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Thermal effects on isoscalar giant resonance energies in hot nuclei
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The thermal eKects on the energies of the isoscalar giant multipole resonances of hot nuclei are
discussed and an approximate formula for the energy as a function of temperature is derived via a
hydrodynamic theory. The energy difference between the isoscalar giant multipole resonance of a hot
nucleus and its ground-state resonance depends on the competition between the volume expansion
and the increase of the average kinetic energy per nucleon of hot nuclei, which lower and raise the
resonance energy, respectively, and nearly counteract each other in magnitude. The variation of the
isoscalar giant resonance energy with temperature is very small.

PACS number(s): 24.30.Cz, 21.60.Ev

I. INTRODUCTION

Over the past decade many aspects of giant resonances
in hot nuclei have been studied. The experiments have
found that the isovector giant dipole resonance (GDR)
energies and strengths in hot nuclei are stable with re-
spect to the corresponding ground-state resonance ener-
gies and strengths for nuclear temperatures T 1—2 MeV
and spins I & 40 h [1,2]. Nevertheless, the width of a gi-
ant resonance increases rapidly with temperature [3—5],
due to shape Buctuations. Meanwhile a number of the-
oretical investigations [1,6] have been performed as well
and much progress has been made concerning the GDR.
But the giant resonance in hot nuclei is such a sophis-
ticated subject that many open problems still remain.
Much effort has been put into studying its formation and
decay, its energy, strength, and width dependences upon
temperature and angular momentum, the relations be-
tween the giant resonances and other properties of nuclei,
and so on. The study of giant resonances in hot nuclei
has been one of the most interesting subjects in nuclear
physics.

This paper is devoted to discussing the thermal effects
on the energy variation of isoscalar giant multipole res-
onances in hot nuclei. A giant resonance is a collective
mode of excitation in nuclei. The variation of the reso-
nance energy with temperature sheds light on how the
restoring force of the collective mode changes with tem-
perature. Lipparini and Stringari [7] investigated the
isoscalar giant monopole resonance and the GDR with
the liquid drop model and derived a formula for the giant
resonance energy as a function of temperature, predicting
that the GDR energy would be reduced by 1 MeV when
the temperature reached 4 MeV. Using a random-phase
approximation (RPA), Garcias et al. [8] calculated the
variation of the GDR energy for some nuclei for T ) 4
MeV and obtained similar results. The most useful meth-
ods for theoretical studies of the giant resonances in hot
nuclei are microscopic methods, e.g. , Hartree-Fock (HF)
+ RPA [8], semiclassical methods, e.g. , the Vlasov equa-
tion [9], and so on. These microscopic methods have
mostly utilized numerical methods to obtain solutions.
Just as in the experimental studies, most theoretical in-

vestigations of giant resonances in hot nuclei have paid
attention to the properties of the GDR. In this paper the
method of Nix and Sierk [10] has been adopted to study
the energy variation of the isoscalar giant multipole res-
onance with temperature by using a hydrodynamic the-
ory. The methods of statistical physics were employed to
study the volume expansion of hot nuclei and the average
kinetic energy per particle for a Gnite-temperature Fermi
gas with interacting particles. Finally, the thermal effects
that contribute to the energy variation of the giant reso-
nances are analyzed and the temperature dependence of
the energy of the isoscalar giant multipole resonances is
discussed.

II. HYDRODYNAMIC METHOD

For the giant resonances in ground states many macro-
scopic models as well as microscopic models have been
used to investigate their energies, widths, strengths, and
other properties [ll—13]. Bertsch [11] in his macroscopic
model took account of the distortion of the Fermi surface
and derived a formula for the energy of isoscalar giant
quadrupole resonance as a function of nucleon number.
Nix and Sierk extended this model with a hydrodynamic
theory to isoscalar giant resonances of arbitrary multi-
pole. Giant resonances are phenomena of the collective
motion of nuclei and, hence, are suited to study by means
of macroscopic theories. In isoscalar and isovector giant
resonance neutrons and protons in nuclei move in and
out of phase, respectively. A nucleus was treated by Nix
and Sierk as an irrotational and incompressible Huid in
which neutrons and protons move in phase with a small-
amplitude, collective oscillation. For the isoscalar giant
resonances in hot nuclei Nix and Sierk's method is still
useful except that the parameters should be tempera-
ture dependent. Here the isoscalar giant resonances in
hot nuclei were investigated by following Nix and Sierk's
method. A formula was obtained for their energies, which
is helpful to understand which factors affect their tem-
perature dependences.

