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The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a spectator
expansion of the optical potential. Particular attention is paid to the treatment of the free projectile-nucleus

propagator when the coupling of the struck target nucleon to the residual target must be taken into consider-

ation. First order calculations within this framework are shown for neutron total cross sections and for proton

scattering for a number of target nuclides at a variety of energies. The calculated values of these observables

are in very good agreement with measurement.

PACS number(s): 25.40.Cm, 25.40.Dn, 24. 10.Ht

I. INTRODUCTION

The theoretical approach to the elastic scattering of a
nucleon from a nucleus, pioneered by Watson [1],made fa-
miliar by Kerman, McManus, and Thaler (IV&IT) [2], and
further developed as the spectator expansion [3—5], is now
being applied with striking success. In a similar vein, a
slightly different approach to the multiple scattering expan-
sion within the KMT framework is being pursued by the
Surrey group [6].

The theoretical motivation for the spectator expansion de-
rives from our present inability to calculate the fu11 many-
body problem. In this case an expansion is constructed
within a multiple scattering theory predicated upon the idea
that two-body interactions between the projectile and the tar-

get nucleons inside the nucleus play the dominant role. In the
spectator expansion the first order term involves two-body
interactions between the projectile and one of the target
nucleons, the second order term involves the projectile inter-

acting with two target nucleons, and so forth. Hence the ex-
pansion derives the ordering from the number of target
nucleons interacting directly with the projectile, while the
residual target nucleus remains "passive. "Due to the many-
body nature of the free propagator for the the projectile
+ target system it is necessary to detail certain choices made
with respect to the ordering in the spectator series. Presented
in this paper are the details of the spectator expansion and
the present manner in which the first order theory is calcu-
lated, including a theoretical treatment of the many-body
propagator as affected by the residual target nucleus. Predic-
tions are shown for rigorous calculations of the elastic scat-
tering of protons. and neutrons from a variety of target nuclei
in the energy regime between 65 and 400 MeV. The calcu-
lated observables are in very good agreement with the ex-
perimental information within this energy regime, indicating
that as the sophistication of the calculation is increased the
resulting predictions improve.

The calculation of the multiple scattering theory as pre-
sented in this paper relies on two basic inputs. One is the
fully off-shell nucleon-nucleon (NN) t matrix, which repre-
sents the best current understanding of the nuclear force, and

the other is the nuclear wave function of the target, repre-
senting the best present understanding of the ground state of
the target nucleus. These quantities comprise the required
physical ingredients for a microscopic construction of an op-
tical potential for elastic scattering. To account for the modi-
fications of the free propagator inside the nucleus, mean field
potentials taken from microscopic nuclear structure calcula-
tions are used. It must be emphasized that there are no ad-
justable parameters present in these calculations.

The motivation for ongoing work on this topic is twofold.
First, elastic and inelastic nucleon-nucleus scattering provide
an important and sensitive test for theoretical corrections at
the first order level of the optical potential (e.g. , as given by
possibly genuine modifications of the WW interaction in the
nuclear environment and off-shell effects). Rigorous micro-
scopic calculations are required for discerning these effects.
A clear understanding of this theory is also necessary before
steps can be taken to address the next level of sophistication.
Second, a better understanding of the theoretical details of
the optical potential are needed to construct realistic and
physically sound wave functions representing continuum
nucleons in the interior of the nucleus. These wave functions
will become vital for future theoretical needs in high-energy
coincidence experiments [at the Continuous Electron Beam
Accelerator Facility (CEBAF), for example], inelastic scat-
tering studies, and for understanding the reactions in heavy
ion experiments involving the new generation of radioactive
beam facilities. (In one sense to be able to develop a micro-
scopic scattering theory for heavy ions it is necessary to first
clarify the multiple scattering theory of hadronic probes. )

The theoretical framework is presented in Sec. II, namely,
the spectator expansion, the first order term, the modification
of the propagator due to the residual spectator nucleons, and
the second order term. Sec. III provides the details of the
calculations and the results for neutron-nucleus and proton-
nucleus elastic scattering. A conclusion follows in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The spectator expansion

The basic motivation behind the spectator expansion is
that the solution of the full many-body problem is beyond
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T= V+ VGo(E) T (2.1)

present capabilities, hence an expansion series is constructed
for multiple scattering theory predicated upon the number of
target nucleons interacting directly with the projectile. Hence
the expansion involves terms where the projectile interacts
directly with one target nucleon plus a second order term
where the projectile interacts directly with two target nucle-
ons, and so on to third and subsequent orders. The separation
of these terms with respect to these categories of interactions
is not completely fixed due to the nature of the complicated
(A+1)-body propagator, hence some possible choices de-
tailed in this paper must be differentiated.

At the heart of the standard approach to the elastic scat-
tering of a single projectile from a target of A particles is the
separation into two parts of the Lippmann-Schwinger equa-
tion for the the transition operator T, as given by

With these definitions the transition operator for elastic
scattering may be defined as T,1=PTP, in which case Eq.
(2.2) can be written as

T i= PUP+ PUPGp(E) T i. (2.10)

Thus the transition operator for elastic scattering is given by
a straightforward one-body integral equation, which requires,
of course, the knowledge of the operator P UP. The theoreti-
cal treatment which follows consists of a formulation of the
many-body equation, Eq. (2.3), where expressions for U are
derived such that PUP can be calculated accurately without
having to solve the complete many-body problem.

