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Phenomenological transition amplitudes in selected 1p-shell nuclei
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(Received 26 August 1994)

We critically examine, in selected 1p-shell nuclei, the theoretical procedure of determining nuclear transition
matrix elements, by fits to low-energy electromagnetic and weak observables. We systematically study various
fitting strategies using the latest database, and obtain a set of optimal one-body matrix elements. The onset of
inadequacies of these sets in describing a given nuclear electroweak observable usually signals the breakdown
of the 1p-shell model and/or importance of the two-body corrections. We compare the particle-hole conjugate
nuclei Li and ' N, and obtain effective amplitudes. We also study the mass-12 case and find a set of effective
one-body amplitudes. The difference in the p&&2 and p3/2 radial wave functions plays an important role in our
fits.

PACS number(s): 23.20.js, 23.40.—s, 27.20.+n

I. INTRODUCTION

A very useful theoretical approach in nuclear structure
physics, originally stressed by Donnelly and Walecka I I],
has been to determine effective one-body amplitudes from a
fit to the experimental electroweak data at small momentum
transfer. This procedure has met with considerable success

I I] in some "lp shell" nuclei, such as A = 6 and A = 12, but
has been problematic in the A = 14 system, where the anoma-
lously suppressed beta decay '

Cg, ~ '
Ng, + e + v, is not

helpful to constrain the '
Cg, and '

Nz, wave functions
I2,3]. Such an unusually small amplitude is certain to be
influenced by the two-body effects such as meson exchange
currents I4]. In the past two decades, the experimental data-
base has improved considerably, with the availability of
more precise and higher momentum transfer electron scatter-
ing data I3,5—13] from the improved electron facilities.
These can provide crucial information about nuclear charge,
current, and spin transition densities, often revealing regimes
where new physics comes into play. Our objective is to sys-
tematically examine such observables as can be adequately
described with one-body matrix elements and thus can be
used as precise constraints on the nuclear wave functions.

At low momentum transfers, the nucleus can be described
by nonrelativistic single-particle motions in a nuclear mean
field. At higher momentum transfers, relativistic corrections
and two-body effects such as meson exchange currents can
play a significant role I14]. Electromagnetic and weak ob-
servables, such as static electric and magnetic moments,
electron scattering form factors, p decay, and p, -capture am-

plitudes, can provide constraints for the nuclear structure at

low momentum transfer IqI I 1,3,5—10,15,16] . For p decay,

q =0.01 fm ', and for muon capture, qI=0.7 fm '. We
restrict our study to the 1p-shell nuclear transitions at low
momentum transfer so that the two-body contributions will
be small, or in specific cases, to regions of momentum trans-
fer in which the two-body effects, such as meson exchange
currents, have been explicitly calculated to be small. An ex-

ception to this will be the A=14 case: Here the nuclear
structure conspires to make one-body electroweak ampli-
tudes small, thereby enhancing the role of the two-body ef-
fects. Also, the inelastic transitions studied here are of pure
M1 character, in order to reduce uncertainties due to two-
body corrections that have a strong dependence on multipo-
larity.

In studying transitions between Li, and Li*(3.56
MeV, I"T=O+1), one can gain information concerning
the nuclear structure of Heg, , as the excited state is
its isobaric analog. Similarly, the ' N*(2.313 MeV,
1 T=O+1) level is the isobaric analog to ' Cs, and
the ' C*(15.11 MeV, I T= 1+1) state is the analog
to ' Bg, . Thus, the nuclear structure information so
gained can be applied to the photoproduction reactions

(y, ~+) ' Cs, , assuming isospin invariance. We investigate
these reactions in a paper with Wittman I 17].

While the method of determining effective one-body am-
plitudes from the electroweak observables have been revis-
ited many times since the work of Donnelly and Walecka,
our strategy makes use of the powerful fitting procedures of
the CERN fitter routine MINUET. This allows us to explore the
multidimensional parameter space in an exhaustive fashion
not attempted previously for this problem. It allows us to
distinguish among local minima in the multidimensional y
space. We use this procedure with the latest electroweak da-
tabase to explore the limits of the present method reachable
with this data set.

II. PHENOMENOLOGICAL AMPLITUDES

We review the theoretical formalism in brief, to define
quantities of interest to our analysis. In general, one can pa-
rametrize the phenomenological amplitudes in terms of dou-
bly reduced transition density matrix elements (TDME's)
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where ap is the particle creation operator with p labelling

the single-particle quantum numbers 1jpmp -,
'

/cp), —,
' is the
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nucleon isospin, ~ is the isospin projection, and

[x]—= $2x+ 1. The negative subscript denotes spin and isos-

pin projections of opposite sign. J, ~, and T are the nuclear
angular momentum, parity, and isospin, respectively. The
phase S relates the single-hole creation operator b~ to the
single-particle destruction operator:

bt = ~ = ( 1)/ ™+1/2+ ~ (2)

where btlO)=In ') and a annhilates the time reversed
particle state

I n) T. he bt form the components of a spherical
tensor operator of rank j [18].