The foundation of Nix and Sierk's method is the Boltz-
mann equation,
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Of 1+v. gf ——gU. g f =I(f)
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M„= Am R,'.n(2n+ 1)
(9)

where f(r, v, t) is the distribution function for a particle
at position r moving with velocity v at time t, U(r) the
mean single particle potential, I(f) the collision term,
and m the mass of the particle. Introducing the average
velocity u(r, t) and pressure tensor P;z (r, t),

1
B,;—:— fv;d v,

P
(2)

for a mean square velocity (v2) of a nucleon and equi-
librium nucleon number density po. When T = 0,
(v2) = sv&~, where vz is the Fermi velocity; but when
T ) 0, (v2) is larger and needs to be treated particularly.
In deriving Eq. (4) the formula for the pressure tensor
suggested by Bertsch [14] was used.

A nucleus also has a dissipative layer, but it is difBcult
to treat here. For simplicity this layer was taken to be
a sharp cutoR' surface. The nuclear surface for the nth
multipole oscillations can be described as

R(0) = (Ro/A) [1+cx„P„(cos(8)],

where Ro ——roA ~ with ro the nuclear radius parameter
and A the mass number, o. a deformation parameter,
and A a factor for nuclear volume conservation while a
nucleus is undergoing distortion. The parameter ro will
increase with nuclear temperature and needs to be specif-
ically analyzed.

The energy corresponding to the shape perturbation
of a giant resonance 6.om a spherical shape is

E=
i

' idzdr,*') (6)

with the volume element displacement in the ith direction
d2:, The formula for the energy of the isoscalar giant
multipole resonance in hot nuclei resulting &om Nix and
Sierk's method is

E„=n, /C„Pr„,
where C is the nuclear stiffness coefBcient and M the
inertia for the nth multipole oscillations. Expressed in
terms of the basic constants of this problem these factors
C and M are

8~(n —1)C„= mpo (v )Ro,3n

P;, (i tj = m J (v; —uj(v, —u jfd v = pob;, + ~;, ,

(3)

with nucleon number density p = jf(r, t)dsv, isotropic
equilibrium pressure po, and pressure tensor deviation
K;~. Considering the irrotation of the How, i.e., ~ xu = 0,
and the incompression, i.e., ~ ~ u = 0, and neglecting the
collision term for small amplitudes of oscillation, one can
simplify Eq. (1) as

Equation (7) is the same in form as that for the ground-
state nuclei, but the quantities ro, po, and (v ) are tem-
perature dependent. The average kinetic energy per nu-
cleon in a nucleus is defined as r(T)—:2m(v2), with

r(0) = sr~ for Fermi energy e~. The nucleon num-

er density at equilibrium is ~0 —— ,~+~
. Combini

Eqs. (7)—(9), one obtains the energy of the isoscalar gi-
ant multipole resonance in a hot nucleus as follows:

ro (0) r (T)
En (T) = En (0) (10)

where E„(0) denotes the energy of the isoscalar giant
resonance in a nucleus at the ground state.