For the present discussion, the presence of two-body
forces only is assumed. The extension to many-body forces
is straightforward. With this assumption the operator U for
the optical potential can be expressed as

These two parts are an integral equation for T,

T= U+ UGp(E) PT, (2.2)
where U; is given by

(2.1 1)

U= V+ VGo(E) Q U. (2.3)

In the above equations the operator V represents the external
interaction, such that the Hamiltonian for the entire
(A+ 1)-particle system is given by

where here U is the optical potential operator, and an integral
equation for U

provided that

U;=vo;+vp; p( )Qg U,
J= 1

V=+ vp, .

(2.12)

(2.13)

H=HO+ V (2.4)

Asymptotically the system is in an eigenstate of Ho, and the
free propagator Gp(E) for the projectile+ target nucleus sys-
tem is r =vp +vp Gp( )EQ ;r, (2.14)

The two-body potential vo; acts between the projectile and
the ith target nucleon. Through the introduction of an opera-
tor 7.; which satisfies

Go(E) = (E Ho+ ie) (2.5) Eq. (2.12) can be rearranged as

The operators P and Q are projection operators, P+ Q= 1,
and P is defined such that Eq. (2.2) is solvable. In this case
P is conventionally taken to project onto the elastic channel,
such that, among other properties we have

[Gp, P]=0. (2.6)

Hp= ho+ Hg, (2.7)

where ho is the kinetic energy operator for the projectile and

Hz stands for the target Hamiltonian. Thus the projector P
can be defined as

(2.8)

For the scattering of a single particle projectile from an
A-particle target the free Hamiltonian is given by

U;= r, + r;Go(E)QX Uq'.
JWl

(2.15)

This is the spectator expansion, where each term is treated in
turn. The separation of the interactions according to the num-
ber of interacting nucleons has a certain latitude, due to the
many-body nature of Go(E).

We now concentrate on r;~, which appears in the second
term of Eq. (2.16). Its ingredients are readily obtained from
Eq. (2.15) by means of the definition

This rearrangement process can be continued for all A target
particles, so that the operator for the optical potential can be
expanded in a series of A terms of the form

A A A

U=g r;+ g r,,+ g r;, t, + . . (2.16)
i = 1 i,jWi i,j Wi, kWi,j

where I4„)corresponds to the ground state of the target,
satisfying the condition given in Eq. (2.6), and fulfilling

(2.9)

(2.17)

The operator g;J, so defined, satisfies the following many-
body integral equation
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(lf= rlGO(E)QrJ+X rlGO(E)Q(Jk
kWj

= r Gp(E) Q rj + r Gp(E) Q() + r Gp(E) Q
k Wi,j

= rGp(E)Qr + r;Gp(E)Q(, ;+0(ij,k) (2.18)

Omitting all (i,j,k) terms on the right hand side of Eq.
(2.18) leads to the second term in Eq. (2.16) via the identi-
fication of ~;, as

target nucleons and if isospin effects are neglected then the
KMT scattering integral equation [2] can be derived from the
first order Watson scattering expansion.

Since Eq. (2.24) is a simple one-body integral equation,
the principal problem is to find a solution of Eq. (2.25). Of
course, due to the many-body character of Gp(E), Eq. (2.25)
is a many-body integral equation, and in fact no more easily
solved than the original equation Eq. (2.1). However,
Gp(E) may be written as

Gp(E) = (E hp ——H„+ig)

r;~= r;Gp(E)Qr + r;Gp(E)Qr, , (2.19) = (E' hp ——h; —W; —H'+i~) (2.26)

The physical interpretation of Eq. (2.19) can be most easily
recognized through an operator y;, defined as

where ho is the kinetic energy of the projectile and h; the
kinetic energy of the ith target particle,

Xlj l lj &

from which the following relation is obtained:

X„=r;+ r, Gp(E) QX„

(2.20)

and
(2.21)

(2.27)

From the symmetric combination U;, =y; +yj;, a standard
three-body equation is derived:

U&=(vp +vp&)+(Up +vpj)Gp(E)QU~. (2.22)

The finite series given in Eq (2.16) together with the defini-
tions of 7, , 7.;, . . . given above constitute one form of the
spectator expansion in multiple scattering theory. Various
other forms could also be found [4].Differences between one
form or another reside primarily in the treatment of the
many-body propagator Gp(E). The spectator expansion de-
rives its name from the underlying idea that in lowest order
all target constituents but the initially struck one (particle i)
are "passive. "In the next order all target constituents but the
ith and jth particle are passive, and so on. In that sense, the
spectator expansion resembles the linked-cluster decomposi-
tion of nuclear structure [7].

