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Time-odd components in the mean field of rotating superdeformed nuclei
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Rotation-induced time-odd components in the nuclear mean field are analyzed using the Hartree-Fock
cranking approach with effective interactions SIII, SkM*, and SkP. Identical dynamical moments g i are
obtained for pairs of superdeformed bands ' 'Tb(2)-' Dy(1) and ' Gd(2)-' 'Tb(1). The corresponding rela-
tive alignments strongly depend on which time-odd mean-field terms are taken into account in the Hartree-
Fock equations.
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I. INTRODUCTION

A description of ground and excited states in terms of a
mean field is a well established approach in nuclear structure.
Most of the nuclear phenomena can be considered as mani-
festations of the mean-field properties, or the mean field can
be used as a suitable framework for the first-order approxi-
mation. The mean field results from averaging the nucleon-
nucleon interactions over states of individual nucleons. The
averaging procedure, which must take into account the Fermi
statistics of nucleons, can be formalized in terms of a varia-
tional approach, and leads to the well-known Hartree-Fock
(HF) self-consistent equations [1].

Dynamic or time-dependent phenomena can be described
by a corresponding time-dependent HF method. The nuclear
state is then represented by a one-body density matrix, which
evolves in time according to the Hamilton equations, and
represents a motion of a wave packet. Such an approach has
been applied to genuinely time-dependent problems, like
nuclear reactions, but it is in fact best suited to describe
stationary collective states.

The nuclear rotation is an example of a collective motion
for which linear combinations of stationary states of a given
spin can be identified with a rotating wave packet. In this
case, a transition from the time-dependent HF theory to a
stationary problem can be achieved by introducing a rotating
intrinsic frame of reference. In this frame, the equations of
motion are time independent; however, the resulting density
matrix is not invariant with respect to the time-reversal op-
erator. As a consequence, the mean field obtained for such a
density matrix also loses its time invariance, and acquires
new terms which are odd with respect to the time reversal.

Properties of nuclear time-even mean fields are known
rather well, because they are rejected in multiple static phe-
nomena which can be studied experimentally; cf. the review
[2]. On the other hand, very little is known about properties
of the time-odd mean fields. Most studies were up to now
carried out within either the adiabatic [3] or semiclassical
approximations [4]. In particular, the adiabatic approxima-
tion to the nuclear translation, rotation, or quadrupole motion
leads to the well-known Thouless-Valatin [5] corrections to
the mass, moment of inertia, or vibrational mass parameters,
respectively.

These corrections refIect the fact that a velocity-
dependent mean field should be appropriately transformed to
the intrinsic frame of reference [6] corresponding to a given
collective mode. In fact, simple estimations and numerical
calculations [7—9] show that the inertia obtained for effective
forces without the effective-mass terms (m*=m) is very
close to that for rn*(m when the Thouless-Valatin correc-
tions are consistently included.

Fast nuclear rotation is a phenomenon in which the col-
lective motion should be described beyond the adiabatic
limit. Such a cranking model has been successfully used in
explaining numerous high-spin effects in nuclei [10].In this
approach, the properties of the rotating mean field explicitly
depend on the angular velocity. However, most studies per-
formed up to now were done in terms of phenomenological
mean fields, which are not self-consistently dependent on the
rotating states, and, therefore, do not incorporate time-odd
terms. Only in Ref. [11]has an attempt been made to include
the effects of a zero-range interaction within the Nilsson
single-particle mean field. Fully self-consistent cranking cal-
culations [12—23] are still rather scarce, and no explicit
analysis of the time-odd mean-held components is available.

On the other hand, the discovery of the superdeformation
[24], and the resulting avalanche of very precise data on
high-spin states, allow for an attempt to study these unknown
aspects of the nuclear mean field. In particular, the phenom-
enon of identical bands (see Ref. [25] for a recent review)
provides extremely rich and puzzling information on proper-
ties of fast rotating states. In terms of the mean-field ap-
proaches explicitly depending on the time-odd components,
the calculated identical y-ray transitions have been obtained
in two cases only, namely, (i) the HF cranking calculations
with Skyrme interaction gave the yrast band of ' Hg iden-
tical to an excited band in ' Pb [14], and (ii) the identical
bands in ' Dy and ' 'Tb (excited band) were obtained in
the relativistic mean-field (RMF) theory [21]. In both stud-
ies, the authors invoked the time-odd components of the
mean field as a crucial element of the obtained results.

In the present study we aim at a detailed analysis of these
time-odd terms in the context of the identical bands phenom-
enon. We focus our attention on two classic and experimen-
tally well studied pairs of identical bands, namely, on those
in ' Dy and ' 'Tb (excited band), and in ' 'Tb and ' Gd
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(excited band). We perform our calculations in terms of the
HF cranking method with the Skyrme interactions.

