Two-parameter formula for rotational spectra

Guo-Mo Zeng,^{1,2,3} Wei Liu,² and En-Guang Zhao^{1,3}

¹China Center of Advanced Science and Technology (CCAST, World Laboratory), P.O. Box 8730, Beijing 100080, China ²Department of Physics, Jilin University, Changchun, Jilin 130023, People's Republic of China

³Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China

(Received 14 October 1994)

A new two-parameter formula for the rotational spectra of well-deformed nuclei is presented for the first time. The formula is deduced from experimental level systematics and alternatively from nuclear hydrodynamics. Comparisons with a great number of rotational spectra of even-even nuclei in rare-earth and actinide regions show that the formula can give a best fitting to the experimental data.

PACS number(s): 21.10.Re, 21.60.Ev, 27.70.+q, 27.90.+b

I. INTRODUCTION

Recently abundant information about the high-spin levels of ground rotational bands (GRB's) in actinide nuclei arises from Coulomb excitation experiments with very heavy-ion beams. Because the moments of inertia of actinide nuclei are about twice as big as those of the rare-earth nuclei, the twoquasiparticle S bands do not compete with the GRB up to much higher spins than those in rare-earth nuclei. So, making use of the recent data, one can test further the applicability of various current formula for rotational spectra. Several authors did this work and concluded that the ab formulas

$$E(I) = a[\sqrt{1 + bI(I+1) - 1}]$$
(1)

are far better than other two-parameter formulas for describing the rotational bands [1]. However, in many cases the results predicted by ab formulas deviate obviously from the experimental data. It becomes therefore a motivation for the present work to seek a more accurate formula.

In this paper a new two-parameter formula is proposed for the first time and is used to analyze systematically the rotational spectra of well-deformed even-even nuclei both in rare-earth and actinide regions up to very high spin below the band crossing. We have carried out comparisons between the calculation results by using our formula and almost all experimental data for the ground-state rotational bands. An overall and excellent agreement is obtained especially for the actinide nuclei. We also compared our formula with Eq. (1) and the Harris two-parameter ω^2 expansion [2]

$$E = \alpha \, \omega^2 + \beta \, \omega^4, \tag{2}$$

which is equivalent to the variable moment of inertia (VMI) model [3], and found that our formula is systematically better than both expressions. Thus in view of the results of Ref. [1] and references therein on the accuracy of ab and other expressions we can reasonably affirm that among all two-parameter formulas ours can give a best fitting to the observed rotational spectra.

In Sec. II we derive our formula in two ways. Comparisons of the new formula with experimental data and other formulas in detail are given in Sec. III. In Sec. IV we enumerate our major conclusions.

II. DERIVATION OF THE NEW FORMULA

The *ab* formula (1) was deduced by Holmberg and Lipas by investigating the curves of the moment of inertia \mathcal{J} against *E* for a representative selection of nuclei according to the simplest expression of rotational spectra (see Fig. 2 in Ref. [4])

FIG. 1. Moment of inertia as a function of excitation energy according to Eq. (3) for some representative nuclei.

<u>52</u>

1864

FIG. 2. $\mathscr{J} \sim E$ plots for ¹⁷⁸Os and ²³⁴U with the solid circles denoting the data calculated from Eq. (3), solid line the pq fit, and dashed line the ab fit.

$$E(I) = \frac{\hbar^2}{2\mathscr{J}}I(I+1). \tag{3}$$

They assume that \mathscr{J} varies approximately linearly with E, i.e.,

$$\mathscr{J} = c_1 + c_2 E. \tag{4}$$

Substituting Eq. (4) into Eq. (3) and solving the resulting quadratic equation yields the *ab* formula. In substance it

takes into account the centrifugal stretching effect. An alternative derivation of Eq. (1) from the hydrodynamic model was also given by the above authors.

