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Unified description of the low lying states of the ground bands of even-even nuclei
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A unified description of the low lying excited states of the ground bands of even-even nuclei throughout the
Periodic Table is obtained. A new variable in the geometrical part of the interaction characterizing the different

types of collective modes is evaluated and analyzed. A phenomenological formula for the dynamical coefficient
of the interaction, depending on the nuclear shell quantum numbers, is derived. A good agreement between the

so-obtained theoretical ground band energies and the experimental ones is obtained for 927 low lying states of
271 nuclei from five major shells.

PACS number(s): 21.10.Re, 21.60.Fw

The low lying parts of the spectra of the even-even nuclei
is the richest and best known part of experimental data in the
nuclear structure physics. Nevertheless, the interest in its
theoretical investigation [1—7] does not diminish due to the
possibility to investigate some of the general features of
atomic nuclei on the basis of an appropriate systematics
[g-»].

The purpose of this work is to investigate the general
features of the low lying collective states of as large number
of even-even nuclei as possible. Such a problem requires the
use of a systematics, in which the physical observables of the
collective modes will show a smooth and unified behavior.
The development of a systematics of this kind is closely
related to the choice of the specific nuclear characteristics,
which mainly condition the collective phenomena under con-
sideration. This choice could be motivated by empirical evi-
dence that suggests that it is the valence nucleons in a given
nuclear shell that are primarily responsible for nuclear col-
lective motion. This is also the basis behind the highly suc-
cessful N N, scheme of Casten [9] and the well known
proton-neutron version of IBM [12,13].

In order to be fully consistent in our considerations we
developed a classification scheme [11]for the even-even nu-

clei in a way similar to the classifications of elementary par-
ticles. This is a new approach to the theoretical nuclear phys-
ics, but it can be combined with the very practical and
successful notion of a group of dynamical symmetry (DG).
Traditionally, the DG is chosen in such a way that one ap-
propriate irreducible representation of the DG contains the
entire spectrum of the collective states of a given nucleus [1].

In order to clarify the classification problem applied to the
nuclear chart we introduced the concept of the generalized
dynamical group (GDG) [11]as a group, one of which irre-
ducible representations gives the spectrum of collective
states not of one, but of a sequence of nuclei. Hence, for the
description of collective states we assume that a GDG con-
tains some kind of a direct or semidirect product of a classi-
fication group (CG) and a DG:

GDG& CGe DG.

In this way the introduction of the GDG leads to the de-
scription of the energy spectra of a series of nuclei in a

unified way [14], i.e., by means of a common Hamiltonian,
whose coefficients are the same functions of the quantum
numbers of the representations of the CG. The type of the
interaction is given by the DG.

For the moment, the question of the proper choice of the
DG and respectively of the GDG is left open and we moti-
vate and use further the group Sp(4,R) as a CG for the even-
even nuclei.

Our classification scheme is based on the reduction of the
boson representation of the algebra of the noncompact group
Sp(4k, R),k)1 to its subgroup SU(k) [14]. Sp(4,R) is the
simplest and least ambiguous case for its application and will
be presented briefly. The standard boson representation of sp
(4,R) algebra can be simply constructed with the help of two
one-dimensional creation (sr+, v+) and annihilation (7r, p)
operators. The corresponding generators of the algebra are:

7T '77', P P, 7T P

N = m+~N, = P+P,

'77"77, P P, 77' P,

F+= m+P, F = P+m.

The space of the boson representation of sp(4, R) denoted by
WW is reducible and splits into two irreducible subspaces
~+ and, A~ . The operator

N=N +N, (2)

Fp= ~(N —N, ) (3)

of the operator of the F spin, whose third component Fo
does not differ essentially from the first order Casimir invari-
ant of the noncompact subgroup U(1,1):F 'p(C&, »+1).

is the first order Casimir invariant of the maximal compact
subgroup U(2) of Sp(4,R). Acting on the spaces M~+and

, N reduces them into a direct sum of totally symmetric
irreducible unitary representations [IUR] of su(2) labeled by
N =0,2,4, . . . . (N even) for M+ and N = 1,3,5, . . .(N odd) for

. The boson representation of sp(4, R) also contains the
components F (1) and
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By means of this operator a ladder representation of U(1, 1)
defined by the fixed values of Fp is realized in the space
M The same operator Fo (3) reduces each U(2) representa-

tion (fixed value of N) to the representations of the direct

product U (l)CRU, (1) defined by the values of N and

N, . The same is obtained by reducing the U(1, 1) represen-

tations with the operator N. The splitting of the boson spaces
corresponding to the reduction

Fog

u( 1,1)

iv 4

sp(4, R)
gN

su(2)

u (1)e3u„(1)

is presented on schemes I and II, respectively:

Scheme I:

+0 . . . +2 +& 0 -2 F0

Scheme II: '8
1
2

0
2

4

0,0

2+1 20 2, —1

4,+2 4,+1 4,0 4, —1 4,—2

N
1

55, 2

3—&2

35, 2

1 j—2

15, 2

1 ——1
2

3 ——1
2

5 ——1
2

3 ——3
2

5 ——3 5 ——5
7

,' (Np —N 's) N, =——,' (N„—N„' ) (4)

as the numbers of proton and neutron valence pairs of the
nucleus from a given shell, where N and N„are the total
numbers of protons and neutrons of the nucleus and N„'
and N„' are the corresponding magic numbers of the shell
to which it belongs. Then N (2) and Fo(3) are obviously, as
in the IBM-2 [1],the total number of valence bosons and the
third projection of the F spin, related to the nuclear charac-
teristics in the following way:

The columns represent the ladders defined by Fp and the
rows represent the IUR's of su(2) defined by N. Each cell
corresponds to a given IUR of u (1)EB u„(1), defined by the

pair of numbers (N, N, ) or which is the same by (N, FO),
given on the schemes.