It was not our intention to give here a full account of the
time-reversal-breaking description that the self-consistent HF
cranking approach really offers and the experiment may test.
Such a field of studies seems to emerge now in relation to the
fast progress in the available experimental information. In
particular, our choice of the illustrative material purposely
minimizes rather than maximizes the possible magnitude of
the time-odd effects. This is so, because we mainly discuss
the role of the sr[301]1/2 Nilsson orbital known to interact
only weakly via the Coriolis term in the Hamiltonian.

In all standard approaches, such as the Woods-Saxon
(WS), Nilsson, HF, or RMF cranking models, one signature
member of this orbital is to a good approximation given by a
straight line as a function of the angular velocity. This type
of dependence can be opposed to dramatic changes of other
aligning or interacting orbitals which are much more sensi-
tive to the rotating field and hence to its time-odd compo-
nents. On the other hand, the specific behavior of the dis-
cussed orbital induces a regular behavior of various
observables, and has a great advantage in the fact that the
level repulsion or level crossings do not disturb the compari-
sons of primary interest here.

In Sec. II we discuss the Skyrme interaction and energy
density with a particular emphasis on the relations between
the time-even and time-odd components of the mean field.
The HF cranking calculations are presented in Sec. III, where
several variants of the Skyrme functional are used and the
inhuence of the time-odd terms on the rotational properties is
analyzed, and conclusions are presented in Sec. IV.

II. SKYRME ENERGY DENSITY

The Skyrme energy functional [26,27] is a three-
dimensional integral

sity functions appearing in Eq. (2.4). All of these coupling
constants can, in principle, depend on particle densities (see
Refs. [28,29]), but the most common choice [26,30] restricts
the density dependence to the C~t and C', terms. In the Ap-
pendix we give coupling constants C, expressed through the
traditional parameters of the Skyrme interaction.

Apart from the density-dependent coupling constants, the
isoscalar energy density Pp(r) depends on the isoscalar den-
sity functions and the isovector one M&(r) depends on the
isovector density functions. For the particle densities p, the
isoscalar and isovector parts are defined in the usual way as
the sum and the difference of the proton and neutron contri-
butions, respectively,

Po= Pn. + Pp Pi =pn Pp (2.5)

and analogous expressions are used to define other densities.
Altogether we have to consider six position-dependent

density functions p, ~, j, s, T, and J with definitions given
in Ref. [27]. Whenever the isospin indices are omitted, we
understand that the symbols may refer to either the isoscalar
(t=0) or isovector (t= 1) parts.

In the energy densities (2.4) there appear two scalar time-
even density functions p and ~, one vector time-odd j, and
two pseudovector time-odd ones s and T, and one pseudo-

tensor time-even density function J. The vector time-even
density J which appears in Eq. (2.4) is given by the antisym-
metric part of the pseudotensor density, i.e., J),=
X~„equip~„and is not an independent quantity. Terms in

M~, ""(r.) and ~~, (r) are bilinear in time-even and time-odd
densities, respectively. Therefore we denote them by the su-
perscripts "even" and "odd." This notation is only used to
indicate the dependence on two different classes of densities,
It should not be confused with the fact that both WP""(r)
and ~t (r) are of course even with respect to the time
reversal. To every term in ~~,""(r) there corresponds an
analogous term in ~t (r), as seen in Eq. (2.4).

F= d'rM(r) (2.1)
A. Mean fields

M( r) = ro + Mao (r) + M» (r),2m
(2.2)

where

of the energy density WE(r) which can be represented as a
sum of the kinetic energy and of the potential energy isosca-
lar and isovector terms

By varying the energy density (2.4) with respect to the
six density functions p, ~, j, s, T, and J one obtains the
mean fields. Details of calculations are presented in Ref.
[27]. Here we only repeat the final results conforming to the
notation introduced above. Time-even and time-odd mean
fields are obtained by a variation of ~~,""(r) and WW "(r),
respectively, and they read

M~, (r) = XP""(r)+~t (r), (2 3) I',""= —V' M, (r) V + U, (r) + [V cr B—,(.r) +B,(r) V rr],
l

with

WH""(r) =C~p, +C, ~p, kp, +C,'p, r, +C,J, +C, p, V' J, ,

(2.4)

(r) = C', s, + C, 's, . b, s, + C, s, T,+ C Jj,
+ C, Js, (VXj,),

and the isospin index t can have values 0 or 1. The coupling
constants C, have superscripts corresponding to various den-

(2.6)
r;"= V. [~ C,(r)]V+ ~—X,(r)+ —.[V.I,(r)+I(r). V].