However, the linear relation between \mathscr{T} and E is not obeyed well by many rotational spectra for low as well as very high spins. Some examples are presented in Fig. 1 and one can see that \mathscr{T} does not increase with E as quickly as Eq. (4) described. In other words Eq. (4), and hence Eq. (1), overstresses the centrifugal stretching effect. So we take the starting point as giving a more accurate functional relation of \mathscr{T} with E following Ref. [4]

Rewriting Eq. (1) (hereafter take $\hbar = 1$), we get

$$E(I) = \frac{abI(I+1)}{\sqrt{1+bI(I+1)}+1}.$$
(5)

Comparing with Eq. (3), we have

$$\mathcal{J} = \frac{1}{2ab} \left[\sqrt{1 + bI(I+1)} + 1 \right].$$
(6)

By using Eq. (3) again and taking \mathscr{T} in it as the zero approximation,

$$\mathscr{J}_0 = \frac{1}{ab} , \qquad (7)$$

Eq. (6) can be rewritten as

$$\mathscr{T} = \frac{1}{2ab} \left(\sqrt{1 + \frac{2}{a}E} + 1 \right). \tag{8}$$

This is just the relation between \mathcal{J} and E we obtained. Substituting it into Eq. (3) produces a cubic equation of E without a quadratic term,

$$E^{3} + a^{2}bI(I+1)E - \frac{a^{3}b^{2}}{2}[I(I+1)]^{2} = 0.$$
 (9)

This equation has only one real root for b > 0, which can be written as

$$E(I) = a \left\{ \left\{ \left(\frac{bI(I+1)}{2} \right)^2 + \left[\left(\frac{bI(I+1)}{2} \right)^4 + \left(\frac{bI(I+1)}{3} \right)^3 \right]^{1/2} \right\}^{1/3} + \left\{ \left(\frac{bI(I+1)}{2} \right)^2 - \left[\left(\frac{bI(I+1)}{2} \right)^4 + \left(\frac{bI(I+1)}{3} \right)^3 \right]^{1/2} \right\}^{1/3} \right\}.$$
(10)

In order to distinguish between the above equation and *ab* formula [Eq. (1)], instead of *a*, *b* we take *p*, *q* denoting the two free parameters and let x = qI(I+1); the above equation now reads

$$E(I) = p\left(\left\{ \left(\frac{x}{2}\right)^2 + \left[\left(\frac{x}{2}\right)^4 + \left(\frac{x}{3}\right)^3\right]^{1/2}\right\}^{1/3} + \left\{\left(\frac{x}{2}\right)^2 - \left[\left(\frac{x}{2}\right)^4 + \left(\frac{x}{3}\right)^3\right]^{1/2}\right\}^{1/3}\right).$$
(11)

FIG. 3. The Mallmann plots of the pq, ab, and $\alpha\beta$ expressions, denoted by solid, dashed and dot-dashed lines respectively, and the experimental data denoted by solid circles for the actinide nuclei and open circles for the rare-earth nuclei. (a) I=12, (b) I=16, (c) I=20, (d) I=24.

This equation is just our new formula for rotational spectra; hereafter we call it the pq formula. It can be easily verified that the formula will reduce to a rigid rotor for small x.

We now turn to an alternative derivation of Eq. (11) from the hydrodynamic model. In this model the energy of a rotating nucleus is given by

$$E(\beta) = \frac{1}{2 \mathscr{J}(\beta)} I(I+1) + \frac{1}{2} C(\beta - \beta_0)^2, \qquad (12)$$

where $\mathscr{J}=3B\beta^2$ from nuclear hydrodynamics, β_0 is the deformation parameter for a rigid nucleus, and β its stretched value. From the variational condition $\partial E/\partial \beta = 0$, we can get a quadratic equation with which the dynamical equilibrium deformation must be satisfied:

$$(\beta - \beta_0)^2 + \frac{1}{2}\beta_0(\beta - \beta_0) - \frac{E}{C} = 0.$$
(13)

TABLE I. Experimental and calculated energies (in keV) of 174 Yb and 232 Th with the parameters fixed by the experimental values of the 2^+ and 8^+ energy levels.