In the above schemes the even-even nuclei are classified
by introducing the appropriate physical meaning of the ei-
genvalues of the reduction operators. It is straightforward to
interpret

nucleus is placed in a definite cell in the space .P~'+ or
, which represents a given IUR of u (1)Su,(1). The

IUR's of u (1)Su, (1) are one dimensional, which means
that each nucleus is uniquely represented in the boson repre-
sentation of the classification group Sp(4,R). The symplectic
multiplets obtained in this way are denoted by
(N N„~N N ) if N is even and (N„,N ~N
Nt i) if N is odd. Each row of a given sp(4, R) multiplet
contains nuclei belonging to a u(2) submultiplet (isobar), and
each column contains nuclei from a given u(1, 1) submultip-
let (isofer).

The expediency of this classifications scheme [11]is fur-
ther motivated by the qualitative analysis of the energies of
the first excited 2+ levels of the nuclei ordered in the above
way in symplectic multiplets. The energies lay on smooth
noncrossing curves when plotted as functions of N for each
fixed value of Fp. Even more, in each shell and from shell to
shell these curves demonstrate a periodic behavior. This lead
us to the idea to unify the description of the ground band
energies of the three main types of nuclear collectivity:

N = —,
'
(A —A 's), (5)

vibrational [15]

E,(L) = u, L, (6)

where A =Nz+N„ is the nucleus' mass number and MT= —,
'

(N„N, ) is the third projection —of the isospin.
Further the nuclei from a given major shell are arranged

in the symplectic multiplets in the spaces M~ by mapping
the shell onto the schemes I and II. It is convenient to define
the shells by two pairs of double magic nuclei (Nt i Ni i)
and (Nt i Nt i) which denote the proton and neutron magic
numbers of the nucleus at the beginning and at the end of the
shell, respectively; (N„ i)N ' N„)N„' ~) . The double

magic number (Nt'i Nt'i) corresponds to the vacuum state

(N = O,FO
——0) in M~'. Using formulas (4) and (5) each

rotational [15]

E„(L)= npL(L+ 1),

and transitional [16]

E„(L)= n&L(L+ cu)

by evaluating their models' parameters a;,i = 1,2,3:

cl' ihk) = ct't(A&, A, N, Fo,N, Fo i,
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TABLE I. The table contains the nuclei from the shell (28,28~50,50) mapped on the odd H (N-odd)
subspace of Sp(4,R). Each nucleus is defined by the total number of valence boson particles N or boson holes

N, which enumerate the rows from left and right, respectively, and the third projections of the F (F) spin,
which enumerate the columns at the top and the bottom, respectively. Next to the label of the each nucleus
is given the value of (co), in parentheses and the number of states with good theoretical description of the
energies.

—1/2 —3/2 —5/2 —7/2 —9/2

1

3
5

7
9

11
13
15
17
19
21
N

Zn(28), 2

Ge(26), 2
Se(22), 2
Kr(8), 5

Sr(4), 3

Zr(6), 4

98(d
1/2

Ni

Zn(31), 2
Ge(26), 2
Se(13), 3

Kr(9), 5

Sr(10), 2

Zr(13), 2

Mo(15), 2
94 Ru

3/2

Ni

Zn(21), 2
Ge(13), 2
Se(13), 3

Kr(15), 3

Sr(19), 2
"Zr

5/2

'4 Zn

Ge(13), 2

Se(14), 2
86 K

7/2

78 Zn
"Ge

9/2

21
19
17
15
13
11
9
7
5

3
1

N

as functions of the set (h„) of the classification quantum
numbers

A =N +N A =N +Np p p ~ n n n

N=N +N, , Fo=2(N —N ), (10)

N=N +N„, Fo= 2(N —N, ),

related to the shell model quantum numbers through the
above systematics [11].N and N, are defined in (4), while

N„and N, are numbers of the corresponding hole pairs.
N, Fo from (10) coincide with the ones defined in (2,3),
while N is the total number of valence boson holes and Fo is
the third projection of the F spin, respectively (see [15,16]).

It is clear even from only empirical experience that in
order to describe collective modes we need just six variables,
which are the numbers of protons N and neutrons N of the
nucleus and the four boundary numbers (Nt'), N(')) and

(N( ),N( )) of the shell to which it belongs. In our case it is
convenient to use the set of six variables (10) which are
obtained from these initial quantum numbers, but are natu-
rally linked (2,3) to the quantum number of the classification
algebra sp(4, R) and to the very popular model language of
IBM [15,16].

The symplectic multiplets (28,28~ 50,50)
(28,50~50,82), (50,50~ 82,82), (50,82~ 82, 126), and
(82, 126~126,184) formed in this way are presented in
Tables I—X, respectively. The values of the nuclear charac-
teristics (10) can be taken from these tables as the quantum

numbers N(N) enumerate their rows and Fz(Fo) their col-
umns.

