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Spontaneous-fission half-lives of the heaviest nuclei are analyzed in a multidimensional deformation space.

They are calculated in a dynamical approach, without any adjustable parameters. The potential energy is

obtained by the macroscopic-microscopic method and the inertia tensor by the cranking method. The action

integral is minimized by a variational procedure. Even-even nuclei with proton number Z=104—114 and

neutron number %=142—176 are considered. The results reproduce existing experimental data rather well.

Relatively long half-lives are predicted for many unknown nuclei, sufficient to detect them if synthesized in a

laboratory.

PACS number(s): 25.85.Ca t 21.10.Tg, 24.75.+i, 27.90.+b

I. INTRODUCTION

The objective of this paper is to analyze spontaneous-
fission properties of deformed superheavy nuclei in a multi-
dimensional deformation space. Such quantities as the poten-
tial energy (in particular the potential-energy barrier along
the fission trajectory), the effective inertia along the fission
trajectory, and the fission half-life of a nucleus are studied,
Even-even nuclei with proton number Z=104 —114 and neu-
tron number N=142 —176 are considered.

By deformed superheavy nuclei, we understand nuclei
situated in the neighborhood of the nucleus 108 ( Hs),
which is expected to be a doubly magic deformed nucleus

[1,2]. One specific property of these nuclei is that they are
expected to be well deformed (e.g. , [2]). Consequently, and
in contrast to spherical or nearly spherical nuclei, we need a
sufficiently large deformation space to calculate even the
ground-state (equilibrium) energy of a nucleus. Another

property is that the fission barriers of these very heavy nuclei
are relatively simple and thin. The deformation space re-
quired for the analysis of such barriers is much smaller than
the space required for lighter nuclei, like those with Z=92—
102, which have much thicker and more complex barriers. In
practice, the space used to analyze the ground state of the
nuclei considered is sufficient also to investigate their fission
barriers. A third property is that shell effects are extremely
important for these nuclei. Most, or may be even all, of them
would not exist without these effects [3,2]. This puts a strong
requirement on theory to account for these effects as accu-
rately as possible, both in the potential energy and in the
inertia of a nucleus with respect to the fission mode.

Being a region of very heavy nuclei, it still contains a
number of nuclei with measured fission half-lives. These
provide a test for the calculations.

Our present analysis belongs to a series of papers [4—6],
treating the spontaneous fission in a dynamical way, i.e., tak-

ing into account the inertia tensor of a nucleus, when looking
for the trajectory with the highest probability of barrier pen-
etration. In older papers [4,5], a rather poor, two-dimensional
deformation space was taken. More particularly, only defor-

mations of the lowest multipolarities: quadrupole, P2 (or
e2), and octupole, P& (or e3), have been considered. Defor-
mations of higher multipolarities have been taken into ac-
count only in a very approximate way. In a more recent
analysis [6], a four-dimensional space, (Pxf, k=2, 3,4,5,
was used. Only a space of such dimension can be used pres-
ently, for computational reasons. In the present paper, also a
four-dimensional space is taken, but this is another space,
appropriate for very heavy nuclei considered here. This
space (Pz), k = 2,4,6,8, disregards the odd-multipolarity de-
formations P& and P&, which are important for lighter nuclei
with thicker and more complex fission barriers considered in

[6], but are unimportant for very heavy nuclei with thin and
relatively simple barriers described here. Instead of P3 and

P&, the space includes the higher-multipolarity deformations

P6 and Ps, which are important for the heaviest nuclei for
proper description of their shell effects.

An advantage of the dynamical analysis is that no adjust-
able parameters are used. In statical considerations [7—11], a
phenomenological inertia function is taken, which has at
least one free parameter fitted to experimental data. Addi-
tionally, the phenomenological function disregards the shell
structure of a nucleus. This structure, which is extremely
important for the considered nuclei, is taken into account in
the microscopic inertia tensor used in the dynamical ap-
proach.

The present theoretical paper is closely connected with
the intensive experimental activity on the synthesis and study
of the properties of heaviest nuclei of recent years (cf., e.g. ,

[12—19]).It aims at the interpretation of existing data and in
predictions of properties of yet unknown nuclei.

Some of the results of this paper have been presented
earlier [20—22].

The method of the analysis is described in Sec. II, the
results and discussion are given in Sec. III, and conclusions
drawn from the study are presented in Sec. IV.