U, =2C p, +~~2C, ~Ap, +C, r, +C, V J, ,

+,=2C', s, +2C, 'As, + C, T, + C, 'Vxj, ,

(2.7a)

(2.7b)

These fields are given by the six potential functions U, M,
I, g, C, and B which have tensor transformation properties
respectively identical to the six density functions on which
they depend through the following formulas:
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M, = C,'p, ,

Ct —Ct st,

(2.7c)

(2.7d)

odd and time-even coupling constants have an origin in the
local gauge invariance of the energy density.

B. Local gauge invariance

Bt=2C, J,—C, Vp, , (2.7e)

I,=2C jtj,+ C, jVXst. (2.7f)

The tensor gradient operators in Eqs. (2.6) and (2.7e) are

defined [27] as (V'o.) „=V' o., and V „=X~e~„~V&.
Due to the density dependence of the coupling constants

C~t and C', one has to add to the isoscalar potential energy

Uo the rearrangement terms [1]resulting from the variation
of these coupling constants with respect to the isoscalar par-
ticle density, i.e.,

( BC~~ BC',
(2 g)

6'
g + p even+ I odd+ I even+ p odd

0 0 1 1

I'"
g + p even+ I odd I even I odd

2m

(2.9)

These terms introduce an explicit dependence of the com-
plete time-even isoscalar potential Uo+Uo on the isovector
density p& and on the time-odd densities s, . Similar terms
have to be also consistently taken into account whenever
some other coupling constants are assumed to be density
dependent.

Finally, the neutron and proton Hamiltonians h„and h~
are obtained by combining the kinetic energy with the isos-
calar and isovector mean fields:

cj= —c'
t

CJ CT

Cvj + Cvj
t

(2.10a)

(2.10b)

(2.10c)

The Skyrme functional has now the form

M, (r) = C~p, + C,'s, + C, ~p,A p, + C, 's, As, + C,'( p, r, j,)—
+C, (s, T, 1, )+C,—[p,V J,+s, (V&&j,)].

(2.11)

In Ref. [27] this structure has been interpreted as a result
of the Galilean invariance of the Skyrme interaction. How-
ever, it has a deeper origin in the fact that the Skyrme force
is locally gauge invariant. In order to illustrate the role of the
locally gauge-invariant, velocity-dependent interactions let
us consider an arbitrary finite-range and nonlocal but
velocity-independent interaction given by

As noted in Ref. [27], in the energy density derived from
the Skyrme interaction the kinetic density v and the current
density j appear in the characteristic combination of
pt7t —j, . The same is true for two other pairs of densities

appearing together in the combinations s, Tt —J, and2

[p,V 1,+s, (V&&j,)]. This gives the following relations be-
tween three pairs of time-even and time-odd coupling con-
stants:

We are now in a position to discuss different time-odd
terms in the mean fields. It is clear that the time-odd mean
fields I; in Eq. (2.6) directly result from the "odd" part

(r) of the energy density in (2.4), and depend on ten
time-odd coupling constants C', , C, ', C, , C, , and C, for
t=o and t=1. Similarly, the time-even mean fields depend
on ten time-even coupling constants C, , C, , C,', C, , and

C, . For the Skyrme interaction, the time-odd coupling con-
stants are linear combinations of the time-even ones (see the
Appendix), and therefore the time-odd mean fields are
uniquely determined from the time-even mean fields. Since
the time-even fields are tested against numerous experimen-
tal observations which have a static character, they are much
better known then the time-odd ones. In fact, the Skyrme
force parameters have been in the past almost uniquely fitted
to the static properties only. A description of dynamic prop-
erties which do depend on the time-odd fields does not there-
fore (for the Skyrme force) require new parameters to be
introduced and fitted.

On the other hand, one sometimes adopts a different point
of view by considering the energy density to be a more fun-
damental construction than the Skyrme interaction itself
[31].In such a case, all 20 coupling constants of Eq. (2.4)
should be treated and adjusted independently. However, in
the next section we show that some relations between time-

V = V(r&, r2 ,r, ,r2). ' (2.12)

To simplify the notation we disregard for a moment the spin
and isospin variables. U describes an interaction process
where the particles 1 and 2 are located at r& and r2 before the
interaction, and at r,' and r2 after the interaction. When the
system of particles is described by a one-body density matrix

p(r, r'), its HF interaction energy reads

f
dr,'dr,'dr, dr, V(r,', r,';r, ,r, )[p(r, , r,')p(r, ,r,')

p(r2 rI)p(rt r2)]. (2.13)