We have obtained simple and easy to apply phenomeno-
logical formulas for the dynamical coefficients of the inter-
actions (6), (7), and (8) by evaluating their particular func-

TABLE II. As the caption of Table I for the shell

(28,28' 50,50) i .

—3

0 56 Ni

2 Zn(30), 2
4
6
8

10
12
14
16
18

60 N.

Zn(30), 2

Ge(27), 2

Se(18), 2

Kr(8), 4
Sr(6), 5

Zr(9), 3
8s Mo(15), 2

Ni

Zn(30), 2

Ge(18), 2
76 Se(12), 4

Kr(11), 3
Sr(14), 3
Zr(18), 2

Mo

22
20
18

Zn 14
Ge(12},2 12
Se(19), 2 10
Kr(17), 3 8
"Sr

4

F()

tional dependence on the above quantum numbers (10).Now
the problem of the unification of the interaction, related to
the choice of the DG, should be addressed in order to obtain
the universal description of the ground state bands of all
even-even nuclei already classified in symplectic multiplets.

An empirical argumentation for the unification of the in-
teractions of the three main collective modes, namely, rota-
tional, vibrational, and transitional is provided by the inves-
tigation of the energy ratio R2=E(4+)/E(2+). This ratio
has been widely used as an indicator of collectivity [17].The
theoretical value of the energy ratio for the interaction (8)
can be presented in the form:

4
R~(to) =2+ 2+ QJ
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TABLE III. As the caption of Table I for the shell (28,50~50,82)+ .

F

6
8

10
12
14
16
18
20

Sr(2), 2

Zr( 1), 2

Mo(2), 3

Ru(3), 4
Pd(5), 3

C(l(9), 2

—5/2

Kr(22), 2
"Sr(25), 2

"Zr
102 Mo(5)
(os Ru(5), 2
"oPd(7), 3
"4 Cd(11), 2

—7/2

Sr(24), 2
'4 Zr

% Mo(19), 2

Ru(11), 3

Pd(12),3

Cd(15), 3

—9/2

Ru(17), 3

Pd(13), 3

Cd(16), 3

—11/2

98 Pd

Cd(2()), 2

—13/2

21
19
17
15
13
11
9
7

Fp

which makes explicit its dependence on the geometrical pa-
rameter co. Obviously its limiting values R2 = 2 and
R2=3.33 are obtained at (oooo for (6) and (u= 1 for (7),
respectively. So the value of the parameter co accounts for
the changes of the nuclear structure through the nuclear
chart, incorporating as limiting cases the interactions in (6)
and (7).

The first introduction of a similar idea is the Ejiri formu-
las

FI = aL(L+ 1)+ bL

according to which the parameter (o=(a+b)la scales the
different degrees of collectivity by fixing the arbitrary ratio
of the terms in L and L P].

Interactions of the type (8) can be found in reviewing the
models, dealing successfully with the description of the low-
lying part of different types of collective spectra. In the
Hamiltonians of the exactly solvable limits for the vibra-
tional [SU(5)] and gamma soft [O(6)] nuclei of IBM-1 [I], E(4,+) =2E(2,+)+ e4 (12)

terms with cuW 1 appear through the eigenvalues of the cor-
responding Casimir operators with the labels of their respec-
tive representations. We remark that the energy expression
(8) looks like the eigenvalue C2=2f(f+2w) of the second
order Casimir invariant of the most symmetric representation
m=(f, 0, . . . ,0) of the algebras of B„,C„, and D„ types of
the groups O(2n+ 1), Sp(2n) and O(2n) with w=n —I/2,
w = n, and ~ = n —1, respectively.

As mentioned above we have tested the interaction (8) in
the description of the low lying states of the ground bands of
transitional nuclei [16].In order to unify their description we
have evaluated at the same time the parameter co in the geo-
metric part of the interaction and also the dynamical coeffi-
cient in front of it as a function of the nuclear shell quantum
numbers. We have compared our results with the recently
observed [18], for all nuclei with 2.05~R2~3.15, universal
behavior of an anharmonic vibrator

TABLE IV. As the caption of Table I for the shell (28,50~50,82)

N 9/2 7/2 5/2 3/2

Fp

1/2 —1/2 —3/2 —5/2

3
5 88 S
7 Mo 92Z

9 Pd Ru Mo(21), 2
'oo Cd '~ Pd(16), 3 ' Ru(14), 3

13 ' Sn ' Cd(16), 3 ' Pd(14), 4
15 Sn ' Cd(15), 2
17 112 S
19
21
23
25
27

84 Se
Kr(23), 2

92 S
96Z

Mo(12), 2

Ru(7), 4
Pd(9), 3

Cd(13), 2
116 S

'4 Ge
88 S
92 K

Sr(21), 2'"Zr(3), 2

Mo(2), 2

Ru(4), 2

Pd(6) 2
Cd(10), 2
120 S

—3

too Sr(1), 2

108 M
Ru(3), 2

Pd(5), 2

Cd(8), 2
124 S~

24
22
20
18
16
14
12
10

8

6
4
2

132 S 0

Fp
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TABLE V. As the caption of Table I for the shell (50,50~82, 82)