The 4p ~ JT are related to the A«z&J»2 of Lee and Kurathfi

[19],where 2 is the isospin projection, by

1 1 L'

pu;JT
Q2(

i i [Jp][Ju]~ [ ][ ] 2 2 ( (Ls)J 1/2 ( ) (/. s)J 1/2). —
I.S

jp jo.'

The TDME's are used to evaluate the nuclear matrix elements of one-body operators:

(JfTflllF"II I J;T;&= 2 (Plllf"I I I ~&~ p. , JT

The TDME's for nonscalar transitions involving hole states can be cast into the same form as the TDME s for transitions
involving particle states [20]:

(JfTflllF"III J,T,&= 2 (Pl If",
I II~&(JfTfl ll[bp~ .b.]T~III-J;T;&J([J][T]),

where

fJT (g~
—lfJTj~) $ ( 1 ) 1+1+Tf

and the time reversal operator 3=e' / '+"~ K, where K is the complex conjugation operation and Pin)=In). TDME's
defined in this way for the mass-6 and mass-14 cases have the same dependence on the wave function basis components. Thus,
to obtain the nuclear matrix element of a one-body operator for transitions involving n-hole states, one need only multiply the
corresponding nuclear matrix element for the n-particle case by the phase ( —1) '

The wave functions for the Heg, , Lig, states '
Cg, ,

'
Ng, and the aforementioned isobaric analog levels are explicitly

constructed within the 1p-shell basis. The ground state quantum numbers of Li and ' N are J T = 1+0; the ground state
quantum numbers of He and ' C are 1 T = 0+1. The normalized wave functions in the jj representation are

11'O&=2 e~,

leak)

=~II 1/~»2)+blJ 3/~1/2&+e I 2/~s/2), Io'1)=2 ck, l @y~)=III 1/~1/2)+nlJ 3/~3/2).
l

(6)

where o. = +1 for A = 6, —1 for A = 14, representing particle and hole, respectively. The corresponding normalized wave
functions in the LS representation are

I

1+O) = nl's, )+pl'p, )+ pl'n, ), IO+1) =xl'so)+yl'Po).

The TDME's for elastic transitions are constrained by the fact that the ground state wave function is an eigenstate of total

angular momentum J= Z;j; so that [21]

&1'olllJllll+o&= +6=2 (pllljlll~&c"p. , to= /2X [J ]Qj (J +1)@"..;1o (8)

In addition, time reversal invariance imposes the constraint

+'p go=( 1) +
p@~p Jo(/x+P) (9)

Thus, only two of the four 1p-shell elastic TDME's are in-
dependent. The normalized Lig, and '

Ng, 1p-shell wave
functions in Eq. (6) also have two independent parameters,

so that Eqs. (8) and (9) do not impose additional constraints.
Note that there are no constraints on the 1p-shell inelastic
1=1, T=1 TDME's, independent of reference to a wave
function basis. However, the normalized excited state wave
function in Eq. (6) is a function of just one independent
parameter, implying that there is only one independent in-
elastic TDME for the mass-6 and mass-14 cases. It is pos-
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FIG. 1. ' C 15.11 MeV I1 (e,e') form factor: RPI-C2 (solid
curve), Cohen-Kurath (long-dashed curve), RPI-Cl (dotted curve),
and RPI-C2 with HF radial wave functions (dash-dot curve). The
data are from Ref. [11](open circles) and Ref. [12] (solid circles).

sible that this additional freedom can appear as the renormal-
ization of the TDME s. Specifically, we examine the possible
renormalization of the 4I.s;JT = @21;» matrix element, pre-
sumably due to s-d shell admixtures [22].

We do not explicitly construct a 1p-shell wave function
for '

Cg, . Instead we use the TDME's to compute the off-
diagonal observables between ' Cs, and the ' C*(15.11
MeV, 1 T= 1+ 1) level, the isobaric analog of ' Bs, . These
TDME's are, in the notation of Eq. (1),
C 1/2 1/2 ;11 + 1/2 3/2 ;11 C 3/2 1/2;11 a +3/2 3/2;11
that 4»2 3/2 . » and 43/2 1/2 ~ ]1 cannot be fit separately since
the relevant T= 1 observables are a function of their differ-
ence. In the jj-coupling limit '

Cg,. is a closed p3/2 subshell
and the 15.11 MeV level is a p3/2-hole —p1/2-particle state,
@ 1/2 1/2;11 +3/2 3/2;11 +3/2 1/2;11 + 1/2 3/2;11
=1.However, the jj limit gives a poor representation of the
nuclear structure t23]. We use Eq. (4) to evaluate the nuclear
matrix elements for the mass-12 case with the single-body
matrix element evaluated for particle states, since, for ex-
ample, the mass-12 wave functions can be regarded as eight
1p-shell particles on the He core.