For a local gauge transformation of the many-body HF wave
function ~'Il'),

~'P') =exp i g @(r,) ~W), (2.14)

p'(r, r') = exp(i[/(r) —@(r')])p(r, r'). (2.15)

where P(r) is an arbitrary real function of the position r, one
obtains the following gauge-transformed one-body density
matrix:
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The general interaction energy (2.13) is not invariant with
respect to such a transformation. However, when the interac-
tion is local [1],

V(r,', r2, rt, r2) = 6(r', —ri) 8(r2 —r2) V(r, ,r2), (2.16)

p, the total energy (2.1) is only modified through the kinetic
energy [the first term in Eq. (2.2)]. Using the transformation
property of r, Eq. (2.18b), we have the energy increase un-

der the boost transformation

the corresponding interaction energy,

2
oost

2m
(2.21)

f
P"'= dr, dr2V(r, ,r2)[p(r, )p(r2) p(r2, r—, )p(r&, r2)],

(2.17)

becomes invariant with respect to the local gauge. The direct
term is invariant because it depends only on the gauge-
invariant local densities, which are denoted by a single argu-
ment, i.e., p(r) =p(r, r). —On the other hand, in the exchange
term the gauge factors coming from two density matrices
cancel one another.

When the density functions defining the Skyrme energy
functional (2.4) are calculated for the gauge-transformed
density matrix (2.15) one obtains the following relations:

r' = r+ 2j V P+ p(V P)',

J~=i I+ pV I 4

(2.18a)

(2.18b)

(2.18c)

(2.18d)

TI', = Tk+ 2g Jq, V I@,+ sk(VQ),
l

(2.18e)

JkI III+&IV I @— (2.18f)

and the three characteristic combinations of density func-
tions, which appear in the energy density of Eq. (2.11), are
then explicitly gauge invariant. Transformation properties of
r and j allow one to interpret Vp as a velocity field,

equal to the translational energy of the boosted system. This
result holds for an initially stationary solution (i.e., for van-

ishing currents, j=o), however, due to the transformation
property of j, Eq. (2.18d), the boost transformations can be
added to one another by adding the corresponding momenta

p. For the boost transformation, one obtains the obvious ve-
locity field (2.19), i.e.,

boost p
m

(2.22)

2. Rotational motion

Since the velocity field (2.19) obtained through a gauge
transformation is irrotational, it cannot correctly describe
physical rotations of nuclei. This is so, because the nuclei
basically rotate as rigid bodies (at least in the independent-
particle approximation [6]), and the velocity field of a rigid-
body rotation, v" ' = eo X r, has a nonzero curl, V X v" '

=2', i.e., is not irrotational. Of course, interactions and
nucleon-nucleon correlations (pairing) introduce an irrota-
tional component in the velocity field (moment of inertia
decreases below the rigid-body value), but this field is never
entirely irrotational.

In an analogy to the boost transformation, one may try to
induce the rotation of a many-fermion system by adding for
all particles a constant value j, to their projections of the
angular momentum on a fixed (say x) axis. Such a procedure
can be realized in terms of the twirl transformation given by
the gauge function

fl,
v= —VP,

m
(2.19)

j,arctan(zi'y)
4(r) = '

(2.23)

which shows that the Bow of matter obtained through the

gauge transformation is irrotational, VX v= 0.
The local gauge invariance of the Skyrme interaction re-

jects the fact that its velocity dependence has been intro-
duced only to simulate the finite-range effects of the effective
interaction. In this way the Skyrme interaction conserves the
local gauge invariance of a velocity-independent finite-range
local interaction, such as the Gogny force [1], for example.

4(r)=
&

(2.20)

where p is the constant linear momentum of the boost trans-
formation. Since the interaction energy does not depend on

1. Translational motion

The Galilean invariance is a special case of the local
gauge invariance, for which the phase in Eq. (2.14) is given
by

Its velocity field has the form

twirl Jx
2CeX r,

mtoil(y, z)2 (2.24)

where ao is the vector of angular velocity oriented along the
x axis, and rt(y, z) is the distance to this axis. One can see
that the velocity field (2.24) is singular at the rotation axis.
The energy increase resulting from the kinetic energy density
(2.18b) is then infinite for any arbitrarily small j, . The irro-
tational velocity field (2.24) is of course very much different
from the rigid-rotation velocity field v" ' even though both
contain the same factor aoXr.

This illustrative example shows that the nuclear rotation
cannot be realized by democratically distributing the angular
momentum among all particles. In the cranking approxima-
tion, at a given value of the angular velocity some particles
receive larger contributions (aligning states) and some
smaller contributions (high-K states). A precise distribution
cannot be found without actually solving the quantal crank-
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TABLE I. Coupling constants in the gauge-invariant energy density (2.11) obtained for the SIII, SkP, and
SkM* Skyrme interactions. Zero-order coupling constants C, and C', are given in MeV fm and the rernain-

ing (second-order) ones are given in MeV fm~.