Nuclei		<i>I</i> =2	4	6	8	10	12	14	16	18	20	22	24	26	28	$\sigma \times 10^3$
¹⁷⁴ Yb Expt.		76.47	253.12	526.03	889.93	1336	1861	2457	3117	3836	4610					
	pq	76.47	253.15	526.12	889.93	1338.31	1864.74	2462.89	3126.89	3851.44	4631.82					2.480
	ab	76.47	253.19	526.23	889.93	1337.39	1861.06	2453.21	3106.28	3813.20	4567.46					3.688
²³² Th	Expt.	49.37	162.12	333.2	556.9	827.0	1137.1	1482.8	1858.6	2262.9	2691.5	3144.2	3619.6	4116.2	4631.8	
	pq	49.37	162.15	333.37	556.90	826.62	1137.05	1483.52	1862.19	2269.89	2704.01	3162.38	3643.19	4144.90	4666.19	3.922
	ab	49.37	162.26	333.66	556.90	824.72	1130.08	1466.64	1828.94	2212.47	2613.49	3028.99	3456.54	3894.17	4340.29	29.279

TABLE II. Experimental and calculated energies (in keV) of rare-earth nuclei with the parameters fixed by fitting the whole region of experimental values.

Nuclei		<i>I</i> = 2	4	6	8	10	12	14	16	18	20	$\sigma \times 10^3$
¹⁵⁴ Sm	Expt.	81.98	266.79	543.74	902.65	1332.80	1825.7	2373	2967			
	pq	81.62	266.84	545.29	905.06	1335.07	1825.96	2370.21	2961.81			2.276
	ab	81.16	266.31	546.35	909.38	1342.76	1834.51	2374.08	2952.63			5.952
¹⁵⁶ Gd	Expt.	88.97	288.18	584.71	965.09	1416.03	1924.41	2475.74				
	pq^{-}	88.84	288.67	585.55	964.64	1413.17	1921.07	2480.58				1.615
	ab	88.35	288.41	587.49	969.92	1420.06	1924.12	2470.71				3.937
¹⁶² Dy	Expt.	80.66	265.67	548.53	920.99	1374.91	1901.41	2492.4	3138.4	3831		
	pq	80.65	265.77	548.81	921.32	1374.39	1899.55	2489.31	3137.21	3837.78		0.847
	ab	80.38	265.32	548.97	923.19	1378.52	1905.13	2493.55	3135.05	3821.89		2.058
¹⁶⁴ Dy	Expt.	73.39	242.23	501.32	843.67	1261.3	1745.8	2290.5				
	pq	73.43	242.29	501.21	843.13	1260.41	1745.65	2292.12				0.509
	ab	73.33	242.19	501.54	844.31	1262.21	1746.57	2288.92				0.627
¹⁶⁴ Er	Expt.	91.40	299.44	614.4	1024.57	1518.0	2082.73	2702.5				
	pq	91.43	299.71	614.62	1023.92	1515.76	2079.78	2707.40				1.130
166	ab	91.14	299.46	615.53	1026.84	1519.84	2081.43	2699.88				1.653
¹⁰⁰ Er	Expt.	80.58	264.99	545.46	911.21	1349.64	1846.6	2389.4	2967.4			
	pq	80.98	265.35	543.84	905.46	1339.61	1837.10	2390.35	2993.21			5.393
166	ab	80.77	265.34	545.29	909.46	1345.78	1842.61	2389.53	2977.67			2.199
¹⁰⁰ Yb	Expt.	102.37	330.50	668.01	1098.25	1605.93	2175.94	2779.4	3490.0			
	pq	102.20	331.00	668.85	1097.82	1603.04	2173.10	2799.40	3475.39			3.185
169	ab	101.60	330.90	671.96	1105.56	1613.04	2178.39	2788.73	3434.10			7.296
¹⁰⁸ Yb	Expt.	87.73	286.55	585.25	970.02	1425.41	1935.9	2488.5	3073.0			
	pq	88.21	287.19	583.88	964.09	1415.29	1927.41	2492.59	3104.75			5.666
170	ab	87.72	286.84	585.64	969.39	1423.09	1933.18	2488.30	3079.25			1.155