It is clear that the most important ingredient of the
energy of an isoscalar giant resonance in a hot nucleus is
the resonance energy of the ground-state nucleus E (0),
which means the isoscalar giant resonance is primarily a
surface effect. At the same time, the thermal eKects lead
to changes in resonance energy. In Eq. (10) the ther-
mal efFects on the energy of the isoscalar giant resonance
are manifested in two ways: (1) the volume expansion
and (2) the increase in the average kinetic energy per nu-
cleon in the hot nucleus. The volume expansion and the
increase in average kinetic energy per nucleon in a hot
nucleus make the energy of the isoscalar giant resonance
decrease and increase, respectively. The Anal explicit ex-
pression for the temperature dependence of the giant res-
onance energy is determined by the forms of ro(T) and
r(T), which are discussed in Secs. III and IV in detail

III. VOLUME EXPANSION OF HOT NUCLEI

with ro the radius for the ground-state nucleus. It is
necessary to determine the value of the radius parame-
ter ro(T) at a definite temperature to fix the parameter
g. The critical point (T„p,) is a convenient temparature
for this purpose in the equation of state for nuclear mat-
ter. Jaqaman, Mekjian and Zamick [17] used the finite-
temperature HF theory with an e6'ective nucleon-nucleon
Skyrme interaction [Eq. (15)] to obtain an equation of
state for nuclear matter, i.e.,

P = pT —aop + as(1+ 0.)p
+ . (12)

The parameters of the critical point of a finite nucleus
deduced from the above equation are (when cr = 1) p
0.485po (here po is the nucleon density at absolute zero),
and T = 20.5 MeV. This results in an expression for the

In general, the volume of a nucleus will expand when
the temperature rises. Some authors [15,16] calculated
the neutron and proton radii of some nuclei and the nu-
clear matter density with temperature with the help of
the HF method. From their conclusions the nuclear ra-
dius parameter ro(T) and temperature T have the simple
functional relationship

ro(T) = ro(1+ gT'),
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IV. AVERACE KINETIC ENER,CY
PER PARTICLE

The average kinetic energy per particle of a Fermi gas
is 5e~ at absolute zero, but the expression becomes very
complicated for temperature above absolute zero. Even
for an ideal Fermi gas it is difBcult to obtain an accurate
analytic expression for the average kinetic energy per par-
ticle for temperature above absolute zero. But here an
approximation will be taken for it. The particle occupa-
tion number for an energy level eq of a nuclear Fermi gas
is determined by the Fermi distribution function

~.(&.) = (14)1+exp[(s~ —y, )/T]
'

where p is the chemical potential of the nucleon and T
the nuclear temperature with the same unit as energy.
The energy per particle s~ is composed of two parts, i.e. ,

the kinetic energy "2 and a potential part that is more
sophisticated. In the HF theory the potential part is
calculated by using the Skyrme type interaction [19]

V = —tp(1+ xpP )b(r)+ —'[k b(r) + h(r)k ]2

parameter g, i.e. , (1+qT, ) = 0.485, from which one
obtains g = 6.5 x 10 MeV . Therefore the relation of
the nuclear radius with temperature can be expressed as

rp(T) = rp(l + 6.5 x 10 T ).
The increase of the nuclear radius with temperature given
above is nearly equal to that suggested in Ref. [16] (g =
4.2x10 4 MeV 2) and to that in Ref. [18] (g = 7.0xl0
MeV 2), but much smaller than that of Lipparini and.
Stringari [7].

where Q(T) = s rps(T)A is the nuclear volume, the par-
tition function z = e~" "~/, the thermal wavelength
A

—= (z ."~)'~2, f„(z) —= r('„) jp, + ~. , and g = 4, the
degeneracy factor of proton and neutron.

Because the limiting temperature for a nucleus is
T 6 MeV [21] and its thermal wavelength A is much
larger than the mean distance between nucleons, i.e.,
(A /gO) » 1, the hot nucleus can be treated as a Fermi
gas of low temperature and high density. Expanding the
functions fs~2(z) and fs~2(z) one obtains

7r2
fs/2(z) = (»z) 1+—(lnz) +

3~m 8
(20)

fs)2(z) = 5+2

15 m. 8
(lnz) i 1+ (lnz) + . . (21)

Substituting Eq. (20) into Eq. (18), one obtains

m' fT't'
Tlnz ey 1 ——

~12 Ee~]
(22)

up to the second order in the nuclear temperature T with
an effective Fermi energy e~ = .(&(&I)