H'=Hq —h; —H;. (2.28)

Since H has no explicit dependence on the ith particle, then
Eq, (2.25) may be simplified by the replacement of H' by an
average energy E'. This is not necessarily an approximation
since Gp(E) might be regarded as

Gp(E)=[(E—E') —hp —h; —W; —(H' —E')+is] ' (2.29)

G;(E)= [(E—E') —hp —h; —W;+ ic] (2.30)

so that r, = r, +( higher-order corrections), and Eq. (2.25)
reduces to

«= U pi+

Upi�«(E)

ri . (2.31)

and (H' —E') could be set aside to be treated in the next
order of the expansion of the propagator Gp(E). Thus, con-
sider now Gp(E) to be G, (E), where

B. The first order term

The first order term in the spectator expansion, 7.; as given
by Eq. (2.14), is now examined. Since for elastic scattering
only Pr;P, or equivalently (rliAlr;l@A), need be considered,
Eq. (2.14) can be reexpressed with this in mind as

r, =Up, + vp;Gp(E) r; vp;Gp(E)Pr;= r, —r Gp(E)Pr;,
(2.23)

Equation (2.31) can also be reexpressed as

r;= tp;+ tp, g; W;G;(E) r;,

where the operators to; and g; are defined to be

I'Ol = UOl+ UOl'g l~Ol

(2.32)

(2.33)

g; = [(E—E') —hp —h;+ is] (2.34)

(@'A
I
r I@'A) —(~'A

I
r

I
~'A) —(@'A

I
r

I +A)

1
&

(E E ) h + (C'Alr, l@A) (2.24)

where ~, is defined as the solution of

r; =
Up&+ U p&Gp(E) r; . (2.25)

The combination of Eqs. (2.23) and (2.2) corresponds to the
first order Watson scattering expansion [1].If the projectile-
target nucleon interaction is assumed to be the same for all

The quantity W; represents the coupling of the struck tar-
get. nucleon to the residual nucleus. In the practical calcula-
tions reported below we have taken W; to be an average
one-body potential independent of the particle label i. We
also use a an average value of the energy E;, which we have
taken to be zero.

At this point, one could take the attitude that a proper
consideration of this quantity is not of first order, and it
should be put together with the next higher order in the spec-
tator expansion. In that case one would obtain the so-called
"t "'" or impulse approximation to the optical potential,



52 PROPAGATOR MODIFICATIONS IN ELASTIC NUCLEON- 1995

which can be viewed as 7.;= 7.;=tp;. In the case of the im-

pulse approximation, one never needs to solve any integral
equation for more than two particles. This has made the im-
pulse approximation very practical in intermediate energy
nuclear physics and has over many years led to a large body
of work being based upon this approximation [Sj.

C. Coupling of the struck target nucleon to the nucleus

where

and

& = to + toigi X tijgi ri
Jg1.

U,J+ U,Jg, t,J ~

(2.38)

(2.39)

In the explicit treatment of the propagator G;(F) it is
necessary to consider specific forms of the potential W;,
which represents the coupling of the struck nucleon to the
residual nucleus. In this paper W; is treated as one-body
operator, such as a shell-model or mean field potential. The
attitude is taken here that this potential is already known and
is extracted from single particle mean field potentials as cal-
culated in various studies of nuclear structure. In this specific
case, Eq. (2.32) can be written as

nw=w+ . —tp+ rg -+.
I l 1J

J 4 l.

(2.40)

where

Since the last term in Eq. (2.37) always involves at least
three different target particles (i,j,k), this term is of higher
order and is safely neglected at present, Thus the operator
~; can be written as

t pi + t pi g i'Pig I' Vt, (2.35)

with, X; being given as the solution of a Lippmann-
Schwinger type equation with the potential W; as the driving
term,

.E, = W, + W, ,.F, . (2.36)

1
ri toi toi gi X "'ij —I p ~ ri

~kwiv ik+ I&

=toi+toigiX Uij
gi ViJ+ l8

This is the approach taken in the calculations presented in
this paper as well as in earlier work [9—11]. While Eqs.
(2.35) and (2.36) are completely equivalent to Eq. (2.32), a
justification for the substitution of a Hartree-Fock or any
other single particle mean field potential taken from a
nuclear structure calculation is not strictly within the theo-
retical prerequisites of the spectator expansion, which de-
mands that all of the two-body interactions be consistently
represented by Up;. Standard mean field or shell-model cal-
culations use an effective NN interaction for the reason that
present microscopic nuclear structure calculations are unable
simultaneously to use realistic free NN potentials and predict
the experimental results. Hence it is not physically unreason-
able to substitute a mean field potential for W;, but this
choice is de facto outside the strict demands of the spectator
expansion.

Using the expression given in Eq. (2.27) for W;, Eq.
(2.32) can be reformulated as

7ij
= ri tpi ~ jit tpigitij git pi+ tpigitij gi jij ~ (2 41)

JWt

where y; neglects the terms involving three target nucleons
that arise from Eq. (2.37). This treatment of the interaction of
the struck target nucleon with the residual nucleus, though
more complicated, is completely consistent with the spirit of
the spectator expansion.

The term X,~; y; involves two active target particles and
thus represents a second order spectator expansion correction
to the first order term considered in this paper. In fact, it
could equally well be considered together with the second
order term r; shown in Eq. (2.16). We have found it expe-
dient, however, to define the spectator expansion as given in

Eq. (2.16). Since this expansion is performed in terms of
quantities which in themselves contain many-body propaga-
tors, each of the ingredients 7.;, ~;, etc. may themselves be
expanded in a spectator expansion. This amounts to expand-
ing the many-body propagator also according to the number
of active participants. Another reason to distinguish the cor-
rections to the propagator and the explicit second order term
is that the second order terms in Eq. (2.16), correspond to
contributions which arise from the Q space, whereas the sec-
ond term in Eq. (2.40) remains in the P elastic space at the
first order level.