¹⁷⁰ Yb	Expt.	84.26	277.45	573.54	963.67	1437.97	1983.78	2580.9				
	pq	84.39	277.89	573.31	961.43	1432.65	1977.99	2589.54				2.506
172	ab	84.23	277.76	573.88	963.32	1435.51	1979.66	2585.52				1.325
Yb	Expt.	78.75	260.29	540.00	912.16	1370.11	1907.21	2518.4	3198.1			
	pq	78.64	260.18	540.29	913.01	1371.52	1908.86	2518.35	3193.86			0.924
174371	ab E	78.53	260.02	540.42	913.93	1373.44	1911.22	2519.31	3189.96	2025		1.936
10	Expt.	/0.4/	253.12	526.03	889.93	1336	1861	2457	3117	3836	4610	0.000
	pq	76.51	253.19	525.96	889.17	1336.35	1860.84	2456.20	3116.51	3836.46	4611.33	0.368
176 хль	ab Event	/0.33	252.83	525.83	890.00	1338.80	1865.02	2461.20	3119.99	3834.42	4598.06	1.5/1
10	Expt.	02.15	271.70	564.7	954.0	1431	1985	2602	3270			2 504
	pq	82.40 82.20	272.39	564.30	951.11	1424.01	1976.90	2600.60	3289.13			3.594
168 ப f	uv Evot	123.05	272.13	756.8	952.20	1725 7	1979.39	2001.03	3202.70			2.202
111	na	123.95	387.57	750.5	1213.5	1735.7	2303.8	2930.0	3605.26			2 550
	pq	120.29	385.54	766 47	1214.41	1751.03	2312.05	2937.07	3566 27			5.556
¹⁷⁰ Hf	Evot	100.80	321.00	642.0	1043.3	1505.5	2334.32	2938.80	2151.6			15.500
111	na	101.12	322.55	641 53	1037.77	1496.93	2010.4	2566.59	3164.57			3 714
	ah	99.98	322.03	646.94	1050.43	1513 11	2008.24	2558 40	3121.48			5 078
¹⁷² Hf	Expt	95.24	309.26	628.14	1037.30	1521.07	2064 44	2654.01	3277 17			5.770
	na	95.44	309.92	628.14	1033.98	1513.68	2056.45	2654.01	3300.02			3 657
	ab	94.79	309.41	630.24	1040.43	1523.21	2063 76	2649.88	3271.91			2 503
¹⁷⁴ Hf	Expt.	90.99	297.38	608.26	1009.6	1485.9	2020.5	2597.5	3208.9			2.505
	pa	91.50	298.20	606.98	1003.42	1474.62	2010.11	2601.67	3242.88			5.917
	ab	90.99	297.75	608.53	1008.44	1482.19	2015.82	2597.50	3217.62			1.659
¹⁷⁶ Hf	Expt.	88.35	290.18	596.82	997.74	1481.07	2034.67	2646.6				1.007
	pq	88.41	290.32	596.65	996.31	1478.28	2032.69	2651.20				1.218
	ab	88.20	290.18	597.53	998.97	1482.05	2034.50	2645.11				0.963
¹⁷⁸ Hf	Expt.	93.18	306.62	632.18	1058.56	1571.0	2150.7	2777.6	3436.2			
	pq	93.85	307.67	630.96	1051.20	1556.21	2135.38	2779.90	3482.61			7.397
	ab	93.54	307.41	632.08	1054.88	1562.02	2140.13	2777.20	3462.92			4.341
^{182}W	Expt.	100.11	329.43	680.5	1144.4	1711.9	2372.5	3112.6				
	pq	99.91	329.58	681.52	1145.91	1712.23	2370.30	3110.92				1.137
1.50	ab	99.75	329.39	681.94	1147.63	1715.03	2372.22	3107.59				2.112
¹⁷⁸ Os	Expt.	131.65	398.1	761.3	1193.9	1681.9	2219.6	2804.5	3429.1			
	pq	130.91	398.98	762.52	1196.65	1687.00	2224.54	2803.05	3418.02			2.943
	ab	127.68	400.27	776.69	1221.73	1711.35	2230.42	2769.50	3322.63			20.434