By combining Eqs. (17)—(21) and approximating them
to the second order in the temperature, one obtains the
average kinetic energy per particle as

3m*
Tfsy2(z)/ fsgz(z)

+t2kb(r) k + —(1 + P )p ~(r),
6

(i5)
3 I'O(0) i

=5 ~n(T),
5~' (T )'

eF 1+
12 (ep) (23)

where r = iq —r2, k = (~z —~2)/2i, and all t s and xp
are parameters. The single particle energy for a 6nite-
temperature Fermi gas according to the HF theory is
given by

Equations (22) and (23) are suitable for a Fermi gas of
interacting particles. Using the expression for the nuclear
radius [Eq. (13)] the average kinetic energy per nucleon
can then also be rewritten to order T as

h q2
eq ——eo +

2m~ (16)
3 (rp(0) l 5' (m ) (T )'

r = ep— 1+
5 (rp(T)) 12 ( m y

(24)

where co is a constant independent of the wave vector q
and m' is the effective mass [20], which is expressed in the
kame of the HF method with a Skyrme type interaction
as

Although the kinetic energy per nucleon in hot nuclei is
inversely proportional to the nuclear radius rp(T) it still
increases smoothly with temperature.

1 + 2 (3ty + 5t2)
8h

(i7) V. THERMAL EFFECTS

N = d qNq —— fs)2(z),
gO 3 gO
2' 3 (i8)

Inserting Eq. (16) into Eq. (14) and integrating it over
all wave vectors, one gets the particle number N of the
system and the average kinetic energy per particle v, re-
spectively, as

Both the volume expansion and the increase in the av-
erage kinetic energy per nucleon of a hot nucleus arise
&om the increase in the nuclear temperature, but as
pointed out in Sec. II these eKects have contrary roles in
the temperature dependence of the energy of an isoscalar
giant multipole resonance. The competition between
them will be examined and. an approximate formula for
the temperature dependence of the resonance energy will
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be derived.
Inserting Eqs. (11) and (24) into Eq. (10), one obtains

the isoscalar giant multipole resonance energy,

E„(T)= E„(0)
5~' (~ ~' i
24 (m)

(25)

E„(T)= E„(0)[l—2.0 x 10 T ]. (26)

This formula shows that the energy of an isoscalar gi-
ant multipole resonance in a hot nucleus nearly does not
change with temperature. When the temperature T = 5
MeV the energy of the isoscalar giant multipole reso-
nance is reduced by no more than 0.1 MeV, which is
smaller than the 1 MeV decrease of the GDR energy for
a temperature of 4 MeV [7], and is also less than the de-
crease in the GDR energy obtained by using either the
HF+RPA method or the Vlasov equation [8,9].

In the efFective SKM' interaction tq ——410.0 and t2 ——

—135.0 [20]. By taking ro ——1.18 fm and using Eq. (17),
one finds m'/m = 0.806. This value seems reasonable
for hot nuclei. Inserting all the parameters' values into
Eq. (25), an approximate formula for the energy of an
isoscalar giant multipole resonance in a hot nucleus can
be written as

VI. CONCLUSION

In the above sections we have discussed the thermal
efFects on the giant resonances in hot nuclei. We con-
clude with a brief comment. There exist two factors that
play contrary roles in determining the temperature de-
pendence of the isoscalar giant multipole resonance en-
ergy in nuclei. The first one is the volume expansion
which enlarges the nuclear inertia, and, hence, reduces
the energy of the isoscalar giant resonance in a hot nu-
cleus. The other one is the increase in the average ki-
netic energy per nucleon that increases the determinant
of the pressure tensor, i.e., enhances the force against
distortion of the Fermi surface, thereby increasing the
resonance energy with temperature. Based on the theo-
retical calculations and analyses here, we conclude that
the contributions of both the volume expansion and the
increase in the average kinetic energy per nucleon to the
giant resonance energy in hot nuclei nearly counteract
each other. In other words, the energy of the isoscalar
multipole giant resonance depends very weakly on the
nuclear temperature.
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