N —1/2 —3/2 —5/2 —7/2 —9/2 —11/2 —13/2 —15/2

106 T 106 S
110 X 110 T 110 S

7 " Xe ""Te(18),2
9 Xe(6), 4

11 Ba(3) 4
13 126 ( e

15 Nd(1), 3

17 "4 Sm

19 138 Gd

21
23
25
27

114 S'"Te(15)
Xe(7), 4

Ba(5) 5'"Ce(4), 4

Nd(5), 3
'3s Sm(5), 3
142 Gd(8)

Dy(11), 2
150 E
"4 Hf

118 S
Te(13), 2

126 Xe(8), 4
' "Ba(7), 4

Ce(8), 3
Nd(9) 4

'42 Sm(14), 2
146 Gd

122 Sn

Te(16), 2

Xe(11),3
'34 Ba(12), 2
'3s Ce(16), 2

142 Nd

126 S
Te(19), 2

Xe(19), 2
138 B

29
27
25
23
21
19

Sn 17
"4 Te

13
11
9
7
5

N 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

with nearly constant anharmonicity e4. The physical mean-

ing of the phenomenological parameter o.3 can be interpreted
as the anharmonicity of the two phonon level e4(a3= —s'e4).
Although the anharmonicity is rather constant the changes in
the underlying structure are accounted for through the depen-
dence of the value of cu

4E(2) E(2)—2= —2
E4 2 CI3

on the energies of the first exited 2+ levels, which in these
regions decrease with N (2) from nearly closed shell values
of ~1 MeV towards the very small rotational values of the
deformed rotor (100—200 keV). This justifies further the in-

troduction of the variable co in the geometric part of the
interaction, which actually shows how the investigated nu-

clei pass through transitional regions. But the effect of uni-

fication of the description of the nuclei in the transitional

region was obtained by the evaluation of the coefficient u3
of the interaction (8), related to the dynamical aspects of the

problem, as a function of the nuclear characteristics ex-
pressed in terms of the shell model quantum numbers. The
detailed analysis of the phenomenological formulas for this
coefficient although consistent with the constancy of the an-

harmonicity proved its applicability also to some rotational-
like nuclei with co= 1 and some nuclei with vibrational na-

ture with rather large co~20. The good agreement between
the experimental and theoretically calculated with the use of

TABLE VI. As the caption of Table I for the shell (50,50~82,82)+ .

104 S
4
6
8

10
12
14
16
18
20
22
24
26

N 1

108 Sn

Te(17), 2

Xe(8), 2
120 Ba(2), 2

124 (
Nd(1) 3
132 Sm

—3

112

Te(16), 2

124 Ba(4) 4
128 Ce(3) 3

Nd(4), 2'" Sm
140 Gd
144 D

Er(10), 2
152 Yb

F0

116 Sn

Te(13), 2
124 Xe(7) 5

Ba(5), 5

Ce(6), 4
Nd(6)

Sm(9)
'44 Gd(13)

148 D

120 Sn
»4Te(14) 2

Xe(9) 3
132 Ba(9) 3

Ce(11) 3
' "Nd(15), 2

144 S

124 S
s Te(18), 2

Xe(14), 2
Ba(18), 2
140 Ce

30
28
26
24
22
20

128 Sn 18
Te ' Sn 16

136 Xe 14
12
10

8

6

—8 N

F0
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TABLE VII. As the caption of Table I for the shell (50,82~82, 126)+ .

N 5

Fo

0
2

6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

148 Dp
152 Yb 152 Er(27)

Hf ' Yb(19), 2
160 ~ 160 Hf
164 g 164 ~
168 pt 168 OS

172 pt

144 S
'4' Gd(28), 2

Dy(24), 2

Er(12), 5

Yb(8), 4
Hf(7) 4"' w(7), 4
Os(7), 4
176 Pt

180 Hg
184 pb

140 (
Nd(27), 2

Sm(24), 2

Gd(13), 3

Dy(4) 7
16o Er(4), 4

Yb(4), 4'"Hf(3), 5

W(3), 5
176 Os(3)

18o Pt
184 H
188 pb

136 X
Ba(26), 2

Ce(19), 3
'4' Nd(13), 3

Sm(4), 7

Gd(2), 7
160 Dy( I)

Er(1), 5

Yb(1), 6

Hf(2), 6

W(2), 6
Os(3) 5

"4 Pt(4), 4
188 H
192 pb

132

136 T
Xe(17), 2

Ba(8), 4
'4' Ce(6), 3

Nd(1), 4'" Sm(1), 4

Gd(1), 4
164 D

Er(1), 5

Yb(1), 6

Hf(1), 5

W(2), 5

Os(3), 6
188 Pt(8), 5

192 H
196 pb

144 X
148 g
Ce(1), 2

168 D
172 E

176 Yb(1) 5

Hf(l), 4

W(3), 5

Os(4), 3'" Pt(9), 2
196 H
200 pb

184 Hf
188 ~'" Os(5), 4

Pt(9), 3
200 Hg
204 pb

196 O

Pt(12), 2
204 H
208 pb

38
36
34
32
30
28
26
24
22
20
18
16
14
12
10

8

6
4
2

0

TABLE VIII. As the caption of Table I for the shell (50,82~82, 126)

