
p = 2Hs(O, M(~)) —

2 (M —M(~))

we conclude that all isotherms with O~y(1 approach a
common limit at zero density:

which follows from the relation (A9). In an adiabatic pro-
cess, the constants y „can be obtained for a given entropy/
baryon s = o/p and proton fraction y using

sI F3/2( 7p) + F3/2( 7.)] 3I rlpF1/2( 7—p) + 7„F1/2( 7n)]

p 3[F1/2( rl ) + F1/2( V )]
(A12)

X (M —M(~))
24g44(M —M(~)) +O(p ). (A6) F1/2( 7p) F1/2( 7 )n

2y 1=
F1/2( rip) + F1/2( rin)

' (A13)

G, (p, ,M)
TIM ~0

(2M T)"/2/'

2 F(n/2) 1( rl) + (n+ 2)

X F„/2(rl)+O(T IM )4M (A7)

At moderate temperatures (T~MI10), this vacuum pressure
is very small.

We turn now to the nonrelativistic limit, which is encoun-
tered in particular in adiabatic processes. This limit can
be characterized by p~ 0 and T/M* ~0, but
—= ( v„„—M*)IT finite. It is straightforward to derive asymp-
totic expansions for the integrals (37) and (38):

By including the lowest-order contributions in the density,
the pressure then takes the form

(2~ ) 5/3 F3/2(V )+F3/2(V )
P(p s y)= 3M P (F ( )+F ( ))5/3+ 2 2P

2 2

2 p'+ '2 (2y —1)'p'
2m, Sm

(A14)

As expected, at very low densities the pressure is dominated
by the ideal-gas term with adiabatic index 5/3. The nonlinear
couplings give rise to higher-order contributions in the den-
sity and can be neglected.
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