II. METHOD OF THE CALCULATIONS

A. Potential energy

The potential energy of a nucleus is calculated in a
macroscopic-microscopic approach. The Yukawa-plus-
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exponential model [23] with the standard values of its pa-
rameters (e.g. , l 24]) is used for the macroscopic part of the
energy. The Strutinski shell correction, based on the Woods-
Saxon single-particle potential [25], is taken for the micro-
scopic part. The "universal" variant of the parameters of the
potential is chosen (the same as in [2] where they are also
specified).

The residual pairing interaction is treated in the usual
BCS approximation. The strength of the interaction is taken

the same as in [2], where it has been fitted to recent data for
nuclear masses.

B. Inertia tensor

The inertia tensor describes the inertia of a nucleus with
respect to changes of its deformation. We calculate it in the
cranking approximation. The corresponding formula is
(e.g. , [26—28,5])

(vlaHlan. , l
v')(v'laHlan,

l v)B..=2r'g (u,U„+u, v, ) +P'J,
J E,+E,i

VV

where u; and n, are the deformation parameters, H is the
single-particle Hamiltonian, u, and U, are the BCS varia-
tional parameters, and F., is the quasiparticle energy corre-
sponding to the single-particle state lv). The term P" de-
scribes the effect of the collective motion on the pairing
interaction. Various properties of the tensor 8 have been

J
discussed in [26—29,5].

The inertia tensor provides a metric in deformation space,
when calculating the penetration of a nucleus through the
fission barrier.

Here, EI(s) is the potential energy, BI(s) is the effective
inertia, both along the trajectory L, and Fp is the energy of a
fissioning nucleus. The parameter s specifies the position of
a point on the trajectory L, with s& and s2 corresponding to
the entrance and exit points of the barrier, i.e., to the classical
turning points determined by EL (s) =Eo. The effective iner-
tia Br (s) associated with the fission motion along the trajec-
tory L is

C. Spontaneous-fission half-life

The spontaneous-fission half-life T,& is calculated by the
formula

dA; dcl'.B=BL(s) =—g B (s) ds ds (6)

T,~= TpP
—1

where P is the probability of the barrier penetration by a
nucleus and Tp is the half-life when this probability is equal
to unity. The half-life Tp is determined by the number of
assaults of a nucleus on the fission barrier in unit time,
cop/2 7T,

where B are components of the inertia tensor, Eq. (l),
i J

and n;, n, are the deformation parameters (P~).
The half-life T,& is calculated in the dynamical way (e.g. ,

[30,5]), i.e., along the dynamical trajectory Ld„„, for which
the action integral S(L) is minimal, with full dependence of
the inertia tensor 8 on the deformation taken into ac-

l J
count.

Tp = 2 7Tln2lcop, (3) D. Deformation space

and, thus, by the zero-point vibration energy of the nucleus
in the fission degree of freedom, E,p=o. sfi, cup.

The probability P is obtained in the semiclassical (WKB)
approximation

Axially symmetric shapes are used in our analysis of
spontaneous fission. These shapes are described by the usual
deformation parameters Pz, appearing in the expression for
nuclear radius (in the intrinsic frame of reference) in terms of
spherical harmonics Yzo(6),

P = [1+exp2S(L)] (4) R(&)=Ro(P,) l+X Pxl') o(~)

where the action integral S(L) along a one-dimensional tra-
jectory L in a multidimensional deformation space is

fs2

~
B (s)l:Ei(~)—Eo]

J Sl

I/2

ds. (5)

where the dependence of Ro on P is determined by the
volume-conservation condition.

The reason to disregard the axially asymmetric shapes is
based on the dynamical treatment of fission. Along the static
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trajectory (i.e. , the trajectory along which the potential enegy
is minimal), the potential energy is usually decreased by the
nonaxial (y) deformation by up to about 1 MeV [31,4,32].
The effective inertia B, Eq. (6), is, however, large along this
trajectory and leads to a larger action integral than the inte-
gral along the trajectory with y=O. This has been directly
shown in [32] for the nucleus 106 ( Sg), belonging to
the region considered here, and in [4] for a lighter nucleus.

Concerning the axial deformations Pz, we find, similar to
[33], that it is sufficient to consider the deformations of mul-

tipolarities up to X=8. The contributions of P9 and P,o to
the potential energy are already negligible. The deformations
with odd multipolarities P = 3,5,7 are not important because
they contribute to the energy only behind the thin fission
barriers of these very heavy nuclei, considered here. Thus,
the potential energy is analyzed in four-dimensional defor-
mation space (Pz), )~ =2,4,6,8.