SIII
t=o

SkM* SkP SIII
t=l

SkM*

CP(p = 0)
C, (p —PNM)
chp

t
CVJ

t

C (p=0).
C~(P PNM)
chs
CT

—423.3
—296.4
—63.0

44 4
—90.0

14.1

56.4
17.0

—30.6

—991.9
—237.7
—68.2

34.7
—97.5
271.1
31.7
17.1

—34.1

—1099.4
—335.6
—60.1

0.0
—75.0
152.3

—31.4
—4.2

7.7

268.8
141.2
17.0

—30.6
—30.0
141.1
98.8
17.0

—30.6

390.1
150.8

17.1
—34.1
—32.5
330.6
91.2
17.1

—34.1

580.6
188.4
35.1

—44.6
—25.0
366.5
78.5
9.8

—41.1

ing equations. This example also shows that the gauge-
invariant interaction must contribute to the rotational energy,
contrary to what happens in the case of the translational mo-
tion.

III. HARTREE-FOCK CRANKING CALCULATIONS

In the present study we have performed Hartree-Fock
(HF) calculations of superdeformed (SD) rotational bands
using the Skyrme effective interactions. The calculations
have been done using the numerical code HFDDD which em-
ploys a three-dimensional Cartesian deformed harmonic os-
cillator (HO) basis to describe the single-particle wave func-
tions. The details concerning the HFODD code will be
presented elsewhere [32]; here we only give a few of its
basic parameters pertaining to the present application.

The calculations have been performed using a fixed basis
given by the HO frequencies fi, ~~ = 11.200 and

kcoI~ =6.246 MeV in the directions perpendicular and parallel
to the symmetry axis, respectively. These values have been
obtained by standard prescriptions developed for diagonaliz-
ing the deformed WS Hamiltonian [33,34] in the HO basis,
and correspond to the WS potential with deformation s

p2=0.61 and p4=0. 10. The same values of the HO frequen-
cies have been used for all nuclei, configurations, and angu-
lar frequencies studied in the present article. This is justified
by the fact that the quadrupole moments of the SD states
vary very little, and, therefore, an optimization of the basis
parameters is not necessary [32]. The basis has been re-
stricted to a fixed number M of basis states having the lowest
single-particle HO energies EHo= (n +n, + 1)fL to~ + (n,
+-,')fico~~. The actual calculations have been performed with
M =306. This corresponds to the maximal numbers of oscil-
lator quanta equal to 8 and 15 in the perpendicular and par-
allel directions, respectively.

The stability of results with respect to increasing the size
of the HO basis has been tested by performing calculations
with M =604, which introduces basis states up to 11 and 20
quanta in these two directions. It has been found that the
rotational characteristics of the studied nuclei are almost in-
dependent of such an increase. For example, numerical inac-
curacies in the dynamical moment g 1 and in the total an-
gular momentum I can be estimated to be smaller than 0.2

MeV ' and 0.1 A, , respectively. Inaccuracies of relative

values between different angular frequencies co, or between
different nuclei, are smaller than these estimates, because the
numerical errors then cancel out (see Ref. [32] for a detailed
analysis).

In the present study we aim at investigating the role of
different time-odd terms in the self-consistent mean fields
(2.6) obtained for rotating superdeformed nuclei. As dis-
cussed in Sec. II, this can be done by considering different
values of ten time-odd coupling constants appearing in the
Skyrme energy density, Eq. (2.4). For every given set of
values of coupling constants we perform fully self-consistent
calculations within the HF cranking method. In the present
study, pairing correlations are not taken into account. Below
we separately discuss three cases corresponding to (i) the
complete Skyrme functional, (ii) the Skyrme functional with
certain time-odd terms omitted, but with the gauge invari-
ance preserved, and (iii) with the gauge invariance violated.

As discussed in Sec. II B, the energy functionals corre-
sponding to the standard Skyrrne interactions preserve the
local gauge invariance, The 20 coupling constants appearing
in Eq. (2.4) are then restricted by six conditions (2.10a)—
(2.10c), which leads to the energy density of Eq. (2.11). In
Table I, the remaining 14 coupling constants are listed for the
SIII [30], SkM* [35], and SkP [36] Skyrme interactions. The
values of the density-dependent coupling constants C~t and
C', are given for the vacuum (p=0) and for the nuclear-
matter saturation density (p=pNM) characterizing a given
force.