For the radial wave functions we use harmonic oscillator
(HO) as well as Hartree-Fock (HF) functions [24], based on
the Skyrme interaction, for '

Cg, and '
Ng, . An additional

degree of freedom is introduced in the HO case: The

pti2 and p3,2 radial functions have their own effective oscil-
lator parameters b»2 and b3/2 in order to simulate the effect
of the spin-orbit splitting. The effectiveness of this param-
etrization can be tested by comparing observables calculated
using the realistic Hartree-Fock wave functions with those
calculated using HO functions that maximize the overlap in-

tegral with the p»2 and p3/2 HF radial functions, as used in
Ref. [24]. This procedure yields b, t2

= 1.80 fm and
b 3/2 1 .64 fm. Evaluating the difference in HO energies
between the p1/2 and p3/2 states yields

consistent with the observed spin-orbit splitting in the 1p-
shell nuclei [24].

In Fig. 1 we show the ' C 15.11 MeV (e,e') form factor
using the HF and "effective" HO radial wave functions and
the same nuclear structure information (RPI-C2, to be dis-
cussed shortly). The two radial inputs give nearly identical
results out to momentum transfer q=2.9 fm '. The HF ra-
dial input shows an additional diffraction structure whereas
the HO result decays monotonically at higher q. Thus, we
conclude that the "effective" HO radial wave functions can
be used to simulate the behavior of realistic radial wave
functions at momentum transfers less than 3.0 fm

III. ELECTROMAGNETIC AND WEAK INTERACTION
OBSERVABLES

We now test the contention [I] that electroweak observ-
ables can be described in the chosen nuclear transitions in an

approach in which the two-body effects are ignored, and pos-
sibly absorbed by the phenomenological amplitude. Two-
body corrections are, in general, observable dependent, and
our procedure would fail to absorb them in the effective one-
body amplitudes in a fit, where two-body corrections to dif-
ferent observables are significantly different. For example, if
the two-body corrections to the electromagnetic current are
strongly isospin dependent, the elastic T = 0 and inelastic T

1 (e,e') form factors will not be simultaneously de-
scribed and other observables will have to be explored as
possible constraints for the wave function. Also, since the
corrections to the (e,e') form factors are dependent on mo-
mentum transfer, only specific ranges of momentum transfer
may be useful for extracting the phenomenological ampli-
tude. We can test this supposition by performing successive
fits in which an additional (e,e') form factor data point out-
side a given range is included. Given precise and accurate
data, the fits can signal the breakdown of the underlying
nuclear model configuration space and thus characterize the
region of validity in momentum transfer for a given model
space.

5 A'i I
AF-= ——

2
—

2 =6.6 MeV,
2 M ib3/2 b1/2

(10)

A. Electromagnetic form factors

Evaluating the M1 form factor with 1p-shell basis func-
tions yields



1950 B. C. DOYLE AND C. MUKHOPADHYAY 52

Fr'(q)= 3[T „&,ZMX F~ (q)(Cp".y+/ rC'p.'"y) ~p. , tr y (q)

where

Bp~ (q) =&R//I jp(qr)IR ),

and 8 = (0,2/, T = (0,1), and p, T
——/L +(—1) p,„.Hence, p,0=0.879 804 and p, , =4.705 888 nuclear magnetons [25].

The C// ~ are given in Table I (where C3/2 t/2p Ct/p 3/pp'). f,„(q) is the nucleon size correction:

f,„(q)= 1/(1+q /18.43 fm ) (12)

F, (q) is the center-of-mass (c.m. ) correction factor. For //»2 and p3/2 harmonic oscillator wave functions, the Bessel
transforms are

/ 2y 2
Bp (y) = 1 —

N/3 e P, B~~ (y) = —
N/3 e ~/3, (13)

where

q bp
Xp

=
4

2b2 b2

bp =b2 b2, and Ni/2 3/2=
bp+b

5
bi/2 3/2

&tb U2b3/2)

For the effective harmonic oscillator functions, the normalization factor N}/2 3/2 0.989. Numerically evaluating N$/2 3/2 in
the HF case gives N&/2 3/2

= 0.990.
In some Hartree-Fock approaches [24,26], the c.m. correction is obtained by subtracting the total c.m. kinetic energy