D. The second order term

Since second order corrections in the propagator should at
least in principle be considered simultaneously with the sec-
ond order corrections in the multiple scattering expansion,
the second term in Eq. (2.16) is examined in detail. This term
may be written as

+ —1 —1 /

gi U;j+ l8Xk@i j Uik gi ~l@iV il+ LR
(2.42)

= 7;+ 7;g;g V;J
jpi g; U J+ lR

X Uik —1 Vi ~

kWi j gi ~i /i Uil+ l 8
(2.37)

The subtraction of the two-body contribution in Eq. (2.42)
plays an important role in that any double counting of the
two-body term is removed. This also enables us to see ex-
plicitly the three-body nature of the second order term. We
start from Eq. (2.22), which can be expressed as
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U J= (Up + Upj) + (Up + Upj)Gp(E) U~l

—(up;+ u pj) Gp(E) P U,

=tp;, —tp, ,Gp(E)PU;, , (2.43)

where tp; is defined as

t pt J
= (U pi+ U pl) + (U p~+ U p~) G p(E) tpij . (2.44)

Thus (C&~~U;, ~4„)is obtained from (C&„~tpll4~) through
the solution of a straightforward one-body integral equation
in a way similar to the manner (4„~r, ~4„)is obtained from

(4„~7.; ~

4„).In this case Eq. (2.44) is a full three-body equa-
tion.

Once again notice that the propagator Gp(E) in Eq. (2.44)
is a complicated many-body operator. Consistent with the
spirit of the spectator expansion the propagator can be writ-
ten as

the spectator approach, this is accomplished in stages. In the
lowest order it implies that the two-body operator tp; (or
r;) must fulfill two-body symmetry. In the next order, the
three-body operators are required to be consistent with the
relevant exchanges between the projectile (nucleon 0) and
the two target nucleons (i and j). With this ansatz in place,
the spectator expansion meets all the requirements of obey-
ing the Pauli principle. Our present treatment of the effective
operator r; defined in Eq. (2.31) is within this approach con-
sistent with the Pauli principle. The argument proceeds as
follows. First, we take the attitude that the effective transi-
tion operator 7.; must be a two-body operator of the same
kind as the operator tp;, i.e., must be an operator depending
on the particles 0 and i. Second, we insist that 7.; have the
requisite two-body exchange character. Now we note that the
channel Hamiltonian Hp given in Eq. (2.7) is really an op-
erator only in the Fock space, so that it could be just as well
written as Hp, where

Gp(E) = (E hp H" +—is) ——h, —hl —u;,
H, =MH, A=,MH,'.A.S (2.49)

(Vik+ U jk)
k0i,j

and a three-particle Greens function is defined to be

(2.45)

Here, &~ represents the projection operator onto the Fock
space. The operator Hp is symmetric under identical particle
exchange. For identical projectile and target particles this
leads to the modification of Eq. (2.30) in such a way that the

operator G, (E) becomes an operator Gp, (E) given by

G;,(E)= [(E E"—hp+ ie) ——h; —h, —
U;,

—W, —W, ]
(2.46)

tpij = (Upi+ U pj)+ (Upi'+ U pl) «Jtpij'
where the effective three-body t matrix becomes

(2.47)

Using the same procedure used in the first order term,

G;J(E) is substituted for Gp(E) in Eq. (2.44) to obtain

Gp;(E) = [(E—E') —hp —h; —Wp, + ia] '. (2.50)

Here Wp; is symmetric with respect to the exchange of par-
ticles 0 and i. In our calculations we have indeed used a
symmetric operator for the potential representing the cou-
pling of the struck target nucleon to the residual nucleus. The
details of how we treat this symmetric potential W; are given
in an earlier publication [10] and will not be repeated here.

fp j—tpj+' (2.48)

E. The Pauli principle

It has been shown elsewhere [12] that the spectator ex-
pansion not only respects the Pauli principle at each level of
truncation of that expansion, but provides a systematic
method for including exchange terms of increasing complex-
ity. %'e have always assumed that the nuclear structure
comes fully antisymmetrized with respect to the target nucle-
ons. All that is required of us is that we keep track of the
exchanges between the projectile and the target nucleons. In

The truncation of the propagator Gp(E) from Eq. (2.45) to
the form given in Eq. (2.46) is once again tantamount to
relegating the coupling of the active target nucleons to the
next higher order term in the expansion of the propagator.

Actual calculations of the three-body corrections to the
first order optical potential as given in Eq. (2.41) and Eq.
(2.47) are extraordinarily difficult without further approxi-
mations. In this paper we do not attempt to calculate these
higher-order contributions to the spectator expansion. But for
the sake of conceptual clarity the propagator corrections in
first order, as presented in this work, should be seen in the
context of the next higher order of the spectator expansion,
since both are given through three-body type equations.

III. RESULTS AND DISCUSSION

A. Details of the calculation

In this paper the study of the elastic scattering of neutrons
and protons from spin-zero target nuclei at energies that
range from 65 and 400 MeV (incident projectile energy) is
strictly first order in the spectator expansion. Here the cor-
rection to the propagator Gp(E) due to the coupling of the
initially struck target nucleon to the residual target is consid-
ered to be first order. As outlined in Sec. II C this calculation
includes the modification of the free propagator due to the
"nuclear medium. " The operator M;, representing the scat-
tering of the struck target particle i from the residual nucleus,
is calculated through the use of a one-body potential W; ~