The time-even coupling constants corresponding to the
SIII, SkM, and Skp interactions are rather similar. The main
difference consists in different values of the isoscalar-
effective-mass coupling constant Co which is equal to 0 for
SkP (effective mass m*/m =1), and 44.4 MeV fm and 34.7
MeV fm for SIII and SkM", respectively (effective masses
m*/m =0.76 and 0.79). Apart from that, the absolute values
of' the C~ coupling constants are larger for SkP than for SIII
and SkM*, which gives better symmetry-energy properties
[37] within the SkP parametrization as compared to the other
two forces. On the other hand, the SkM* parameters have
been adjusted so as to properly describe the surface energy at
large deformation, and therefore this interaction was success-
fully applied in numerous studies of superdeformation.

It should also be mentioned at this point that the SIII and
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SkM* forces have been adjusted in a way slightly different
from that of the adjustment of the SkP force, namely, for the
former the time-even C, terms have been neglected, while
for the latter they have been taken into account. Extending
these forces to time-odd effects leaves, therefore, an ambigu-
ity of including or not the time-odd gauge-partner term

C, . In the present study, we consider the complete Skyrme
functionals with the C, terms taken into account also for the
SIII and SkM~ forces. However, as briefly discussed in Sec.
III C, this term has a negligible inhuence on the calculated
rotational properties.

Values of the time-odd coupling constants corresponding
to the three Skyrme interactions, Table I, differ much more
than those of the time-even ones. This illustrates uncertain-
ties in determining the time-odd components of the mean
field. The differences partly result from the fact that SkP has
been adjusted to give attractive matrix elements in the pair-
ing channel, while those given by SIII and SkM* are repul-
sive. One should bear in mind, however, that for the Skyrme
interaction the time-odd coupling constants are unique func-
tions of the time-even ones (see the Appendix) and, in prin-
ciple, one has no freedom for an independent readjustment.
Such a readjustment is possible only if we consider the HF
theory based directly on the energy density functional and
not on the Skyrme interaction.

In the previous applications of the Skyrme force to
nuclear rotation [12—15], in the energy density (2.11) the
terms C, ' and C, have been neglected in order to facilitate
the calculations. The first of these terms gives a purely time-
odd contribution to the mean field, while the second one
gives both time-even and time-odd contributions, because
the gauge invariance implies that C, = —C, , Eq. (2.10b). In
fact, the term C, has also been usually neglected in most
Skyrme parametrizations applied to problems where the
time-reversal symmetry is conserved, cf. Ref. [30].Since the
HFOr)D code is organized in a different way, omitting some
terms would not provide any serious simplifications, and the
code may in fact handle the complete Skyrme functional.
This gives us a possibility to test the importance of different
terms for the rotational properties of nuclei.

There exist several high-spin observables which, when
calculated from the HF solutions (wave functions) behave
differently depending on whether various time-odd terms are
included or not. This offers, in principle, the possibility of
both better readjustment of the interaction coupling constants
and better understanding of the underlying mechanisms.
Some of the physical quantities, such as, e.g. , alignments and

g i moments of intruder orbitals, are well recognized as
responding strongly to the Coriolis and centrifugal interac-
tion effects. The same quantities are expected to respond
relatively strongly to the time-odd terms in the mean-field
Hamiltonian. Similarly, various families of orbitals having
large high-j components are systematically responsible for
such precisely measurable effects as band crossings (back- or
up-bending effects) and related phenomena.

In this study we would like to illustrate the effects of the
time-odd terms on yet another seemingly more subtle mecha-
nism related to identical bands, leaving the aforementioned
analysis of intruder orbitals for a later investigation.

In the following sections we present results of the HF

cranking calculations for the yrast superdeformed bands in
dysprosium, ' Dy(1), and terbium, ' 'Tb(1), and for the
first excited bands in the corresponding isotones, ' 'Tb(2)
and ' Gd(2). According to the standard notation, the num-
bers in parentheses refer to numbers attributed in experimen-
tal studies in connection with relative intensities of y transi-
tions. The experimental data are taken from Refs. [38—40]
where the most recent and precise results are given.

The pairs of superdeformed bands ' 'Tb(2)-' Dy(1) and
Gd(2)-' 'Tb(1) are identical with a very high precision

[41].For each pair, the y-ray transition energies F~ are iden-
tical up to 2 keV. The sameness of the bands [25] can be
characterized in two ways; (i) by their relative alignments
and (ii) by their relative dynamical moments. The relative
alignment BI is defined as the difference of spins in two
bands at fixed angular velocity co. Similarly, the relative dy-
namical moment Bg i is the difference of g i at the same
value of co. In calculations, the latter is a derivative of the
former with respect to the angular velocity.