P l2MA from the sum of the single-particle kinetic energies X;p, /2M, where M is the nucleon mass and A is the nuclear
mass number. This procedure effectively reduces the single-particle kinetic energy by a factor of (1 —I/A) and introduces

correlation terms of the type p; p~ . Applying this correction improves the agreement of the calculated single-particle energies
with their experimental values even when these correlations are ignored [26].Campi and Sprung [27] found that including the
correlations introduces technical difficulties. As in this work, they opted to use the c.m. correction appropriate for harmonic
oscillator functions, where the harmonic oscillator functions are determined from maximum overlap with the HF functions.
This yields F~ (y)=e &

B. Ground state moments

The single-particle magnetic moment operator is given by [28]

/L = 7pL+ (/tLP /M ) 'r3) CT (14)

The nuclear matrix element of p, , yields, in nuclear magnetons,

+2 (1
p, =—&I+OIPzl 1+0)= (1 —pp/2)4'j/2 t/2. ]0+2+2Ng/2 3/2 /Lp 4t/2 3/2. tp+ (1+Pp)@3/2 3/2;10 (15)

The single-particle quadrupole moment operator is [28]

16~
8 7" F207 (16)

The nuclear matrix element of Q is

4e
2

1
0=&I+0IQo/11+0)= Ni/23/z&Ru21" IR3v)~'t/23/2;20 &R3/2" IR3/2)@3/23/2;2o .

5 5 2 )
(17)

For harmonic oscillator radial wave functions,

5 bp
&R/ I "IR.) 2 („„)5/2

p o.
(18)
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TABLE II. ' C phenomenological amplitudes, observables, and X, .

RPI-C1
RPI-C2
CK
Haxton [15]
ODW [16]
j-j limit

+ 1/2 1/2;11

0.183
0.0781
0.0578
0.111

0
0

-0.142
-0.380
0.351
-0.338
0.444

1

+3/2 3/2;11

-0.209
-0.0655
0.0765
-0.0865

0
0

b 1/2

(fm)

1.80
1.80
1.65

1.757
1.77
1.65

I 3/2

(fm)

1.64
1.64
1.65

1.757
1.77
1.65

t
(10'
sec)

1.17
0.989
1.24
1.00
1.14

0.225

TM1
y

(asec)

17.6
18.0
21.3
18.0
22.2
4.4

Xv

1.2
1.1
200
2.1

36
10'

C. M1 radiative lifetime

The M 1 radiative lifetime provides an additional constraint to the inelastic (e,e') form factor at zero momentum transfer:

(19)

where E is the excitation energy.

The nuclear P-decay ft value is given by

D. Nuclear beta decay

4hvr [1] [T ]
g'. Gpm'(T A I —1ITfAf)'l&JfTflll~rlllJ T )I'

(20)

where

2
(JfTfl I ~rl

I I
J,T) =

3 [—@'1/2 1/2;11+ 2 ++1/2 3/2(@1/2 3/2;11 +3/2 1/2;11)+ W~~@3/2 3/2;ll]

and m is the electron mass; we use gz = 1.254 and

Gp ——1.13602X 10 GeV [29] .

IV. FITS

We seek to refine the y function minimization analysis,
presenting additional fit strategies unexplored by other au-

thors, such as the sensitivity of the fitting procedure to (1)
different starting points in the y space, (2) various ranges of
momentum transfer q =

l q l
in the (e, e ') form factor data, in

order to establish a q region of validity of the underlying
model, and (3) different parametrizations of the model, in
order to minimize the correlations between the parameter
errors. In regard to item (1), physically motivated starting
points are used, such as the ones expected in a 1p-shell
model, or ones that arise from constraining the parameters
with experimental information. In regard to item (2), we do
not wish to include q regions in the (e,e') form factors that
are significantly effected by meson exchange currents. We
use the MINUIT [30] release (90.10) from the CERN program
library.

For the case of many local minima, there is no guarantee
that the global minimum will be found. However, the fit can
be guided to physically meaningful minima by using starting

points a deduced from experimental constraints. For ex-

ample, given the wave function parametrizations for the
mass-6 and -14 cases in Eqs. (6) and (7), we can use any
three of the four observables p, , Q, T, and ft/3, to obtain

the a. Also, Cohen-Kurath (CK) [31]TDME's may serve as
useful starting points. The CK amplitudes are derived from
fits of matrix elements of the two-body interaction to energy
differences between the ground and low-lying excited states
of regular parity throughout the 1p shell.