Nonlocal, spin-dependent potentials derived from realistic
nuclear mean field models are used to represent the potential
W; given in Eq. (2.36). Two different mean field potentials
are used in these calculations in order to isolate any model
dependence which may exist. One is the nonrelativistic, non-
local mean field potential taken from a Hartree-Fock-
Bogolyubov microscopic nuclear structure calculation,
which utilizes the density-dependent finite-ranged Gogny
DlS nucleon-nucleon interaction [13,14]. This model has
been shown to provide accurate descriptions of a variety of
nuclear structure effects. Calculations using this potential as
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W; will be referred to as HFB. The second choice involves a
nonrelativistic, local reduction of the mean field potential
resulting from a Dirac-Hartree calculation based upon the
o.-c0 model [15].The calculations with this potential will be
referred to as DH. Comparisons of calculations with these
two models may serve to indicate the sensitivity of the elas-
tic scattering predictions. to the model of the nuclear mean
field potential. The results suggest that there is a slight sen-
sitivity to the choice of the mean field potential; however,
this "uncertainty" is smaller than the overall size of the me-
dium correction. One might therefore expect that any reason-
able model of this kind, which describes nuclear structure,
could give qualitatively similar results. A step by step de-
scription of the implementation of the nuclear mean field
potential, within the framework of the spectator expansion is
given in Ref. [10].

The treatment of the propagator modification through a
nuclear mean field potential taken from structure calcula-
tions, although a valid approach, may not be completely sat-
isfactory. In keeping full consistency with the theory of mul-
tiple scattering, it may be better to treat the operator M~ as

(3 1)

as outlined in Sec. II C [Eqs. (2.40) and (2.41), where t; is
defined in Eq. (2.38)]. Calculations based on this approach
are much more difficult than any performed so far, and,
though not intrinsically intractable, have been postponed.
The structure of Eqs. (2.40) and (2.41) is very similar to the
calculation of the second order in the spectator expansion as
outlined in Sec. II D, and both should be treated in the same
order and in a similar manner. Further, note that an approxi-
mate treatment of the three-body kinematics involving the
scattering of the struck target nucleon from the residual
nucleus is used and is discussed in length in Ref. [10].

The nucleon-nucleon (NN) r matrix is another crucial in-

gredient in these calculations. The quality and extensiveness
of the nucleon-nucleus observables we attempt to predict re-
quire trustworthy representations of the NN interaction. For
convenience the calculations presented here use the free NN
interaction based upon the full Bonn potential [16], giving

t, = t ',".This interaction includes the effects of relativistic
kinematics, retarded meson propagators as given by time-
ordered perturbation theory, and crossed and iterative meson
exchanges with NN, NA, and AA intermediate states. A
comparison of nucleon-nucleus observables based on differ-
ent models for the NN interaction is deferred to a later time.
It should be clearly stated that, even if the underlying models
for the NN interaction accurately describe the "on-shell"
NN data, there may still exist "off-shell" differences be-
tween the various models, which could affect the predictions
of the elastic nucleon-nucleus observables.

The first order folded effective NN t matrix is then con-
structed with the operator r, from Eq. (2.35):

(3.2)

These calculations are performed in momentum space and
include spin degrees of freedom. The first order optical po-

tential is then evaluated by solving Eq. (2.23) in the folded
form. In the present calculations, which are performed in
momentum space, (r,&r) enters in the "optimum factorized"
or "off-shell rp" form [17,18] as

(3.3)

where q = ko —ko and ~~= —,(ko+ ko); ko and ko are the final
and initial momenta of the projectile. This corresponds to a
steepest descent evaluation of the "full-folding" integral, in
which the nonlocal operator ~ is convoluted with the density

p(q) as indicated schematically in Eq. (3.2). For harmonic
oscillator model densities it has been shown that the opti-
mum factorized form represents the nonlocal character of
U,~, qualitatively in the intermediate energy regime [19,20].
Complete "full-folding" calculations with more realistic
nuclear densities are in progress. It is to be understood that
we perform all spin summations in obtaining U,~, . This re-
duces the required NN t matrix elements to a spin-
independent component (corresponding to the Wolfenstein
amplitude A) and a spin-orbit component (corresponding to
the Wolfenstein amplitude C). All scattering calculations pre-
sented here contain an additional factor in the optical poten-
tial to account for the transformation of the NN t matrix
from the two-nucleon c.m. frame to the nucleon-nucleus c.m.
frame [18].

Another uncertainty in the present calculations lies in the
lack of completely reliable target wave functions of the ac-
curacy required. The best guide for the distribution of matter
in nuclei is the information extracted from electron scattering
[21].This information gives a reasonably good picture of the
average single particle proton density especially about the
surface, and it is used in the calculations presented in this
paper to represent the proton densities. The neutron densities
used are those taken from the Hartree-Fock-Bogolyubov cal-
culation described above [13].In principle, it would appear
more consistent to employ the proton densities obtained from
the same calculation. However, there are small differences
between the calculated proton densities and the measured
ones. These small differences are, however, large enough to
influence slightly the predictions of the nucleon-nucleus ob-
servables. Therefore the measured proton distributions were
thought to be more reliable and are used throughout the
present calculations. This does leave a question about the
reliability of the calculated neutron distributions which were
used in the present calculations. A study on the sensitivity of
the proton-nucleus observables to slight variations in the
neutron distributions was presented in Ref. [22].

For the proton-nucleus scattering calculations the Cou-
lomb interaction between the projectile and the target is in-
cluded using the exact formalism described in Ref. [23]. Al-
though the multiple scattering calculations are performed
fully in momentum space, so as to be able to include easily
nonlocal and off-shell effects, the point Coulomb contribu-
tions are described by using Coulomb scattering wave func-
tions in coordinate space. There are no cutoff parameters
necessary in this technique.