1868

The physical root of this equation is

$$\beta - \beta_0 \equiv \Delta \beta = \frac{\beta_0}{4} \left[-1 + \sqrt{1 + \frac{16}{C\beta_0^2} E} \right], \quad (14)$$

and the moment of inertia now reads

$$\mathscr{J} = \frac{3}{2}B\beta_0^2 \left[1 + \sqrt{1 + \frac{16}{C\beta_0^2}E} + O(\Delta\beta^2) \right].$$
(15)

Dropping $O(\Delta \beta^2)$ from \mathscr{J} and substituting it into Eq. (12) with its second term neglected we can obtain a cubic equation similar to Eq. (9) and its solution is of the same form as Eq. (11).

III. CALCULATIONS BY USING THE NEW FORMULA

A. *I*~*E* curves

First we rewrite Eq. (8) as

$$\mathcal{J} = c_1(\sqrt{1 + c_2 E} + 1), \tag{16}$$

with c_1, c_2 regarded as two free parameters. Making use of this equation to fit almost all $\mathscr{J} \sim E$ curves of GRB's (below band crossing) for even-even nuclei with $R_4 = E(4_1^+)/E(2_1^+) \ge 3.0$, we find that the agreement is very good for most nuclei. Two typical examples of ¹⁷⁸Os [18] and ²³⁴U [27], which belong to rare-earth and actinide regions, respectively, are shown in Fig. 2. We see that the fits given by the pq formula are far better than those given by the ab formula.

B. Mallmann plots

Mallmann [5] pointed out that plots of $R_I \equiv (E_I - E_0)/(E_2 - E_0)$ (or $r_I \equiv R_I - R_{I-2}$) vs R_4 of the eveneven collective nuclei show a remarkably smooth trend. Reference [6] verified that for each two-parameter formula of rotational bands the Mallmann plot is unique and does not depend on the parameter values. The Mallmann plot can be compared directly with the experimental data of rotational spectra over the entire range of nuclei. Thus, the Mallmann plot can give a clear-cut picture of the relative validity of each formula for rotational spectra.

From Eq. (11) we have

$$R_{I} = \frac{\sqrt[3]{(x/2)^{2} + \sqrt{(x/2)^{4} + (x/3)^{3}}} + \sqrt[3]{(x/2)^{2} - \sqrt{(x/2)^{4} + (x/3)^{3}}}{\sqrt[3]{(3q)^{2} + \sqrt{(3q)^{4} + (2q)^{3}}} + \sqrt[3]{(3q)^{2} - \sqrt{(3q)^{4} + (2q)^{3}}}.$$
(17)

Taking q as a parametric variable, one can draw the Mallmann plot for the pq formula. As illustrative examples the Mallmann plots for I = 12, 16, 20, and 24 are given in Fig. 3. For comparison, also given are the corresponding plots for the other two rotational formula with two parameters, i.e., the $\alpha\beta$ expression and ab expression according to Eq. (2) and Eq. (1), respectively.

All the experimental data now available [7-32] for the GRB's of even-even rare-earth and actinide nuclei (with band crossing angular momentum $I_c \ge 16$) are displayed in the figures. It can be seen that the Mallmann plots for the pq expression pass through the experimental points, while those for the $\alpha\beta$ expression lie higher and those for the ab expression lower than the data.

C. Energy spectra

In order to demonstrate further the accuracy and convergence of Eq. (11) for describing the experimental data, choosing ¹⁷⁴Yb [16] and ²³²Th [26] as examples, we calculate the GRB's for both nuclei with the two parameters p and q fixed by the experimental values of the 2⁺ and 8⁺ energy levels. The results are listed in Table I and those obtained by Eq. (1) are also shown in the same table for comparison. It can be found that the agreements between the observed values and our results are very good up to very high spin while the calculations using Eq. (1) are worse than ours. The relative error σ in Table I is defined as

$$\sigma = \sqrt{\frac{1}{N} \sum_{I} \left[\frac{E_{\text{expt}}(I) - E_{\text{calc}}(I)}{E_{\text{expt}}(I)} \right]^2} .$$
(18)