In the present study we have fixed the yrast proton con-
figurations of ' Dy and ' 'Tb to (16,16,17,17) and
(15,16,17,17), respectively. The numbers in parentheses de-
note the numbers of lowest states occupied in the parity-
signature blocks ordered as (++,+—,—+,——), where the
signs denote the parity quantum number and the sign of the
(imaginary) signature [6] quantum number, r = ~ i One.

sometimes uses a notation based on the signature index n
which equals —1/2 (+1/2) for r =+i ( —i). For all bands
considered in the present study, the neutron configurations
are fixed at (22,22,21,21). The yrast configuration in "'Tb
corresponds to a hole in the 16th orbital in the ++ block,
16+ +

The HF single-particle wave functions can be developed
in the Nilsson basis characterized by the quantum numbers

[Nn, A]A, and the dominant Nilsson configuration can be
used as a name or a tag of the given HF state, This allows
comparing results of various approches based on the concept
of the deformed mean field. In this way, the 16++ orbital can
be described as the 7r[651]3/2 (r =+i) or 7r64 Nilsson in-
truder orbital.

Since in the experiment the angular velocity is associated
with half of the transition energy E~, and the above pairs of
bands have identical transition energies, the relative align-
ments must be close to a half-integer value. This is simply a
consequence of the fact that the spins in the odd and even
nuclei are half integer and integer, respectively. Departures
from half-integer relative alignments can only be caused by
differences in the y-ray transition energies, which are very
small for the two pairs of bands studied here. Since the val-
ues of the spins have not yet been measured, the relative
alignments are known up to an additive integer value and a
theoretical input is necessary if one wishes to put forward
one value or another.

Already at a very early stage of the identical band studies,
it has been suggested [42] that the first excited bands
' 'Tb(2) and ' Gd(2) correspond to the ~[301]1/2
(r=+i) holes (signature index n= —1/2) in the yrast states
of the respective cores (see also Ref. [43]). In the present
study we have followed this interpretation and we have con-
structed the excited bands by creating a hole in the 17th
orbital of the —+ block, 17
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FIG. 1. Calculated dynamical moment g 1 for the yrast band of
Dy, part (a), the relative dynamical moment Bg 1 calculated for

the ' 'Tb(2) and ' Dy(1) bands, part (b), and the relative align-
ment BI between these two bands, part (c). The experimental points
are denoted by asterisks. Complete Skyrrne functionals of SIII,
SkM*, and SkP interactions have been used. Note the scale in (b)
expanded five times as compared to (a).

In all the WS and HF cranking calculations, the single-
particle Routhian 7r[301]1/2 (r=+ i) increases with rota-
tional frequency with a constant slope of about +0.5 A„ i.e.,
it has the single-particle alignment (the average value of the
projection of angular momentum on the rotation axis) close
to —0.5 A, . Therefore, a hole created in this orbital must lead
to relative alignment of about +0.5 fi. In this paper we adopt
this half-integer value for fixing the unknown integer addi-
tive constant, No=+0.5 A, , required to extract relative align-
ment from experimental data. Within this choice, the experi-
mental average relative alignment for the ' 'Tb(2)-' Dy(1)
pair of bands equals +0.564(18) 6. The error given here is
the average error resulting from experimental errors of tran-
sition energies. The experimental relative alignment for the

Gd(2)-' 'Tb(1) pair increases slightly with the angular ve-
locity and has the average value of +0.479(14) fi. In fact, ,

experimentally, only the average departures from the half-
integer constant BIo, (BI)= 6'In+0. 064(18) 6 and (BI)=
BIo 0.021(14) A„are establish—ed.

FIG. 2. Same as Fig. 1, but for the ' 'Tb(1) band, (a), and for
the differences between the ' Gd(2) and ' 'Tb(1) bands, (b) and

(c).

namical moments g ~ as functions of the angular velocity
co. The complete Skyrme energy-density functionals of the
SIII, SkM*, and SkP forces have been used. In particular, for
all these interactions the C, = —C, terms have been taken
into account (the C, coupling constants are usually neglected
in time-even studies performed with SIII and SkM"). The
role of the C, terms alone is discussed in Sec. III C.

1. Dynamical moments g ~

For ' Dy(1), Fig. 1, all forces overestimate the experi-
mental values of g 1 by about 5—10 %. All three forces give
very similar results, within 2 A, MeV '. The similarity of
results obtained for different forces is also visible in Table II,
where we give the values of proton quadrupole moments
calculated at su=0. 5 MeV/A, . The SIII interaction gives val-
ues larger by only 0.3—0.4 b as compared to those given by
SkM*, while the SkP force leads to intermediate results. The
similarity of results for changes of proton quadrupole mo-

TABLE II. Proton quadrupole moments (in b) calculated for the
SIII, SkM*, and SkP Skyrme forces at co=0.5 MeV/A, .