B.Total cross section for neutron scattering

In nuclear structure calculations the binding energy of the
system in its ground state together with energies of certain



1998 CHINN, ELSTER, THALER, AND WEPPNER 52

1.5 1.5 p

1.0

0.5
~ --.--- ~----- -~--p----------- ~ -Ah

2.5

2.0—

1.5

1.0—

3.5

3 Q

t

2.5

2.0

0.0
2.0

40
Ca

10

h ~

e Pg

0.0
~

— 5.0

90'

4.0

- 3.5
X

«',,++ 3.0
~'V, ' ~

I !

'Li 4$"~
+

I~

--. -.--- ~ .... - . ~ ----..

208pb

~ 14 ~ at v

FIG. 1. The neutron-nucleus total cross sec-
tions for scattering from ' C, ' 0, Si, Ca,

Zr, and Pb are shown as a function of the

incident neutron kinetic energy. The dotted line
represents the data taken from Refs. [24,25]. The
solid diamonds correspond to the calculations in-

cluding the propagator modification due to the
HFB mean field [13](in case of Pb of the DH
mean field [15]). The star symbols indicate the
"free" calculations using the full Bonn free NN t
matrix [16] only. The cross symbols represent a

local "on-shell tp" calculation, which uses only
the on-shell values of the same t matrix.

1.0—
0

I

100
I I

200

K„.b [Mev]

I

300
2.0

400 0
I

100
I I

200

K~., [Mev]
300

low-lying excited states are the experimental information
which must be closely reproduced to establish the reliability
of the model wave functions and the various physical matrix
elements implied thereby. In the present calculations of elas-
tic nucleon-nucleus scattering the neutron total cross section,
as a function of scattering energy, should serve as a similar
figure of merit. In the early 1990s extensive high-precision
measurements of neutron total cross sections became avail-
able for a variety of target nuclei [24,25] and can now be
used to discriminate between scattering calculations in the
above indicated fashion.

In Fig. 1 total neutron cross section data for ' C, '60,
Si, Ca, Zr, and Pb are shown along with various

calculations of rr„,(E) at a number of energies. Because the
data are so extensive, the "usual" procedure has been re-
versed and the data are represented by dotted curves. The
"jitter" in these curves may be taken as indicative of the
experimental uncertainty. The statistical error bars them-
selves are of the order of 1% and could not be distinguished
in the figures. The discrete points correspond to the calcu-
lated results. The solid diamonds represent the calculations
as described in Sec. III A and include the modification of the
free propagator through the Hartree-Fock-Bogolyubov mean
field [13], except for Pb where W; is taken from the DH
case. In each case the predictions are in accord with the data
from ~65 MeV for the light nuclei and «100 MeV for the
heavier nuclei. That is, the theoretical predictions do ex-

tremely well in predicting the energy dependence of the total
neutron cross section beyond the point where the data exhibit
a pronounced structure.

Since a detailed discussion on the description of neutron
total cross sections for ' 0 and Ca was recently published
[11]comments on this subject will be somewhat restricted.
As an indication as to how much has been gained by elimi-
nating necessary earlier approximations to the full first order
theory, points, represented as crosses, are shown at 100 and
200 MeV for ' 0, Ca, Zr, and Pb which were calcu-
lated using the so-called "local free ~p" approximation. This
consists of multiplying the on-shell NN scattering amplitude

t(q) with the one-nucleon density p(q) for the target
nucleus. For many years this simple approximation was
taken to represent the first order theory (of course, it was not
possible to perform more difficult calculations at that time).
The total cross sections calculated this way are invariably
above the full calculation represented by the solid diamonds.
These "local free ~p" results are also significantly larger
then the experimental values; in some cases, especially for
the heavier elements, this discrepancy can be as large as
25—30%. This gross failure of the local approximation casts
serious doubt upon some of its early successes, and certainly
creates serious reservations about the many attempts to ac-
count for the failures of the local approximation by the in-
troduction of new effects, which are not cleanly consistent
with a many-body scattering theory.
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Of greater current interest is the difference between the
points represented as stars and the solid diamonds. The stars
are calculations performed with the free propagator Go(E)
of Eq. (2.26), where the target Hamiltonian H„is approxi-
mated by a c number. Therefore these points contain the
complete off-shell structure of the NN t matrix, but neglect
the coupling of the struck target nucleon to the residual
nucleus. The difference between the stars and the solid dia-
monds represents the size of this effect, i.e., the coupling of
the struck target nucleon to the residual nucleus. As Fig. 1

shows, and as expected, the absolute size of the effect grows
as the nuclei become heavier. In addition it is most prevalent
in the regime between 100 and 200 MeV projectile energy
and becomes almost negligible at higher energies. For all
nuclei under consideration at 300 and 400 MeV the propa-
gator modification has no discernible effect. It is most satis-

fying to observe that whenever this correction is significant it
moves the calculated results closer to the measurements.