N 11/2 9/2 7/2 5/2 3/2

Fo

1/2 —1/2 —3/2 —5/2 —7/2

1

3
5

7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
N

146 Gd
1so Er 1so Dy(27) 2

Hf ' Yb ' Er(21), 2
W ' Hf ss Yb(12), 4

162 W 162 Hf(10) 4
166 O 166 ~
170 pt 170 OS

174 pt
178 H

—17/2 —15/2

142 Nd

Sm(28), 2
Gd(26), 2

Dy(12), 4"'Er(7), 4

Yb(6), 4

Hf(5), 5
170 W(4)

Os(4), 3
178 Pt

182 Hg
186 pb

—9/2

138 B
Ce(30), 2

'46Nd(20) 2

Sm(13), 5
154 Gd(4)

Dy(2), 5

Er(3) 5
166 Yb(2)

Hf(2), 6

W(3), 5'"Os(3), 5

Pt(4), 4
186 H
19o Pb

—7/2

134 T
'58 Xe(27), 2
'" Ba(16), 2

Ce(11), 2
'50 Nd(4), 4

Sm(1), 6'" Cd(1), 6
162 Dy(1) 7

Er(1), 5
170 Yb( 1) 7

Hf(1), 6'"W(2), 6
182 Os(3) 4

190 H
194 pb

—5/2

134 S
138 T
142 X

146 Ba( 7)'"Ce(3), 4
"4 Nd(1), 4

Sm(1), 4
162 Gd

166 Dy( I)
Er(1), 5

Yb(1), 4
Hf(1), 6

'82w(2) 4
Os(3) 3'"Pt(9), 3
194 H
198 pb

—3/2

178 Yb
Hf(1) 4'"w(3), 4'"Os(5), 3

Pt(9) 3
198 Hg
202 pb

—1/2

190 ~
Os(5), 2'"Pt{11),3

202 H
206 pb

1/2

206 H

N

37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5

3
1

Fo
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TABLE IX. As the caption of Table I for the shell (82, 126~126,184)

F

1

3
5

7
9

11
13
15
17
19
21
23
25

3/2

214 R
218 Th
222

210 p
214 R

2&s Ra(19)
222 Th(9) 4

226 U

242 F

—1/2

210 pb
214 p
Rn(18), 2

222 Ra(5)
226 Th(3) 3

U(1), 8
234 p

238 (
242 Cf
246 Fm
250 N

—3/2

214 pb
218 p
Rn(10), 2

Ra(3) 2

Th(2), 5
"4U(1) 6
"Pu(1), 6

Cm(1), 3
246( f

250 F
254 N

—5/2

226 R
230 R

224 Th(2), 4
"'U(1) 6"Pu(1), 6

Cm(1), 4
250 Cf(1), 4
"4Fm(1), 2

258 N

—7/2

242 U(2)
Pu(1), 2"'Cm
254( f

Fm

50
48
46
44
42
40
38
36
34
32
30
28
26

(8) energies from the spectra of some rotational and vibra-
tional nuclei clearly suggests a further generalization of our
approach. The different types of collective motion could be
integrated by means of the empirical parameter ~= 1,2, . . .
in the expression of the low lying yrast energies for all the
even-even nuclei:

with a collective spectra is a subject of this work, Such a
unification, in our opinion, is the bridge that will relate the
observed widespread phenomena in nuclear collective spec-
tra to the underlying shell structure and interactions in
atomic nuclei.

In order to evaluate the values of co we compare the theo-
retical ratios

EL= nL(L+ 6o). (14)

The analysis of these results not only provides a deeper
understanding of the onset and development of collectivity
and deformation in nuclei, but even more, it leads to a pos-
sibility of a further generalization even of the rather complex
and diverse interactions in a vast region of nuclei. The inves-
tigation of such a generalization, which will unify the de-
scription of the low lying energies of all even-even nuclei

El +2 (L+2)(L+2+ 60)

EI L(L+ 6u)

for I.=2,4,6, . . . and co=1,2, . . . with the experimental
ones for each nuclei. This gives us from one side the starting
value coo of the parameter co at which the interaction coeffi-
cient n in (14) will be evaluated and also the number of the

TABLE X. As the caption of Table I for the shell (82, 126~ 126,184)+ .

2
4
6
8

10
12
14
16
18
20
22
24

212 p
216 R

220 Ra(9)
Th(5), 2

Rn(14), 2

Ra(4), 3
" Th(2) 5

222 U(l) 7

Pu(1), 7

244 ( f

Ra(2), 3

Th(1) 8

U(1), 6
Pu(1), 7

Cm(1), 4
248 ( f

Fm

240 U( 1)
PU(1), 6
Cm(1), 9

Fm(2), 4

49
47
45
43
41
39
37
35
33
31
29
27

—9/2 —7/2 —5/2 —3/2 —1/2

F0
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(16)

where k=927 is the number of the considered yrast states
and

Eth: (uAp, A, N, Fp, N, Fp)L(L+ cop). (17)

ground band states which will be included in the fit. We cut
the band at the values of L, where a sudden change in the
experimental co appears, revealing a phase transition, like the
backbending.

The good agreement between the theoretical and experi-
mental results in the rotational, vibrational, and transitional
cases, which we would like to incorporate in this paper as
limiting cases of a general description of the low-lying ener-
gies of all the even-even nuclei clearly imposes the use of the
same set of quantum numbers t 15, 16] as variables of a uni-
versal function, which we consider to be the dynamical co-
efficient u(h„j of the general interaction (14) with co~ 1.