V. RESULTS

A. C

We fit the 15.11 MeV M 1 (e,e') form factor, the
' Bs, —+' Cs, P-decay ft value, and the T ' of
' C*(15.11 MeV, J T= 1 1) ~' Cs, . HF radial wave
functions are used for the p3/2 and p]/2 states. The chi-

squared per degree of freedom y, increases from 1.1 to
3.0 when the (e,e') data point at q=1.03 fm ' is included
along with the lower momentum transfer data. This q value
serves as the momentum transfer cutoff for this fit. This fit,
denoted RPI C1, is given in Table II, where
5e.$$

—=4//2 3/2. $]
—43/2 ]/2. ]$. The experimental values

of ft/3 and T ' are 11 668~23 sec and 17.8~0.5 asec, re-

spectively [32]. The oscillator parameters used with the
Cohen-Kurath [19,31] amplitudes are deduced from the rms
radius of the charge distribution [33].g, is calculated for the
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TABLE III. Li algebraic solutions.

Al+
A1
A2+

A2
B1+
B2+
C2+
D1+
D2+

0.923
0.923
0.923
0.923
0.923
0.923
0.964
0.883
0.964

0.371
-0.371
0.371
-0.371
0.371
0.371
0.326
0.447
0.260

0.099
0.099
0.099
0.099
0.099
0.099
0.175
0.139
0.057

0.997
0.864
0.864
0.997
1.000
0.841
0.878
0.994
0.860

0.072
0.503
-0.503
-0.072
-0.009
-0.541
-0.479
-0.105
-0.510

Prediction

T ' = 86asec
T ' = 121 asec
T ' = 79.1 asec

T ' = 111 asec

ftt/=778 sec

ftp=837 sec
Q= —4.2 mb

p, =0.793 p,~
p, =0.852 pN

Experiment [38]

81.0~ 1.6 asec

813~16 sec

—0.644~ 0.007 mb

0.82205 ~ 10 p,~

amplitudes other than RPI-C1 and RPI-C2 in Table II using
the form factor points fit by RPI-C1.

The Ml (e,e') form factor, obtained using the RPI-Cl
amplitudes as input, is shown in Fig. 1. The computed form
factor is in good agreement with the low momentum transfer
data, but in strong disagreement with the data at the second
maximum of the form factor. This is not surprising in view of
the 30% meson exchange current (MEC) contribution in the
region of the first maximum as estimated by Dubach and
Haxton (DH) [34]. However, DH found that the MEC con-
tributions to the second maximum are small. With this in
mind, we fit the one-body density to the (e,e') data at the
second maximum and below q=0.5 fm '. This procedure
yields fit RPI-C2 (Table II). Its prediction for the Ml
(e,e') form factor is shown in Fig. 1. T ' is also included
in the fit, whereas ftp is not. ft/3 deviates from the experi-
mental value by about 15%. In the L-S coupling, the
TDME's for the Haxton amplitude and RPI-C2 are nearly
identical except for the @LE~ JT 42, ~ tt amplitude (—0.016
vs 0.029). This is due to our insistence on fitting the second
lobe of the form factor, ignoring the q region where MEC
contributes, and on our fit to more recent (e, e') data.

We conclude that the amplitude RPI-C2 is a good deter-
mination of the 1p-shell one-body transition density up to
q=2.0 fm ' and thus should serve as a reliable input to our
' Cs, (y, m+) ' Bs, calculation at low energy. At higher

q, nuclear excitations to higher shells are clearly needed
[35].

B. Li

l. Algebraic solutions

There are three independent basis components describing
Lis, and Li*(3.56 MeV, 1 T=0+ 1), given the normal-

ized phenomenological amplitude (PA) of Eq. (7). Thus, any
three of the four observables p, , Q, T 'and ftp, can be
used to constrain the c; . These c; are nearly independent of
the radial wave function, since the observables are evaluated
at close to zero momentum transfer. Note that we use an
earlier experimental value for Q ( —0.644 mb) [36].The PA
change negligibly when the latest Q value ( —0.83 mb) [37]
is used: Fine differences in the 1p-shell basis reproduce the
small Li Q value.

A weak radial dependence enters in the cases where Q is
used as a constraint, due to its proportionality to the p-shell
rms radius (PRMS). Since the algebraic solutions are used
simply as a guide to the full fits, an estimate of the PRMS is

2. Fits

With the A1+ solution as a starting point, and fitting the
observables that constrained this solution, we obtain the fit
RPI-L (Table IV), with q,„'=1.76 fm ' and q,„=1.03
fm '. The fits corresponding to the B1+ and D1+ starting
points have parameters similar to RPI-L, but about a 50%
larger y, . As an example of the starting point dependence of
the fits, we use the o.=x= 1 limit, rather than the A1+ solu-

TABLE IV. A =6 phenomenological amplitudes.

b3iz
(fm) (fm)

RPI-L
RPI-SHO
STAN-HO [1]
CK [19,31]
SASK-A [6]
SASK-B [6]