C. Proton elastic scattering observables

Obviously there are no comparable total cross section data
for proton scattering. On the other hand, there is relatively
little experimental information on elastic angular distribu-
tions and no spin observables for neutron scattering from
nuclei. Thus for a more detailed look at nucleon-nucleus
elastic scattering the scattering of protons from nuclei is ex-
amined. For the proton case the Coulomb interaction be-
tween the projectile and the target is included using the exact
method developed in Ref. [23]. In a recent paper [12]elastic
proton and neutron scattering observables at 65 MeV projec-
tile energy for ' C, ' 0, Si, Ca, Zr, and Pb were
shown. These calculations were performed at an energy
which was considered by many to be below the regime of
applicability of the first order spectator expansion. However,
there are a wealth of experimental data at this energy for the
above mentioned nuclei. These data include the differential
cross section do.dA, the analyzing power A, and the spin
rotation function Q (with the exception that for Si and
56Fe there are no measurements of Q). At this low energy
fairly good agreement between the predictions and the mea-
surements was observed. It was very clear that the inclusion
of the coupling of the struck target nucleon to the residual
nucleus considerably improved the description of the data.
This was especially true for the description of the spin rota-
tion parameter Q, in which case the improvement was dra-
matic. In this paper further calculations at other energies in
the regime between 80 and 300 MeV are presented. Elastic
proton scattering observables are calculated for a variety of
light as well as heavy spin-zero targets at a variety of ener-
gies. Here predictions are presented only for those targets
and energies where spin observable data exist. Unfortunately
in the regime below 200 MeV, there is no other energy like
65 MeV where the proton spin observables have been mea-
sured for many nuclei in a similarly systematic manner.

The calculations chosen here are limited to energies be-
low the pion-production threshold. The reason is twofold.
First, the NN t matrix, which represents one of the critical
inputs to the calculations, is not as well established at higher
energies. Second, the correction to the free propagator due to
the presence of the nuclear medium, which is the new ingre-
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FIG. 2. The angular distribution of the differential cross section
(drrldA), analyzing power (A, ,), and spin rotation function (Q) are
shown for elastic proton scattering from ' C at 200 MeV laboratory
energy. All calculations are performed with a first order optical
potential obtained from the full Bonn interaction [16] in the opti-
mum factorized form. The solid curve includes the modification of
the propagator due to the HFB mean field [13],the dashed curve the
one due to the DH mean field [15].The free impulse approximation
(in the optimum factorized form) is given by the dash-dotted curve.
The data are taken from Ref. [26].
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FIG. 3. Same as Fig. 2, except for ' 0 at 100 MeV proton
kinetic energy. The dotted line represents a local "on-shell tp"
calculation which uses only the on-shell values of the same t matrix
and is only included for historical reasons. The data are from Ref.
[27].

dient in these calculations, decreases in importance as the
energy increases. This is shown for the total cross section in
Fig. 1. In Figs. 2—14 the angular distribution, the analyzing
power and the spin rotation function for elastic proton scat-
tering are shown for ' C at 200 MeV ' 0 at 100, 200, and
318 MeV, Si at 80, 135, and 200 MeV, Ca at 80 MeV,

Zr at 65, 80, and 160 MeV, and Pb at 80 and 200 MeV,
respectively.

To show the dependence on the choice of the mean field
potential W; [Eqs. (2.30) and (2.32)] calculations with two
different mean field potentials representing the operator W;
are displayed. The solid line corresponds to the results based
upon the HFB potential [13], whereas the dashed curve is
based upon the DH potential [15]. For the calculations of
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FIG. 8. Same as Fi . 6 exg. , except the projectile kinetic energy is
200 MeV, and the data are from Ref. [32].
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FIG. 9. Same as Fig. 2, except for Ca at 80 MeV proton
kinetic energy. The data are from Ref. [34].
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FIG. 10. Same as Fig. 2, except for "Zr at 65 MeV proton
kinetic energy. The data are from Ref. [33].

FIG. 12. Same as Fig. 10, except the projectile kinetic energy is
160 MeV. The data are from Ref. [31].

proton scattering from Pb the DH mean field potential
only is used (solid line), since the choice and size of the basis
functions representing W; were not adequate for the HFB
mean field potential in this case. -Calculations where no me-
dium contributions are included correspond to the free "off-
shell tp" approximation and are given by the dash-dotted
line.

The figures show that both calculations which incorporate
the coupling of the struck nucleon to the residual nucleus
provide a good representation of the data except at very large
scattering angles. That this description, while very good, is
not perfect is easily understandable since various corrections
to the many-body theory still remain unexplored. The calcu-
lations are limited to lowest order in the spectator expansion,
and are carried out in the optimum factorized form, which
takes only the nonlocal structure of the NN t matrix into
account. Finally, the full three-body structure involved in the
coupling of the struck nucleon to the residual nucleus has not
yet been considered. In addition, for large angles the Pauli
exchange of the Coulomb term could play a role. Those ef-
fects are not included in the present calculations.

For the lighter target nuclei in Figs. 2—8 the correction to
the propagator causes the diffraction minima in the predic-
tions to move slightly to higher angles and be closer to the
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FIG. 11. Same as Fig. 10, except for Zr at 80 MeV proton
kinetic energy. The data are from Ref. [31].

data. The improvement of the theoretical predictions is more
apparent in the spin observables, especially in Fig. 6. At
lower energies (Figs. 3, 6, and 9) the propagator modifica-
tions causes a characteristic shift of the spin rotation function
Q. Unfortunately there are no measurements of Q at the
energies presented here. In an earlier work [12], presenting
only calculations at 65 MeV projectile energy, the propagator
modification brought the the calculations into excellent
agreement with the measured values for Q. So we expect
that measurements of Q around 100 MeV would also be
close to our calculations. At projectile kinetic energies of 200
MeV or above the full calculations provide very good results
with respect to the data. The modification of the propagator
affects only AY in a very moderate fashion.