Like in f15] and 1 16] we assume the parameter u(h&) to
be a polynomial up to a second degree in the variables (10),
because we obviously take into account only one- and two-
body interactions. Thus we deduce a formula for the dynami-
cal parameter of the interaction by evaluating the linearly
independent coefficients in the second order polynomials in
the nuclear characteristics. We determine the polynomial
constants as solutions of the overdetermined system of the
linear equations

TABLE XI. Parameters D; .

D;(MeV] AD;[MeV]

1

2
3
4
5

6
7

8

9
10
11
12
13

+0.0261526
—0.0009279
—0.0021273
—0.0323361
—0.0302709
—0.0000098
+0.0000059
+0.0009395
—0.000730
+0.0001599
—0.000153
+0.001724
—0.001318

0.0001740
0.0000284
0.0000232
0.0001986
0.0001770
0.0000002
0.0000001
0.0000064
0.0000049
0.0000013
0.0000011
0.0000107
0.0000064

E,'h are calculated with the values of the parameters D;,
i =1,2. . . , 13, obtained in step (i). The second step (ii) con-
sists of the application of the procedure called LCH [22].
This allows the estimation of the inherited errors of the pa-
rameters D;—+~AD;. The final result is a simple formula
for the energies of all the ground band states from the vast
region of the even-even nuclei from five major nuclear
shells, with

We apply our unified formula (17) to 927 levels from the
ground bands of 271 rotational, vibrational, and transitional
nuclei belonging to the multiplets: (28,28~50,50)
(28,50~50,82), (50,50~ 82,82), (50,82~ 82, 126), and

(82,126~126,184) . Most of the nuclei which can not be
described in the framework of this simple unification are at
the borders of the shells mapped on the symplectic multip-
lets. These nuclei are either with proton or neutron closed
shell, or with a minimal value of N or N, or a maximal value
of ~Fp~ for the multiplet under consideration. The interpreta-
tion of this fact is that our phenomenological generalization
of interactions includes only purely collective degrees of
freedom, but not the infIuence of the single particle of qua-
siparticle movements.

The values of E,', are taken from [19] and [20] and for

E,'h we take (17) with u a second order polynomial in the
nuclear characteristics containing 16 coefficients, which are
the same for all 271 nuclei, since the value of the function
n depends on the quantum characteristics of each nucleus.
The problem is solved by means of the minimization of the
function:

W (E,'h —E',„)
k —s (18)

where k = 927 is the number of the considered nuclear states,
s is the number of the independent coefficients in the second
order polynomial, and 8' is a diagonal weighting matrix of
order k. This fit is carried out by means of an autoregularized
iterational method of the Gauss-Newton type [21].The mini-
mization procedure is realized in two steps: (i) with a unit
weighting matrix W=E; (ii)with W=(E,'h —E',„) ', where

(uAp, A, N, Fp, N, Fp):D i +D2N+ D3N+ D4Fp + D5Fp

+ D6N + D7N + D&Fp+ D9Fp

+D, pNFp+D)iNFp+D)2AI,

+ D,3A„. (19)

ui =B i +B2(N+ N) +83(Fp+ Fp) +B4(4F 3pFp)

+ BgNF p+ B6Ap+ B7A„,

rotational (7):

The values of the parameters D;,i=1, . . . , 13 and their
uncertainties ~ AD;, i = 1, . . . , 13 are given in Table XI.

It should be mentioned that for the unknown values of
Nt ~ and Nt ~ in the multiplets (82, 126~. . . , . . . ) we had

to use the values N = 126 and N, = 184, predicted
by the shell model. The total rms deviation

o = gX, , (EI„—E,'„) /k (k=927 is the number of the
nuclear states) in the fit to all k states of 271 nuclei is 45 keV.
The value of the statistical criterion y = 1.0001 corresponds
to the solution of the problem at the second step. Its close-
ness to unity shows that the obtained solution is a good one
in a statistical sense also.

As a result of the used computational method the initial
16 parameters are reduced to 13. It is interesting to compare
formula (19) for the dynamical coefficient of the general in-
teraction for the collective yrast bands of the even-even nu-
clei with the respective formulas for the vibrational (6):
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u2= Ci A„+C2(N+N)+ C3(Fp+0.5Fp)

+ C4(N + 0.5N )+C5(Fp
F—p),

and transitional nuclei (8):

rl3 ——Ki +K2(N+N) +K3(Fp+Fp) +K4(N —3N )

(21)

+ K5(Fp 0.7F p) + K6(NFp 2NFp) + K7Ap+ KsAn,

(22)

first considered independently. The values of the parameters
8; (i= 1, . . . ,7), C, (i =1, . . . ,5), and K; (i = 1, . . . ,8) are
given in [15]and [16].

Formula (19), which provides a unified description of the
ground-band energies of all nuclei, involves thirteen inde-
pendent coefficients in the dynamical parameter of the inter-
action, while the corresponding formula for the ground bands
of rotational nuclei (21) involves only five coefficients, the
one for vibrational nuclei (20)—seven [15] and in the tran-
sitional case (22) they are eight [16].In all these subcases we
have investigated very carefully the correlations between the
obtained parameters. In the present very general consider-
ation we work over a very large amount of data on a widely
dispersed region of nuclei and in order to keep the accuracy
we have left each nonzero parameter as independent. The
greater number of parameters in this case may be attributed
to this fact, which also made the above analysis of the ob-
tained formula and its comparison to our previous results
easier and more transparent.