0.928
0.902
0.924
0.958
0.924
0.924

0.366
0.415
0.369
0.076
0.369
0.369

0.071
0.120
0.102
0.276
0.101
0.100

0.996
0.996
1.00
1.00

0.844
1.00

0.094
0.084
0.028
-0.024
-0.537
-0.010

2 30 1.93
2.01 2.01
2.03 2.03
1.98 1.98
1.80 1.80
1.85 1.85

deduced from a one-oscillator parameter fit to the elastic and

inelastic form factor data up to q „=1.76 fm ' and

q „=1.03 fm, respectively. This yields b&&2
= b3/2

AT=1 —1

2.0 fm and PRMS = 3.16 fm. Including q points in the fits

above the q,„ leads to a sharp rise in y, .
The quadratic dependence of the observables on the PA

leads to two branches of solution, denoted 1 and 2. We are
free to choose the phase of the ~'P, ) state (denoted by the
superscript ~), and so have a total of 16 possible solutions,
not all of which exist. The sets of observables used to find
the solutions are labeled by A for (p„Q, and ftp), B for
(p, , Q, and T ), C for (p, , T and ftp), and D for (Q,
T ', and ft/3) (see Table III). The branches of solution that
are close to the ~p3/2p3/2) limit for Hes, (x=0.816 and
y= —0.577) are not physically acceptable due to the weak-
ness of the spin-orbit interaction in Li, The B1+ and B2+
solutions are nearly identical to the SASK-B and SASK-A
amplitudes of Ref. [6]. We calculate the value of the fourth
unconstrained observable in Table III and compare to the
experimental values. Of the ~'So)-type solutions, the Al+,
B1+, and D1+ predictions come closest to experiment. This
algebraic exercise illustrates the possibility of many local
minima in the y space, due to the nonlinear dependence of
the observables on the PA. We presently use the form factor
to choose the optimal solution.
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TABLE V. A = 6 phenomenological amplitudes: observables and
2

X~. 10

/t (////) 0 (mb) ft (sec) T ' (asec)
F2

M1
6. , 6Li(e, e') L i

g.S.

Expt [38].
RPI-L
RPI-SHO
STAN-HO [1]
CK [19,31]
SASK-A [6]
SASK-B [6]
&=X= 1

0.82205
0.826
0.806
0.822
0.833
0.822
0.822
0.880

-0.644
-0.644
-0.644
-0.815
-10.2

-0.8

813~ 16
847
864
792
688
835
777
667

81.0~ 1.6
89.1

89.2
82.9
83.9
80.9
80.9
79.5

1.8
2.8
10.
37.
400
300
22

10

10

10

tion as a starting point. This yields a fit similar to RPI-L,
except that the excited state has n= 1. The "effective" spin-
orbit energy for RPI-L is 8.2 MeV as calculated via Eq. (10).
This is higher than the value one would expect near the be-
ginning of the 1p shell and may indicate the unbound nature
of the p»z orbital. The amplitude STAN-HO [1] fits an older
(e,e') database. Our amplitude RPI-SHO fits the same ob-
servables as in the STAN-HO fit, namely, p„Q, and the
(e,e') form factors, with b t/2 b3/p and the same q
used for RPI-L. y, is calculated for the amplitudes other
than RPI-L and RPI-SHO in Table V using the form factor
points fit by RPI-L.

The large chi-squared obtained for the SASK-A and -B
amplitudes corroborates the poor result found for the 81+
and 82+ branches of solution. The "one-branch" of the A
solution is clearly favored by the fits. Thus, with foreknowl-
edge of the possible solutions as starting points, we are able
to specify the possible local minima in this case.

Static observables are calculated for the various PA in
Table V. Note that the prediction for ftp given by the ampli-
tude RPI-L differs from the experimental value [38] by 4%,
and contributes about 10% to y, . Including meson exchange
current corrections to the weak axial current responsible for
the p decay brings the ftp value to within 1% of the experi-
mental value [20]. Thus we conclude that the amplitude
RPI-L gives a good prediction for the @1gJT—4 p~. ] ~

one-
body transition density matrix element.

The small Li Q is well reproduced in the Ip-shell basis,
indicating that polarization of the He core is not important
here. The first 2+ level in He occurs at about 25 MeV
excitation. In contrast, the first 2+ level occurs at 6.9 MeV
[39] in ' 0, so that the core polarization effects should be of
greater importance in the ' N case.

The elastic and inelastic form factors are shown in Figs. 2
and 3, respectively. The SASK-B result is shown for their
harmonic oscillator fit. We emphasize that our objective here
is to fit the low-q data, where our model should be able to
reproduce the gross features of the nuclear structure. Given
the quality of the fit RPI-L, we feel our amplitude provides a
good determination of the nuclear one-body transition den-
sity, and thus should be consistent with the low-energy pion
photoproduction data in the corresponding momentum trans-
fer range.