Using the pq expression we calculate all GRB's for the nuclei mentioned in the last subsection with the two parameters (p,q) fitted over the whole experimental bands by the least-squares procedure. The results are listed in Table II and Table III for rare-earth and actinide nuclei, respectively. The structures of the two tables are the same as Table I. From Table II we can see that the pq fits are well-behaved in all cases and better than ab fits for more than half of the nuclei. For ¹⁷⁴Yb, ¹⁶⁸Hf, and ¹⁷⁸Os the σ values from Eq. (11) are appreciably smaller than those from Eq. (1), whereas only for ¹⁶⁸Yb is the former obviously worse than the latter.

In Table III we have exciting results: Apart from ²³⁶U, ²³⁸U, and ²⁴⁸Cm, the pq fits are apparently better than abfits for all other actinide nuclei. The values of σ obtained by pq are only 1/4, even 1/10, as big as those obtained by ab. On the other hand, the $\mathscr{J} \sim E$ curves of the three exceptional nuclei mentioned above are nearly straight lines which can not be well described by Eq. (8)

IV. SUMMARY AND OUTLOOK

A new two-parameter formula with closed analytical form, Eq. (11), for the energy levels in the ground-state rotational bands of well-deformed nuclei is obtained from consideration of the accurate relation between the moment of inertia and experimental energy levels or, alternatively, from nuclear hydrodynamics. Analyses of $\mathscr{J} \sim E$ curves, Mallmann plots, and energy spectra reveal surprisingly good agreement between our predictions and observed data and show that among all two-parameter rotational formulas our

TABLE III. Experimental and calculated energies (in keV) of actinide nuclei with the parameters fixed by fitting the whole region of experimental values.