For the heavier nuclei in Figs. 10—14 one would expect
the effects of the medium modifying the propagator to be
more pronounced, which is indeed the case. The shift of the
diffraction minima to larger angles is clearly visible for the-

'10~-
10
102
100-

10

0.5 =

0.0:—
—0.5 .—

—1.0-

20 40 60 80
(deg)

FIG. 13. The angular distribution of the differential cross-
section (dcrldA), analyzing power (A ) and spin rotation function

(g) are shown for elastic proton scattering from Pb at 80 MeV
laboratory energy. All calculations are performed with a first-order
optical potential obtained from the full Bonn interaction [16]in the

optimum factorized form. The solid curve includes the modification
of the propagator due to the DH mean field [15].The free impulse

approximation (in the optimum factorized form) is given by the
dash-dotted curve. The data are from Ref. [34].
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ferential cross section, a lack of structure in the spin observ-
able A, and differences in the spin rotation function Q. For
a heavy nucleus like Pb the local calculation looks disas-
trous, leading already to a severe overprediction of the size
of the nucleus as seen in the diffraction pattern of the differ-
ential cross section. This lack of agreement led in the past to
the study of corrections to the local approximation specifi-
cally in heavy nuclei [8].It is a very satisfactory result for us
to find that the first order calculation in the spectator expan-
sion together with a treatment of the propagator modification
leads to a good description of the elastic proton-nucleus ob-
servables for light as well as heavy nuclei in the energy
regime especially between -65 and 400 MeV projectile en-

ergy.

FIG. 14. Same as Fig. 13, except the projectile kinetic energy is

200 MeV. The dotted line represents a local "on-shell tp" calcula-
tion which uses only the on-shell values of the same t-matrix and is

again only included for historical reasons. The data are from Ref.

heavy nuclei Zr and Pb, especially at lower energies
(Fig. 10, 11, and 12). For Zr at 65 MeV (Fig. 10) the
propagator modification has a significant effect on the ob-
servables. The minima in the diffraction pattern of the differ-
ential cross section coincide with the measured ones, indicat-
ing a correct prediction of the size of the nucleus.
Furthermore, the overall size of do./dO, is predicted cor-
rectly over about five orders of magnitude. The effect on the
spin observables is equally dramatic and causes the predic-
tions of A and Q to agree remarkably well with the data. We
included Fig. 10, though already published in Ref. [12], since
at lower energies the only measurements of Q exist at 65
MeV. Again, for Zr at 80 MeV (Fig. 11) the propagator
modification has a significant effect on the differential cross
section and the spin observables and causes the predictions
of A to agree very well with the data. A similar tendency
can be seen for Pb at the same energy (Fig. 13). At 160
MeV the medium effects are not as pronounced for Zr
except at larger angles where the full calculation provides
better agreement with the data (Fig. 12). For Pb at 200
MeV in Fig. 14 the modification of the propagator has little
effect on the prediction of the differential cross section and
A; differences are present in the spin rotation function Q.
Though these were the only differences we found at this
energy, conclusions about the significance are premature. As
mentioned earlier, for the calculations of scattering from

Pb we only had the DH mean field available, and we
could not carry out the study of model dependence of the
results as we did for other nuclei.

In order to indicate the progress which has been made in
the calculation of proton-nucleus elastic scattering, results
for selected cases obtained with the local, "on-shell tp" ap-
proximation are shown, where the off-shell contributions of
both the NN t matrix as well as the density matrix are ne-
glected. Those "local" calculations are represented by the
dotted lines in Figs. 3, 4, and 14 for '"0 at 100 and 200 MeV
and for Pb at 200 MeV, respectively. As was already the
case for the description of neutron total cross sections, the
local calculations show moderate deficiencies for a light
nucleus like ' 0, manifested in an overprediction of the dif-

IV. CONCLUSION

The spectator expansion of multiple scattering theory is
described in detail. The optical potential is expanded into a
series predicated upon the idea that the dominant effect is the
two-body interaction between the projectile and one of the
nucleons in the target. The number of target nucleons inter-
acting directly with the projectile determines the ordering of
the scattering series. Complexities due to the free many-body
propagator for the projectile-target system also play a signifi-
cant role and are treated within the spectator expansion of
multiple scattering theory as theoretical framework. The first
order theory and the treatment of the many-body propagator
due to effects from the residual nucleus are presented, along
with a formal description of the second order contribution.

Predictions from rigorous calculations of elastic nucleon-
nucleus scattering at projectile kinetic energies in the range
-65 to 400 MeV provide excellent agreement with the ex-
perimental data. In this case the basic inputs to the calcula-
tion are the free fully off-shell NN interactions and realistic
nuclear densities. Modifications to the propagator were cal-
culated using static potentials taken from microscopic mean
field structure calculations. It is found that, as the calcula-
tions include more complex degrees of freedom within a
well-defined theoretical framework, the predictions provide
an improved description of the data. The first order spectator
expansion provides an excellent a priori description of the
extensive data for nucleon-nucleus scattering data from
—65 to 400 MeV for modest momentum transfers. These
results are in fact good enough to encourage speculation that
further work may soon yield new information about neutron
distributions and nuclear correlations in nuclei.
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