E(P2 P4 P. ) Bp, p„(P2 P4 P'.") (8)

where P, , v= 6,8, is the value of P, , at which the energy E
is minimal at the point (P2, P4). A detailed study [32] of
dynamics in deformation spaces of various dimensions has
shown that this approximation is rather good for nuclei con-
sidered in this work.

To obtain a sufficiently accurate fission trajectory, the val-
ues of the potential energy E and of the inertia tensor

Bp p of Eq. (8) are interpolated (by the standard procedure
p,

sPLIN3 of the IMSL library) to the more dense grid
5P2=0.01,5P4=0.0025. Only on such a dense grid has the
variational calculation been performed, using a dynamical-
programming method described in [5].

To calculate the ground-state energy Eo of a nucleus [Eq.
(5)],

Ep=E(Pq)+E, p,

E. Details of the calculations

The potential energy E and the inertia tensor B& &, Eq.
k p,

(1), are calculated individually for each nucleus. No averag-
ing over proton Z and neutron N numbers is used.

The potential energy E is calculated at grid points

(P2, P4) with steps b, P2 ——AP4=0.05. The range of both

P2 and P4 is taken individually for each nucleus, to obtain
the whole region of the fission barrier.

The dynamical calculations of T,f are performed in the
approximation tested in [32].These are the calculations per-
formed in two-dimensional deformation space (Pq),
X=2,4, but with the potential energy E minimized at each
point (P2, P4) of this space in the remaining degrees of free-
dom: P6 and Ps. Thus, the potential energy and, correspond-
ingly, the inertia tensor are
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FIG. 1. Contour map of the potential energy F calculated as a
function of the deformations P2 and P4, for the nucleus

106 ( Sg). At each point (P2, P~), the energy is minimized in

P6 and Ps degrees of freedom. Numbers at the contour lines give
the values of the energy in MeV. The energy difference between
neighboring solid lines is 2 MeV. Dashed lines divide this differ-
ence by two, Dynamical, Ld~„, and statical, L,,„„fission trajectories
are shown.

ergy E,~ determines simultaneously the number of assaults
of a nucleus on the fission barrier, according to Eq. (3).

III. RESULTS AND DISCUSSION

A. Potential energy and fission trajectory

Figure 1 illustrates a map of the potential energy. As an
example, we take the recently synthesized [17,18] nucleus

106 ( Sg). Among all observed even-even nuclei, it is
closest to the predicted [1,2] doubly magic deformed nucleus

108 ( Hs). Because of its relatively long half-life, it is
also the isotope of the element 106 (Sg) by which the chemi-
cal properties of this element are planned to be studied [34].
At each point (Pz, P4), the energy is minimized in the P6
and the Ps degrees of freedom. The dynamical fission trajec-
tory Ld~„ is also shown in Fig. 1. It has a tendency to be
close to a straight line and to have a possible small slope
with respect to the P2 axis, as both these features lead to a
small effective inertia B, Eq. (6), along the trajectory and,
consequently, to a small action integral. According to Eq. (6),
the small slope corresponds to a small contribution of the
components Bp p of the inertia tensor with X,p, )2 to B. A

p
large curvature or a large slope of the dynamical trajectory
may appear only at the beginning or at the end of the barrier,
where the potential energy is small and- a large value of B is
less important.

The static trajectory L„„is also shown in Fig. 1, for com-
parison. The effec ve inertia B is usually large along this
trajectory, as discussed in [32], and, in spite of a smaller
fission barrier, leads to a larger action integral than that along
the dynamical trajectory.

the zero-point energy in the fission degree of freedom is
taken as E,„=0.7 MeV. This is the value close to that calcu-
lated in [2]. Here, E(P~) is the value of the potential energy
at the equilibrium (ground-state) deformation Pz. The en-

B. Fission barrier

The shape of the fission barrier calculated along the dy-
namical trajectory Ld~„ is illustrated in Fig. 2. One can see
that the barrier is thin. It ends at a deformation Pz =0.7, thus
at about the deformations of fission isomers, i.e., the defor-
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FIG. 2. Shape of the potential-energy barrier calculated along
the dynamical and statical fission trajectories, for the nucleus
266

106

mations at which the second minimum in energy appears for
lighter nuclei, around americium. The barrier is, however,
high. This is mainly due to a large (in absolute value), nega-
tive shell correction E,h to the ground-state energy. For the
considered nucleus 106, the correction is E»= —6.3 MeV.