Nuclei		<i>I</i> = 2	4	6	8	10	12	14	16	18	20	22	24	26	28	$\sigma \times 10^3$
²²⁶ Ra	Expt.	67.67	211.54	416.6	669.4	960.0	1281	1629								
	pq	67.34	212.42	417.76	669.71	959.15	1279.98	1627.94								2.717
	ab	66.41	212.54	422.18	678.78	968.97	1283.04	1614.27								11.446
²²⁸ Th	Expt.	57.76	186.82	378.17	622.2	911.5	1238.7	1595.9								
	pq	57.64	187.02	378.72	622.90	911.21	1237.15	1595.78								1.235
	ab	57.29	186.82	380.02	626.39	915.61	1238.70	1588.32								5.036
²³⁰ Th	Expt.	53.20	174.10	356.6	594.1	879.7	1207.8	1572.9	1971.5	2397.8	2850	3325				
	pq	53.12	174.12	357.03	594.73	880.31	1207.78	1572.13	1969.33	2396.08	2849.72	3328.03				0.867
	ab	52.62	173.17	356.76	596.78	885.92	1216.92	1583.14	1978.74	2398.79	2839.18	3296.53				6.171
²³² Th	Expt.	49.37	162.12	333.2	556.9	827.0	1137.1	1482.8	1858.6	2262.9	2691.5	3144.2	3619.6	4116.2	4631.8	
	pq	49.48	162.40	333.59	556.72	825.57	1134.58	1479.11	1855.31	2260.05	2690.75	3145.29	3621.89	4119.02	4635.40	1.461
220	ab	48.85	161.03	332.56	557.96	830.99	1145.33	1494.98	1874.58	2279.44	2705.60	3149.70	3608.99	4081.16	4564.31	7.363
²³⁰ U	Expt.	51.72	169.5	347.0	578.3	856.5	1175.8	1531.7	1921.3							
	pq	51.67	169.40	347.44	578.91	857.13	1176.25	1531.42	1918.70							0.912
232	ab	51.42	169.07	347.85	580.98	861.01	1180.68	1533.41	1913.52							4.039
2520	Expt.	47.57	156.57	322.6	541.0	805.8	1111.5	1453.7	1828.1	2231.5	2659.7					
	pq	47.59	156.61	322.82	540.84	805.11	1110.51	1452.55	1827.47	2232.10	2663.80					0.741
234 T T	ab E	47.40	156.34	323.13	542.65	809.03	1116.28	1458.65	1830.96	2228.65	2647.82	2 000 7			1005	3.118
0	Expt.	43.50	143.35	296.07	497.04	741.2	1023.8	1340.8	1687.8	2063.0	2464.2	2889.7	3339	3808	4297	0.615
	pq	43.53	143.41	296.02	496./1	740.61	1023.12	1340.18	1688.31	2064.57	2466.49	2892.00	3339.35	3807.04	4293.76	0.615
236 1 1	ab Evet	45.18	142.05	295.51	497.05	782.2	1030.38	1350.95	1/01.41	2077.58	24/5.83	2893.02	3526.44	3//3.83	4233.24	6.821
U	Expt.	45.24	149.40	210.25	521.01	770.06	1085.5	1420.5	1780.21	2203.9	2031.7	2070.62	3550	4039	4549	4 9 2 0
	py ab	45.49	140.30	300.71	527.57	793.09	1079.09	1417.55	1/09.21	2191.05	2022.71	2092 59	2552.22	4004.03	4526.02	4.839
238 _{1 1}	Evnt	45.15	149.50	307.21	517.8	785.08	1076 5	1415 3	1788 2	2205.50	2055.05	3067.2	2524.5	4037.10	4550.05	1.190
U	na	45.12	148.86	307.88	517.80	773.88	1071.57	1406 71	1775.68	2175.40	2603.21	3056.88	3534.50	4017.5	4510.5	1 807
	pq ah	43.12	148.00	307.00	518 52	775.00	1078.65	1417.80	1790.06	2173.40	2617 35	3065 19	3531.82	4014 73	4511 77	1.450
²³⁶ Pu	Expt	44.63	147 45	305.8	515.7	773.5	1074 3	1413.6	1786.0	2171.10	2017.55	5005.17	5551.02	-0175	4511.77	1.450
	na	44.64	147.51	305.80	515 70	772.98	1073 40	1413.03	1788 30							0.632
	ab	44.57	147.41	305.91	516.35	774.28	1074.88	1413.36	1785.11							0.824
²³⁸ Pu	Expt.	44.08	145.98	303.4	513.4	772.8	1078.5	1427.2	1816.2	2240.5						0.02
	pq	44.03	145.86	303.42	513.85	773.75	1079.57	1427.81	1815.15	2238.57						0.846
	ab	43.97	145.74	303.43	514.25	774.78	1081.18	1429.41	1815.43	2235.37						1.897
²⁴⁰ Pu	Expt.	42.82	141.69	294.32	497.52	747.8	1041.8	1375.6								
	pq	42.81	141.68	294.35	497.67	748.04	1041.76	1375.22								0.236
	ab	42.77	141.64	294.45	498.09	748.75	1042.26	1374.35								0.890
²⁴² Pu	Expt.	44.54	147.3	306.4	518.1	778.7	1084.0	1431.3	1816.3	2235.6	2686.0	3163	3662			
	pq	44.58	147.52	306.40	517.91	778.23	1083.46	1429.84	1813.91	2232.56	2683.05	3163.00	3670.30			1.106
	ab	44.41	147.12	306.07	518.22	779.87	1086.90	1435.03	1820.06	2237.95	2684.96	3157.71	3653.16			1.870
²⁴⁴ Pu	Expt.	46.0	153.0	315.4	531.8	798.3	1110.7	1464.4	1855.4	2279.2	2730.7					
	pq	46.06	152.27	315.83	532.97	799.43	1110.93	1463.44	1853.33	2277.37	2732.78					1.904
	ab	45.93	152.00	315.74	533.56	801.16	1113.83	1466.81	1855.46	2275.50	2723.00					3.024
²⁴⁸ Cm	Expt.	43.38	143.8	298.8	506.0	761.9	1062.8	1404.3	1781.6	2189.7	2623.6	3079.4	3554.8	4049.8	4566.1	
	pq	43.70	144.52	299.95	506.52	760.34	1057.45	1394.06	1766.76	2172.49	2608.59	3072.73	3562.90	4077.36	4614.57	6.039
	ab	43.46	143.95	299.38	506.69	762.16	1061.66	1400.93	1775.80	2182.29	2616.72	3075.78	3556.50	4056.28	4572.81	1.936

new formula can give a best fitting to the experimental data. It is of great interest to exploit the microscopic basis of this formula. determine the adopted levels from different experiments and to predict high spin states to be measured.