In all cases (19), (20), (22), except the rotational (21),
there is a free parameter, which for the vibrational energies is
rather big and actually determines the high values of the
ground-band energies in each shell.

The second degree terms of the numbers A~ and A„, de-
fining the shell, do not take part in either of them. In the
rotational case (21) even the first degree of the characteristics
of the proton shell A does not exist, because the well de-
formed nuclei belong to multiplets with valence neutrons in
the higher nuclear shell.

The first order terms of the proton and neutron boson
(hole) quantum numbers N, (N) and the F-spin third projec-
tions Fp, (Fp) are obtained in the three particular cases (20),
(21), (22) and in this general one (19). In the cases with
defined collectivity (20), (21), and (22) the boson and hole
total numbers have equal coefficients, thus indicating only
the proton and neutron length of the shells

1I2[N„—N„' +(N„—Nr'i)] and as a result giving the
same contribution within each of them. The same is obtained
for the term depending on (Fp+Fp) in the transitional and
vibrational cases, but with a dependence on the F spin of the
shell: F= li4[N —N„—(Nr —N„)].

The analysis of the second order terms is of importance,
because through them an N N, dependence of the energies
can be obtained, whose importance was revealed by Casten
[9]. A dependence on the square of the total number of
bosons (boson holes) N (N ) is obtained in all cases except
the vibrational one. The square terms of the third projection
of the F spin Fp and F p also take part in all separate cases
and in this general one, although with very small parameters.

Mixed terms of the type NFp and NFp do not appear in
the description of the well deformed nuclei (21); the hole
version of it is obtained in the nearly spherical ones (20) and
both terms with differing parameters take part in the dynami-
cal coefficients of the transitional (22) and general (19)
cases. In these cases—vibrational, transitional, and general—
these terms contribute to the correct description of the asym-
metry of the transition from vibrational to rotational and
from rotational to nearly vibrational nuclei through the dif-
ferent values of the coefficients in front of the boson and

hole numbers, like the first order terms Fp and Fp, when
their parameters differ.

We consider n as a fundamental nuclear characteristics
because

through its evaluated dependence on the shell model
. quantum numbers of each nucleus the description of the
ground state bands of all the even-even nuclei is unified and
related to the microscopic characteristics of the nuclear sys-
tem;

through the so-obtained unification the universal behavior
of all collective types of nuclear spectra can be investigated.

Through an evaluation of e4=8n by means of (19) we
obtain the following average values of the constant of anhar-
monicity (12) [18]for the considered in this general case 271
nuclei from five major shells:

(28,28~50,50) ~ —@4= 172~ 46 keV for 38 nuclei;
(28,50~50,82) —@4= 156~47 keV for 43 nuclei;
(50,50~ 82,82) —e4 = 167~ 59 keV for 49 nuclei;
(50,82~ 82, 126) —@4= 101~36 keV for 105 nuclei;
(82,126~ 126,184)~ —e4= 57~ 9 keV for 36 nuclei.
These values are about 20% smaller than the ones ob-

tained only for the transitional nuclei, although we have in-
cluded here the rotational and vibrational nuclei. They are
still in good agreement with the ones obtained by linear least
square fits in [18]. We would like once again to underline
that by applying formula (17) we exactly evaluate the con-
stant of anharmonicity for each nucleus, depending on the
13 parameters D; from Table XI and its shell characteristics.

From the analysis of the values of the parameters n it can
be seen (Fig. 1) that though very close to each other they
gradually increase with N in a given Fp multiplet. In a fixed
N multiplet the deviations of o. for the different Fp values
are much smaller, or this is the case when u can be consid-
ered as constant.

It is important to observe that after the addition of the
rotational and vibrational nuclei in the generalized consider-
ation of the transitional ones, which is actually the present
case, there is no dramatic change in the behavior of the con-
stants of interaction n, for the different types of
collectivity —rotational, vibrational, and transitional.

After the evaluation of u we improve our fit by further
adjusting the values of the initial parameter cop by means of
(13) for I.=2, as in the case of the transitional nuclei [16].
Without a deterioration of the accuracy of the fit we take for
~ the nearest integer value to the one obtained by means of
(13) with the already obtained values of n for each nucleus.
We stick to the initial idea of ~ integer because of the re-
semblance of this kind of interactions to the eigenvalues of
the Casimir invariants of the algebras of some groups, as
mentioned in the Introduction, which can be further investi-
gated as groups of dynamical symmetry. The values of the
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FIG. 1. Values of the dynamical coefficient a (solid lines) and

the geometrical parameter ai (dashed lines) as functions of N at
each fixed value of Fo for the multiplet (50,82i82, 126)+ .

parameter cu for each nucleus are given in parentheses next
to their labels in Tables I—X.