The (static) barrier, calculated along the static trajectory
L„„,is also shown in Fig. 2, for comparison. This barrier is
important for calculations of the competition between neu-
tron emission and fission (I „/I &) of an excited nucleus.

One can see in Fig. 2 that the static barrier is lower by
almost 2 MeV and it is also different in shape from the
dynamical barrier. The height of the statical barrier is about
equal to the ground-state shell correction E», as there is
almost no contribution of the smooth part of the energy to
this height, and the shell correction at the saddle point is
rather small, as discussed in [3].

Figure 3 shows a contour map of the height of the dy-
namical fission barrier B& ".As mentioned above, the height
is large. It is larger than 7 MeV for about 20 of the nuclei
considered. The largest value, 8.8 MeV, is obtained for the
nucleus 106, i.e., the nucleus with the neutron number
N=162, corresponding to the predicted closed deformed
neutron shell.

A contour map of the height of the static fission barrier
B""is given in Fig. 4. One can see that Fig. 4 presents a
"mountain, " which is Battened to some degree with respect

to the "mountain" of B&~" (Fig. 3). It is decreased around
the top (by up to about 2 MeV), while it remains almost
unchanged at the bottom, in comparison with B& ".

As the ground-state shell correction E» is the main con-
tribution to the barrier heights B&

" and B&'", it is interesting
to look also at the map of E',h. This is shown in Fig. 5. One
can see a really strong correlation between the three maps.

It is worth noting in Fig. 5 that, when moving from
lighter to heavier nuclei, after the maximum (in absolute
value) of F.,h, obtained for the predicted doubly magic de-
formed nucleus 108, one observes a minimum of this

quantity for N=170 and then one sees its increase again,
when approaching the predicted doubly magic spherical
nucleus 114. The corresponding behavior is also observed
in the fission-barrier heights in Fig. 3 and Fig. 4.

C. Effective inertia

The effective inertia B, Eq. (6), calculated along the dy-
namical fission trajectory Ld~„ is shown in Fig. 6. One can
see that it is a rather strongly fluctuating function of defor-
mation. This is because the inertia tensor (mass parameters)
is a much less collective quantity than the potential energy or
even the moment of inertia (i.e., the inertia of a nucleus with
respect to its rotation) as was discussed in detail in [28].
Thus, it is very sensitive to the internal, single-particle struc-
ture of a nucleus which changes with its deformation. A gen-
eral tendency is that the inertia tensor is small at deforma-
tions at which the potential energy has deep minima (low
single-particle-level density at the Fermi level at these defor-
mations) and large at deformations at which the potential
energy has particularly large values, e.g. , maxima or saddle
points (high single-particle-level density at these points).
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FIG. 3. Contour map of the height of the dynamical fission
barrier, B& ", plotted as a function of the proton Z and neutron N
numbers.

FIG. 5. Contour map of the ground-state shell correction, F,h,
to the potential energy F. Crosses indicate the heaviest nuclei syn-
thesized up to now.
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FIG. 6. Effective inertia B calculated along the dynamical fis-
sion trajectory, for the nucleus 106.
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This means that the regions around the maxima in the poten-
tial energy along the fission trajectory should be especially
carefully treated in calculations of the half-life T,& because
they are giving the largest contribution to this half-life. This
is due to a large potential energy E and a large inertia B.
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FIG. 7. Same as in Fig. 3, but for the logarithm of the
spontaneous-fission half-life T,&, given in seconds.

D. Fission half-life

A contour map of the logarithm of the fission half-life
T,g, given in seconds, is shown in Fig. 7. The structure of
the map is similar to that of the barrier height B&~" (Fig. 3).
One can see that the half-lives are rather large. The largest
value, obtained for 106, is of the order of a few hours (3.5
h). (Larger values are obtained only for transitional nuclei,
N~174, on the border with the region of spherical super-
heavy nuclei situated around the nucleus 114.)