The excellent agreements between our formula and experimental GRB's imply that the formula can be used to

This work was supported by the National Natural Science Foundation of China.

- J. Meng, C. S. Wu, and J. Y. Zeng, Phys. Rev. C 44, 2545 (1991).
- [2] S. M. Harris, Phys. Rev. Lett. 13, 663 (1964); Phys. Rev. 138, B509 (1965).
- [3] M. A. J. Mariscotti, G. Scharff-Goldharber, and B. Buck, Phys. Rev. 178, 1864 (1969).
- [4] P. Holmberg and P. O. Lipas, Nucl. Phys. A117, 552 (1968).
- [5] C. A. Mallmann, Phys. Rev. Lett. 2, 507 (1959).
- [6] J. L. Wood and R. W. Fink, Nucl. Phys. A224, 589 (1974).
- [7] R. G. Helmer, Nucl. Data Sheets 69, 507 (1993), for A = 154.
- [8] R. G. Helmer, Nucl. Data Sheets 65, 65 (1992), for A = 156.
- [9] C. W. Reich, Nucl. Data Sheets 68, 405 (1993), for A = 160.
- [10] R. G. Helmer, Nucl. Data Sheets **64**, 79 (1991), for A = 162.
- [11] E. N. Shurshikov *et al.*, Nucl. Data Sheets **65**, 365 (1992), for A = 164.
- [12] E. N. Shurshikov *et al.*, Nucl. Data Sheets **67**, 45 (1992), for A = 166.
- [13] V. S. Shirley, Nucl. Data Sheets 53, 223 (1988), for A = 168.
- [14] C. M. Zhou, Nucl. Data Sheets **50**, 351 (1987), for A = 170.
- [15] G. Q. Wang, Nucl. Data Sheets **51**, 577 (1987), for A = 172.
- [16] E. Browne, Nucl. Data Sheets 62, 1 (1991), for A = 174.
- [17] E. Browne, Nucl. Data Sheets **60**, 227 (1990), for A = 176.
- [18] E. Browne, Nucl. Data Sheets 54, 199 (1988), for A = 178.
- [19] E. Browne, Nucl. Data Sheets **71**, 81 (1994), for A = 180.

- [20] R. B. Firestone, Nucl. Data Sheets 54, 307 (1988), for A = 182.
- [21] R. B. Firestone, Nucl. Data Sheets 58, 243 (1989), for A = 184.
- [22] R. B. Firestone, Nucl. Data Sheets 55, 583 (1988), for A = 186.
- [23] Y. A. Ellis-Akovali, Nucl. Data Sheets 50, 229 (1987), for A = 226.
- [24] E. N. Shurshikov *et al.*, Nucl. Data Sheets **49**, 83 (1986), for A = 228.
- [25] Y. A. Akovali, Nucl. Data Sheets **69**, 155 (1993), for A = 230.
- [26] M. R. Schmorak, Nucl. Data Sheets **63**, 139 (1991), for A = 232,236.
- [27] Y. K. Akovali, Nucl. Data Sheets **71**, 181 (1994), for A = 234.
- [28] M. Sakai, At. Data Nucl. Data Tables **31**, 399 (1984), for A = 238.
- [29] E. N. Shurshikov *et al.*, Nucl. Data Sheets **59**, 247 (1990), for *A* = 240.
- [30] E. N. Shurshikov *et al.*, Nucl. Data Sheets **45**, 509 (1985), for A = 242.
- [31] E. N. Shurshikov *et al.*, Nucl. Data Sheets **49**, 785 (1986), for A = 244.
- [32] M. R. Schmorak, Nucl. Data Sheets 57, 515 (1989), for A = 248.