The cluster model [40] successfully predicts the inelastic
M1 form factor throughout the momentum transfer range
given by the experimental data. However, it has similar dif-
ficulties in reproducing the high-q region of the elastic M1

10
0

I I

q(fm )
2

FIG. 2. Li elastic Ml (e,e') form factor: RPI-L (solid curve),
SASK-B (long-dashed curve), and Cohen-Kurath (short-dashed
curve). The data are from Ref. [13](open circles) and Ref. [7] (solid
circles).

form factor. Note that we successfully reproduce the He to
Li p-decay ft value when the meson exchange current con-

tributions are taken into account. Also, Q is consistent with
the 1p-shell model whereas its prediction within the cluster
model has met with difficulty. We emphasize, however, that
we are mainly interested in consistency of observables at low

q within a model that can be readily used for realistic me-
dium energy calculations.

10
F2

M1 310
') Li

10

10

10
0

I I

q(fm )
2

FIG. 3. Li 3.56 MeV Ml (e,e') form factor: RPI-L (solid
curve), SASK-B (Iong-dashed curve), and Cohen-Kurath (short-
dashed curve). The data are from Ref. [8] (open circles) and Ref. [6]
(solid circles).

C '4N

1.Algebraic Solutions

The solutions to the experimental constraints [41] for the
mass-14 case are given in Table VI. Unlike the mass-6 case,
the two branches of solution are nearly degenerate. No sat-
isfactory prediction of the fourth unconstrained observable is
found. This is probably due to the fact that at least two of the
observables are subject to significant two-body effects, such
as core polarization, in the case of the quadrupole moment,
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TABLE VI. ' N algebraic solutions.

A
B+

B
C+

C
D+

D

0.551
0.826
0.551
0.991
0.587
0.739
0.419

-0.801
-0.526
-0.801
0.085
-0.318
-0.574
-0.895

-0.233
0.202
-0.233
-0.107
-0.745
0.352
-0.155

-0.501
0.972
-0.455
-0.295
0.999
0.969
-0.558

0.865
-0.235
0.891
0.956
0.039
-0.247
0.830

Prediction

T = 49.4 fsec

ftt3=1.65X10 sec

ft&= 1.35 X 10 sec
Q= —2.53 mb

Q= —2.54 mb

p, =0.852 p,~
p, =0.852 p,~

Experiment [41]

92+. 10 fsec
1.1X 10 sec

15.6 mb

0.40376 p,~

or meson exchange currents, for example, in the case of the
anomalously suppressed P-decay of ' C, to ' N, .

2. Fits

For ' N, we attempt to find an amplitude that is consistent
with the strength of the spin-orbit coupling at the end of the

lp shell, i.e., where dominant component is ~p»2ptt2), such
as for the Cohen-Kurath (CK) amplitudes. Other authors [5]
have found the amplitude Hl, which has ~pt&2p„2) as the
dominant configuration in the ground state, but whose ex-
cited state is near the

~
Po) limit. Hl is a fit of the phenom-

enological amplitude (PA) of Eq. (7) to the ' Ns, elastic
Ml (e,e') form factor, the '"N, (e,e') ' N*(2.313 MeV,
J T=O+1) form factor, p„, and T '. Also, Hl has an un-

reasonably large value of the symmetry violating matrix el-
ement [22]. We have found an amplitude [42], denoted RPI-
N1, which fits Ty and the inelastic form factor up to 1.7
fm ' of momentum transfer (Table VII). RPI-N 1 has

~p»2p„2) as the dominant configuration in the excited state.
However, this amplitude has a nearly

~
'Pi) ground state and

yields a poor description of the elastic observables. We were
unable to find an amplitude that simultaneously fit the elastic
and inelastic form factors, and which also yields an ampli-
tude approximate to the Cohen-Kurath one, within the given
parametrization. p, , Q, ft, and T are calculated for the
various PA in Table VIII.

Amos, Koetsier, and Kurath (AKK) [22] recently under-
took a reexamination of the mass-14 structure, pointing out
that the CK amplitudes could be made consistent with the

(e, e ') form factors by introducing a 50% renormalization of
the 4Ls ~ JT 42i ~ ii transition density, presumably due to
core polarization effects. They found that this 50% renormal-
ization of tIi2t. » is consistent with the ' N, (p,p') ' N*
(2.313 MeV, 1 T=O+1) and ' Cs, (p, n) Ns, reactions
at 122 and 160 MeV. In addition, they found that the B(M1)
value for the ' C"(11.31 MeV, I T= 1+1)~ ' Cs,
(1 T=O+1) transition calculated using the CK amplitude is

TABLE VII. A = 14 phenomenological amplitudes.

q AKK
2i;11

R2i=
@21;lt(~ / +)

(21)

Specifically, n and P are determined from the solutions to a
quartic equation with 4i/2 i/2. ip and 4 i/2 g/2. ip as inputs. x
is found from the solutions to a quadratic equation as a func-
tion of either 4p&. i &, and 4 ip. i] . This is another example of
the inherent nonlinearity of our problem, which leads to
many local minima in the y space.