Figure 8 shows the dependence of the logarithm of the
fission half-life T,& on the neutron number N, for all consid-
ered values of Z. The n-decay half-life T is also shown, for
completeness. The latter is calculated in the same way as in

[2], with small improvements. One can see a clear effect of
the N= 162 shell in the fission half-life T,&, for all Z. The
effect is especially strong for Z= 106. For Z= 104, also the
effect of the lower shell at N= 152 is visible. The effect of
N= 162, and the smaller effect of N= 152, are also visible in
the u-decay half-life T

The existing experimental values of both T,&
and T

Fig. 8, are rather well reproduced by the calculations. This

140 150 160 170 150 160 170 180

FIG. 8. Dependence of the logarithm of the calculated
spontaneous-fission (sf) half-lives, given in seconds, on the neutron
number N, for elements 104—114. The n-decay half-lives (n) are
also shown, for comparison, Experimental values are given as full
symbols. The horizontal dashed line indicates about the lowest half-
life (1 p, s) of a nucleus, which can be detected in a present-day
setup, after its synthesis.

may be considered as a satisfying result as there are no free
parameters in the calculations, fitted to experiment.

A comparison between the calculated T,z and T shows
that, for Z=104, T,& is smaller than T for all N. For
Z=106, T,& is comparable with T for a large number of
isotopes (N = 154—164). For higher Z, it is even larger than
T and for an even larger number of isotopes. This seems to
be the effect of shells, mainly of that at N = 162, to which
T,g is more sensitive than T . Only for the lightest isotopes,
T,g is shorter than T for all elements investigated.

The results are generally similar to earlier ones [8], ob-
tained in a smaller deformation space. The present values of
T,& are significantly lower, however, for Z= 108 and 110 than
the previous ones. This is probably mainly due to the lower
values of the dynamical effective inertia, presently used, than
those of the phenomenological inertia, exploited previously
I:81

More detailed fission properties of the considered nuclei,
calculated in this paper, are given in Table I. The first three
columns of Table I specify the proton Z, neutron N, and
mass A numbers of a nucleus, respectively. The fourth one
gives the equilibrium value of the quadrupole component of
the deformation P2. This main component of the deforma-
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TABLE I. Equilibrium deformation and spontaneous-fission properties of nuclei specified in the first
three columns.

Z N A p~ pen pex p stat
f Bdynf 1ogioT.X~) Tsf TexPt

sf Ref.
(MeV) (MeV)

104
104
104
104
104
104
104
104
104
104
104
104
104
104

142
144
146
148
150
152
154
156
158
160
162
164
166
168

246
248
250
252
254
256
258
260
262
264
266
268
270
272

0.238
0.239
0.242
0.245
0.248
0.249
0.248
0.247
0.243
0.237
0.229
0.221
0.203
0.196

0.30
0.29
0.28
0.28
0.28
0.28
0.27
0.27
0.27
0.26
0.26
0.25
0.24
0.23

0.56
0.57
0.58
0.60
0.63
0.66
0.68
0.68
0.69
0.69
0.70
0.69
0.67
0.66

3.9
4.7
5.5
6.2
6.7
7.0
6.9
6.6
6.5
6.4
6.5
5.7
4.9
4.2

4.0
4.9
5.7
6.6
7.3
7.9
7.9
7.8
7.6
7.6
7.8
6.8
5.4
4.2

-11.81
-9.87
-8.07
-6.1.9
-4.22
-2.04
-1.56
-1.27
-0.67
0.39
1.37
0.14

-1.69
-3.50

1.5 ps
0.13 ns

8.5 ns

.65 ps
60 ps
9.1 ms

28 ms

54 ms

021 s

2.5 s

23 $

1.4 s

20 ms

0.32 ms

+ 0.97.4 07 ms

13 3 ms

»+,'ms
1 2+i.o

[35]
[36]
[37]
P7]

[17,18]

106
106
106
106
106
106
106
106
106
106
106
106
106
106

144
146
148
150
152
154
156
158
160
162
164
166
168
170

250
252
254
256
258
260
262
264
266
268
270
272
274
276

0.239
0.242
0.244
0.247
0.248
0.247
0.244
0.244
0.239
0.234
0.225
0.213
0.198
0.171

0.29
0.28
0.28
0.27
0.27
0.27
0.27
0.26
0.26
0.25
0.25
0.25
0.24
0.22

0.55
0.56
0.58
0.62
0.66
0.68
0.69
0.70
0.71
0.73
0.70
0.68
0.67
0.66

3.9
4.6
5.3
5.9
6.3
6.4
6.3
6.3
6.4
6.8
5.9
5.0
4.2
3.6

4.1

4.9
5.9
6.7
7.5
7.8
7.8
8.1

8.2
8.8
7.5
5.9
4.4
3.6

-11.40
-9.56
-7.45
-5.24
-2.74
-1.79
-1.07
0.37
1.76
4.10
1.74

-0.54
-2.41
-3.58

4.0 ps
0.28 ns

35 ns

5.8 ps
1.8 ms

16 ms

85 ms

2.3 s

58 s

3.5 h

55 s

0.29 s

3.9 ms

0.26 ms

[38]