It is interesting to investigate the changes in the values of
co in this general case in comparison with its values in the
transitional case, when the rotational and vibrational nuclei
were not considered. In the present case co has its highest
values for all the 35 nuclei described by means of (6) as
vibrational. For most of the transitional nuclei m is bigger
than in the case when they were considered separately [16] .
So the largest values of cu are obtained for the nearly spheri-
cal nuclei which were considered as vibrational [15] or the
transitional ones near them. They are placed mainly at the
upper borders of the multiplets and the diagonals next to
them. These are the nuclei with smallest values of N and

highest values of N. This increase in the values of ~ in the
general case is the reason for the observed decrease of the
mean values of u in each shell, but it should be underlined
that for the nuclei which have preserved their values of co in
respect to their consideration in the separate cases, like most

of the rotational nuclei and some of the transitional ones, we
obtain the same value of n with formula (17) and (21) or
(22), respectively.

In general in each of the Fo —multiplets (the columns in

the tables) cu starts with its highest value gradually decreases
with the increase of N and then more smoothly increases
again, but not to such high values as at the beginning (see
Fig. 1). Clearly the values of oi follow the trend of the F2
values [11] and reIIect the asymmetry between the two
halves of each Fo multiplet.

In the lighter shells, where rotational nuclei are not ob-
served, the multiplets are shorter and the changes in co are
steeper. In the heavier shells (50,82~ 82, 126) and

(82, 126~ 126,182) most of the rotational nuclei are present.
Now, when included in these general considerations, some of
them in the rare-earth region are described better with a
slightly bigger co=2,3. In [15] we have described as rota-
tional 70 nuclei, now we obtain a good description with
co=1 only for 49 of them.

In this shell, in the middle of the Fo multiplets, series of
nuclei with equal or close values of co are observed. These
are the so called regions of saturated collectivity (o~ —3) or
deformation (co= 1). The nuclei from these parts of the Fo
multiplets obviously have very similar yrast bands, which
can be considered in some cases as identical. Depending on
the values of co these bands can be identical rotational
(co= 1) or with a "saturated" collectivity (co=3,4). Follow-
ing the discovery of identical bands [23] in the region of
superdeformations and their recognition among "normal"
bands [24) we have located especially the most interesting
newly discovered ones [25] in the symplectic multiplets in
our classification scheme. The even-even nuclei exhibiting
ground bands with very close transition energies belong
mainly to the same Fo multiplets and have equal or very
close values of cu. See, for example, the sequence of nuclei

Dy (F0=4), ' Er (co=4), ' Yb (co=4), ' Hf
(co=3), ' W (co=3) and ' Os (to=3) presented in [25].
The first five of them belong to the F0=2 multiplet of the
shell (50,82~82, 126) with N= 12,14,16,18,20, respectively.
The last one ' Os is with F0=1 and ¹ 24 and can be
replaced with the nucleus ' Os (to = 3,FD = 2,X=22), with-
out a deterioration in the quantities qualifying the identical
band. The comparison between the theoretically evaluated by

4.00
144

N d 148S~ 152Gd 156D 160E 164yb 168Hg 172' 176p

FIG. 2. Comparison of the theoretical E,h
(solid lines) and experimental E„(d shead lines)
energy values of the nuclei belonging to the
Fp

= 2 column of the multiplet
(50,82' 82, 126)„.

0.00



52 UNIFIED DESCRIPTION OF THE LOW LYING STATES OF 1863

means of (17) and the experimental energies for the
Fo= 22 column of the (50,82~ 82, 126)+ multiplet (Table VII)
is presented on Fig. 2. The agreement of our results with the
experimental data is very good for all the nuclei and it is
very easy to observe the ones which form identical bands. As
such can be considered all sequences of nuclei belonging to
the same Fo multiplet (column) in the Tables I—X with equal
values of co.

By means of these values of ~ and the interaction coeN-
cient n in (17) we obtain a good theoretical description for
different number of low-lying states for each nucleus. The
number of states is given next to the value of ~ in Tables
I—X. The highest values of L are obtained in the description
of the rotational nuclei and the ones close to them in the last
two shells.

As an effect of the generalization of the interaction by
means of the parameter co we were able to introduce in our
considerations and to describe correctly 12 more nuclei than
in the three separate cases together —vibrational (35), rota-
tional (70), and transitional (159).They are placed mainly at
the borders of the light multiplets and in this way we are able
to enlarge the limits of the described nuclear region.

This proves once again that the basis of this consideration,
namely, the symplectic classification scheme is very rich in
the opportunities to investigate the existing general features
as well as the singularities in the collective spectra of the
even-even nuclei.

In conclusion, as a result of the symplectic classification
scheme, a smooth and periodic behavior of the experimental
energies of the ground-state bands of the even-even nuclei is
observed. This permits the investigation of the collective in-
teraction without including any details about the involved
nuclear forces. But the classification numbers which are used
suggest the importance of the nuclear shell characteristics in
the description of collective phenomena. This leads to a pos-
sibility to unify the description of nuclear spectra by evalu-
ating the dependence of the interaction coefficient on the
shell quantum numbers, defined in (10).The results obtained,
although very simple and easy for application, are general
enough to cover vast nuclear regions or types of collectivity.
Analyzing them an insight on the physics behind the nuclear
structure can be reached. This approach can lead in future to
establishing a connection between the phenomenological
model parameters of the collective modes and their micro-
scopic dependence on the shell model quantum numbers. A
more fundamental understanding of the different types of
collectivity is intended by the investigation of the appropri-
ate DG's through the parameter co in the geometrical part of
the interaction.
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