Fitting the elastic form factor up to q „=2.4 fm ', the

inelastic form factor up to q „=1.7 fm ', and T, the fit
RPI-N2 is obtained with y =1.3 and R2&=0.50. This value
of R2i is precisely the one giveIz in the AXE analysis. The
elastic and inelastic form factors are shown in Figs. 4 and 5,
respectively. With the 50% renormalization of the Cohen-

TABLE VIII. A =14 phenomenological amplitudes: observables.

t (t ~) Q (mb) T (fsec)ft (sec)

in better agreement with experiment than the value found
using the amplitude H1.

There has been considerable success in reproducing
the ' Ns,. (y, ir") ' Cs, data [43,44] at F. = 173, 200,
230, and 260 MeV using the amplitude H1 for the nuclear
structure input [44,45]. The tI~2t. it transition density for H I

has a value of 0.433, which is about one-half the CK value of
0.827 [46]. Thus, the core polarization has been effectively
absorbed into the H 1 amplitude. However, the renormalized
value of 42i. &i should not be determined from the 1p-shell
wave function parameters, as was done with the H1 ampli-
tude, since the corrections to the transition density extend to
other shells. It is clear that the "true" renormalization of
42i. » cannot be obtained by our method, since we are using
the 1p-shell single-particle reduced matrix elements in the
fits. Thus we fix 42&.» at one-half the CK value:

4».»=0.414, and determine its unrenormalized value from
the wave function parameters deduced from the other, pre-
sumably unrenormalized, TOME's. This defines a renormal-
ization factor R2i '.

RPI-N1
RPI-N2
H1 [5]
CK [19,31]
ENS [3]

0.519 0.104
0.924 -0.268
0.978 0.071
0.975 -0.207
0.676 -0.735

0.848
0.200
-0.196
-0.081
-0.053

0.957
0.968
0.553
0.915
0.759

0.291
0.250
-0.833
0.404
-0.651

~ ]./2 b 3/2

1.62 1.51
1.69 1.69
1.70 1.70
1.73 1.73
1.68 1.68

Expt [41].
RPI-N1
RPI-N2
H1 [5]
CK [19,31]
ENS [3]
a=I= 1

0.40376
0.537
0.364
0.408
0.331
0.404
0.373

15.6
-8.5
7.80
-2.29
5.93
17.4

0

1.1X 10'
1.7x 10'
1.7m 10'
2.1X 10'

2.61 X 10
1.1X 10'

5.69x 10'

92~ 10
93.1
102
140
107
76.5
7.9
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FIG. 4. '"N elastic Ml (e,e') form factor: RPI-N2 (solid
curve), Hl (long-dashed curve), and Cohen-Kurath (short-dashed
curve). The data are from Ref. [5] (open circles) and Ref. [9] (solid
circles).

Kurath 42&. » TDME, one still finds a diffraction minimum
near q = 0.5 fm ' in the inelastic form factor, which is not
seen experimentally.

We perform fits similar to RPI N2 except with the

40&.» or 4]0.» considered as free parameters. This yields
Ro& and R io on the order of unity, which indicates that the fits
cannot determine any renormalization for these TDME's.
Also, repeating this procedure for the "conjugate" nucleus

Li yields no renormalization of 42&.». Note that RPI-N2
yields a better value for T '. Also, Q is at 50% of the
experimental value, consistent with the 50% renormalization
of the L=2,5=1 strength. We show with Wittman that
RPI-N2 is consistent with the ' Ns, (y, 7r+) ' Cs, reac-
tion at low energy [17].

FIG. 5. ' N 2.313 MeV Ml (e,e') form factor: RPI-N2 (solid
curve), Hl (long-dashed curve), Cohen-Kurath (short-dashed curve),
and Cohen-Kurath with 4'zt. »/2 (dotted curve). The data are from
Ref. [10] (open circles), Ref. [3] (solid circles), Ref. [5] (open
squares), and Ref. [9] (solid squares).

works best when significant two-body effects are not present,
or are effectively taken into account, as with the renormal-
ization of the transition density reduced matrix element
42&.», in the A = 14 case. We have also explored the limits
of our procedure as a function of momentum transfer, finding
the boundary between one-body and two-body physics in the
electroweak transitions in light nuclei.

Our optimized fits, denoted RPI-L, RPI-C2, and RPI-N2,
can now be used with other processes dominated by one-
body physics. Such a test of these effective one-body ampli-
tudes is given in our companion study of the pion photopro-
duction reaction at low energy, with Wittman [17],where our
derived nuclear amplitudes fare very well when compared
with experiments.
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