108
108
108
108
108
108
108
108
108
108
108
108
108
108

110
110
110
110
110
110
110
110
110

146
148
150
152
154
156
158
160
162
164
166
168
170
172

148
150
152
154
156
158
160
162
164

254
256
258
260
262
264
266
268
270
272
274
276
278
280

258
260
262
264
266
268
270
272
274

0.240
0.241
0.243
0.244
0.243
0.242
0.241
0.237
0.233
0.227
0.217
0.200
0.175
0.135

0.236
0.237
0.241
0.238
0.234
0.229
0.227
0.226
0.217

0.28
0.28
0.27
0.27
0.27
0.26
0.26
0.26
0.25
0.25
0.24
0.23
0.22
0.19

0.28
0.28
0.27
0.27
0.27
0.26
0.25
0.24
0.24

0.54
0.56
0.59
0.63
0.66
0.68
0.70
0.72
0.73
0.71
0.69
0.68
0.67
0.67

0.53
0.56
0.59
0.62
0.64
0.66
0.68
0.70
0.69

3.4
4.1

4.7
5.2
5.4
5.5
5.7
6.1

5.9
5.1

4.2
3.5
3.3

2.6

3.7
3.8
3.9
4.3
4.9
5.6
5.2

3.8
4.8
5.8
6.4
6.8
7.1

7.7
8.0
8.2
7.1

6.0
4.2
3.5
3.3

3.1

4.1

4.8
5.1

5.3
5.9
6.9
7.4
6.4

-11.35
-9.20
-7.02
-4.63
-3.18
-1.67
0.21
1.98
3 ~ 82
2.82
0.76

-1.34
-3.01
-1.49

-12.11
-9.99
-7.83
-6.69
-5.32
-3.14
-0.27
2.75
1.68

4.5 ps
0.63 ns

95 ns

23 ps
0.66 ms

21 ms

1.6 s

1.6 m

1.8 h

11 m

5.8 s

46 ms

0.98 ms

32 ms

0.78 ps
0.10 ns

15 ns

020 ps
4.8 ps

0.72 ms

0.54 s

9.4 m

48 s
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TABLE 1. (Continued)

Z N A po pen peX Bstat
f

(MeV)

Bdynf
(MeV)

log, oT,f(s) sf
~exPt Refsf

110
110
110
110
110

166 276
168 278
170 280
172 282
174 284

0.207 0.23
0.198 0.22
0.153 0.21
0.125 0.18
0.116 0.15

0.68
0.67
0.66
0.66
0.67

4.6
4.0
3.5
3.4
3.5

5.2
4.0
3.5
3.5
3.6

0.32
-1.25
-1.92
0.19
2.32

2.1 s

56 ms

12 ms

1.5 s

3.5 m

0.232 0.29
0.234 0.28
0.227 0.27
0.223 0.27
0.219 0.26
0.219 0.25
0.221 0.24
0.206 0.23
0.202 0.22
0.191 0.21
0.144 0.19
0.123 0.17
0.095 0.15

112 150 262 0.53
112 152 264 0.56
112 154 266 0.58
112 156 268 0.60
112 158 270 0.63
112 160 272 0.65
112 162 274 0.68
112 164 276 0,67
112 166 278 0.66
112 168 280 0.65
112 170 282 0,65
112 172 284 0.66
112 174 286 0.66

2.0
2.4
2.3
2.3
2.9
3.7
4.5
4.4
4.1

3.6
3.4
3.4
3.7

2.2
2.7
2.8
3.0
3.8
4.5
5.9
4.8
4.1

3.7
3.5
3.5
4.3

-13.55
-11.49
-10.32

-9.16
-6.73
-3.50
-0.20
0.13

-0.67
-1.47
-1.15
0.60
3.29

28 fs

3.2 ps
48 ps

0.69 ns

0.19 ps
0.32 ms

0.63 s

1.3 s

0.21 s

34 ms

71 ms

4.0 s

32 m

114
114
114
114
114
114
114
114
114
114
114

0.219 0.28
0.209 0.26
0.207 0.25
0.208 0.24
0.212 0.23
0.203 0.22
0.190 0.23
0.182 0.21

0.143 0.19
0.121 0.17
0.086 0.14

154 268 0.54
156 270 0.56
158 272 0.60
160 274 0.62
162 276 0.64
164 278 0.65
166 280 0.65
168 282 0.64
170 284 0.64
172 286 0.65
174 288 0.66

1.2
1.3
1.7
2.5
3.4
3.6
3.5
3.2
3.1

3.3
4.1

1.3
1.4
1.9
2.7
3.4
3.7
3.6
3.4
3.3
3.8
4.7

-14.71
-12.84
-9.98
-6.34
-2.46
-1.66
-3.17
-2.33
-1.93
0.17
3.32

1.9 fs

0.14 ps
0.10 ns

0.46 p,s

3.5 ms

22 ms

0.68 ms

4.7 ms

12 ms

1.5 s

35 m

tion of a nucleus is chosen to parametrize the position of a
point on the fission trajectory. Columns 5 and 6 give the
entrance and exit points to and from the barrier, respectively,
and columns 7 and 8 give the heights of the static and dy-
namic barriers. The logarithm of the fission half-life (given
in seconds), logioT, r(s), is presented in column 9 and the
half-life itself in column 10. Columns 11 and 12 give experi-
mental values of T,f and the respective references.

One can see in Table I that the theoretical values repro-
duce the experimental results rather well, within a factor of
3, on the average. The largest discrepancy is obtained for
nucleus 104, for which the theoretical value is smaller
than the experimental one by a factor of 8. Preliminary re-
sults of more recent measurements [39] give, however, a
value [40] which is closer to the calculated value.

It is interesting to check how well the experimental half-
lives of lighter elements with Z= 102 and 100 are repro-
duced. This can be done, however, for only these nuclei, for
which our deformation space is sufficient to describe their
fission. These are the following nuclei: 102 and

100. The calculated T,f for them are 26 ms, 34 ms, 130

ms, and 8.9 ms, respectively, and the measured ones (1.2
~0.2) ms [14], 100 ms [37], 5 ms [41], and (370~43)p, s

[42], respectively. One can see that the discrepancies be-
tween the calculated and measured values are similar to
those obtained for nuclei of heavier elements with Z= 104
and 106.

A comparison of our half-lives with other calculated val-
ues, those of [9], shows that those values are smaller than
ours by up to about eight orders of magnitude. Also the re-
sults of [10,43] are very different from ours. For nuclei with
neutron number N close to the magic value N=162, the
half-lives T,r of [10,43] are smaller than ours by up to more
than six orders of magnitude. The difference seems to origi-
nate mainly from smaller phenomenologic inertia taken in

[9,10,43] than the microscopic inertia obtained in this paper.
One can see in Table I that almost all considered nuclei

are well deformed (large P2). Only the heaviest isotopes,
especially those of the elements with largest Z, are transi-
tional. The barriers are thin, especially those of the most
neutron-deficient isotopes. Some of these barriers end at
quite small deformations p2=0.55—0.60. The static fission
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barrier is systematically lower than the dynamical one by up
to about 2 MeV.

E. Sensitivity of calculated fission half-life to various factors

It is known that the fission half-life T,& is very sensitive to
changes of various quantities appearing in the calculations. It
is because most of these quantities (height of the potential-
energy barrier, its width and generally shape, effective iner-
tia) appear in the exponent. Because of this, a sensitivity to
changes of these quantities and to changes in an applied ap-
proach which modify them is often discussed. For example,
the whole of Ref. [32] has been devoted to a discussion of
the role of the deformation space admitted in the analysis of
spontaneous fission. The discussion has been performed for
the nucleus 106, which is the heaviest even-even nucleus
with measured T,f. It has been found that the analysis per-
formed in three-dimensional deformation space (P~),
X = 2,4,6, leads to Tsz larger by about three orders of magni-
tude than T,&- obtained in two-dimensional space
(P~), k =2,4. The inclusion of the fourth dimension Ps in-
creases TS&, however, by only about half of the order of
magnitude.

Here, we will illustrate the sensitivity of T,f to changes of
the zero-point energy F,„, Eq. (9). As mentioned in Sec.
II E, the value F.,p=0.7 MeV has been taken in the present
calculations. It is close to the result of [2], where it has been
obtained in the adiabatic and harmonic approximations from
the potential energy and the inertia tensor, both calculated in
the same way as in the present paper. The calculation was
rather simplified, and the value cannot be considered as very
well established. So an examination of the uncertainty in
T„-, coming from an uncertainty in F.,~, is reasonable.

To be close rather to the upper than to the lower limit of
the sensitivity, we choose, for the discussion, the nucleus

106, which has the largest T,f of all nuclei studied in the
present paper. We find that the increase of F.,„=0.7 MeV by
0.2 MeV decreases T,f by about 0.9 of the order of magni-
tude, while the decrease of it by 0.2 MeV increases T,f by
about 1.5 of the order of magnitude.

The sensitivity to the zero-point energy is also a sensitiv-
ity to the height of the fission barrier. It may be also trans-
lated to the sensitivity to the average value of the inertia.
Thus, it gives an idea of the sensitivity of Tsf to various
factors appearing in the calculation of it.

To get an idea of numerical errors coming from the ap-
proximations to the fisson trajectory and to the action inte-
gral along this trajectory, we changed the density of the grid
points in both P2 and P~. We found that with AP2 decreas-
ing from 0.025 to 0.010 and AP4 from 0.010 to 0.0025 (cf.
Sec. II E), Iog, OT,f(s) was increasing continuously from 3.3
to 4.1, for the case of 106. With a further decrease of
AP2 and AP4, Iog&OT,.f(s) was fiuctuating around the value
4. 1 with an amplitude of about 0.1. A more detailed discus-
sion of numerical errors in calculations of T,f has been re-
cently performed in [44]. The discussion has been restricted,
however, to only one-dimensional deformation space. Thus,
it does not include errors connected with the determination
of the fission trajectory.

to its specifics and also to a large recent activity, both experi-
mental and theoretical, in the study of these nuclei. The name
"deformed superheavy nuclei" is a rather natural possibility.
It has already been used for some time [45]. It makes use of
the suggestion of Armbruster [46,47] to extend the name
"superheavy nuclei, " primarily reserved [48] for spherical
nuclei around the hypothetical doubly magic nucleus

114, to all nuclei with very large Z and N, which exist or
are expected to exist only due to their shell effects. Recent
calculations indicate that the discussed nuclei fulfill this con-
dition. The adjective "deformed" reflects their expected
shape and distinguishes them from the "traditional" super-
heavy nuclei around 114, which should be called "spheri-
cal superheavy nuclei. "Such a distinction could not be made
by the names of elements, as some isotopes of a given ele-
ment [e.g. , 108 (Hs) or 109 (Mt)] belong to one (e.g. , de-
formed) and others to the second (spherical) region of nuclei.

At least for a part of the discussed region of nuclei, the
name "rock" [43] has been also proposed, in connection
with their increased stability.

IV. CONCLUSIONS

The following conclusions may be drawn from the present
study.

(1) Almost all considered nuclei are predicted to be de-
formed. Only very few of them, the heaviest ones, are ex-
pected to be transitional.

(2) The ground-state fission barriers of the nuclei are thin.
They already end at deformations Pz=0.55—0.70.

(3) The barriers are, however, high. For about 20 of the
considered nuclei, the dynamical fission barrier is higher
than 7 MeV. The largest value, 8.8 MeV, is obtained for the
nucleus 106 ( "Sg), i.e., the nucleus with the predicted
closed neutron shell at N= 162. The static barriers are by up
to about 2 MeV lower than the dynamical ones.

(4) The large height of the fission barrier is mainly due to
a large shell correction to the ground-state energy of these
nuclei. The largest (negative) value of this correction, —7.2
MeV, is obtained for the nucleus 108 ( Hs), predicted to
be a doubly magic deformed nucleus.

(5) Because of high barriers, the spontaneous-fission half-
lives T,f of the considered nuclei are rather large. The largest
value, 3.5 h, is obtained for the nucleus 106.

(6) The existing experimental values of T,f, for nuclei in
the considered region, are rather well reproduced by the cal-
culations.

(7) A comparison between the calculated fission, T,f, and.
u-decay, T, half-lives shows that, for Z= 104, T,f is
smaller than T, T,f(T, for all ¹ For Z=106, T,f=T
for a large number of isotopes (N= 154—164). For higher Z,
T,f is even larger than T and for even a larger number of
isotopes. Only for the most neutron-deficient isotopes of the
considered elements T,&

is smaller than T
(8) Thus, the results show that many nuclei, not yet ob-

served, in the considered region are expected to have suffi-
ciently long half-lives to be observed in a present-day experi-
mental setup, if synthesized.

K Remark on terminology

It seems to be practical to have some name for the very
specific region of nuclei considered in the present paper, due
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