SIII

A. Complete Skyrme functionals

In Figs. 1 and 2 we show the results of calculations for the
' 'Tb(2)-' Dy(1) and ' Gd(2)-' 'Tb(1) pairs of bands, re-
spectively. Parts (a) of these figures (bottom) present the dy-

'"Dy (1)
'5'Tb (2
151Tb
'"Gd (2)

18.55
18.69
17.59
17.74

18.25
18.38
17.22
17.36

18.36
18.48
17.41
17.54
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ments induced by creating holes in proton orbitals is even
more pronounced. A polarization by the ~[301]1/2

(r =+ i) hole gives, for different forces, changes between
0.12 b and 0.15 b. That induced by the sr[651]3/2 (r =+i)
hole gives values between —0.94 b and —1.05 b. The HF
proton quadrupole moment of ' Dy(1) agrees very well
with the result obtained within the Nilsson single-particle
potential [43].

In Fig. 2(a) we show the dynamical moments g ) calcu-
lated for the ' 'Tb(1) band. Due to the hole in the

7r[651]3/2 (r=+i) intruder orbital, g ) decreases here
with co much faster than that of the ' Dy(1) band. However,
at co=0.45 MeV/fione ,obtains values of g )=94 fi
MeV ' which are almost identical for all the forces and for
both bands. This contradicts simple perturbative estimates.
Indeed, a hole in the ' Dy(1) core should in principle cause
a decrease of the moment of inertia due to the smaller mass
and deformation of ' 'Tb(1), and also due to the fact that the
~[651]3/2 (r =+i) Routhian has a negative second deriva-
tive with respect to co and, therefore, the hole in this orbital
should bring a negative perturbative contribution to g
Nevertheless, at co=0.45 MeV/6. the g ) values calculated
for ' Dy(1) and ' 'Tb(1) are the same. This illustrates the
fact that the polarization effects obtained by self-consistent
calculations do not necessarily follow perturbative estimates.

In ' 'Tb(1), the SIII and SkM" forces give a better agree-
ment with data than SkP. This can be attributed to the differ-
ent effective masses, I*/m=1 for SkP and 0.76—0.79 for
SIII and SkM*, which lead to different time-odd components
in the mean field (see the next section). Then, the interaction
between the intruder orbital sr[651]3/2 (r=+i) and the
time-odd mean field is modified, and gives a more significant
departure from experiment.

2. Relative dynamical moments Bg )

In parts (b) of Figs. 1 and 2 we present the relative dy-
namical moments 8'g ) calculated for the pairs of bands
' 'Tb(2)-' Dy(1) and ' Gd(2)-' 'Tb(1), respectively. One
should note that the scale in (b) is enlarged five times with
respect to that in (a). At oi) 0.3 MeV/fi, both pairs of ,bands
have dynamical moments identical up to about 1 fi

MeV, with lighter isotones having slightly larger values.
In the scale of (a) this would lead to curves identical up to
the size of the data marks.

This result confirms the observation [14] that the same-
ness of dynamical moments can in fact be obtained in self-
consistent theories, and does not necessarily follow semiclas-
sical [44) or perturbative estimates. The experimental values
of Bg ) are not shown in parts (b), because they would be
scattered between ~1.5 6 MeV ' with errors between 1

and 2.5 fiMeV ', i.e., in the s,cale of (b) they would cover
the whole presented region of 8'g

3. Relative alignments BI

The calculated relative alignments BI, shown in parts (c)
of Figs. 1 and 2, do not reproduce experimental results with
sufficient precision. For the ' 'Tb(2)-' Dy(1) pair [Fig.
1(c)], in the region of oi where data are available, one obtains
a gradual increase of BI by almost 0.5 fi, . For the SIII and
SkP forces the value obtained at co=0.3 MeV/6 is correct,

but for SkM* the whole curve is additionally shifted up by
about 0.5 6. For the ' Gd(2)-'5'Tb(1) calculations this in-
crease becomes smaller (SIII and SkP) and similar to the
small increase seen in the experimental data. However, the
values of 6I are still slightly (SIII and SkP) or significantly
(SkM") too large.

Values of relative alignments can be translated into the
differences BE of y-transition energies between the two
bands. Using a linear local expansion of the spin as a func-
tion of the angular frequency we obtain that

BI—BIp6E =2fi8a=2f. i @~) (3.1)

where B~ is the difference of frequencies at the spins of
physical states in two nuclei. Hence the departures of the
calculated relative alignments BI from BIp=0.5 A, corre-
spond to values of BE~ between 0 and 10 keV, while the
measured values are between 0 and 2 keV. In the following
two sections we present calculations obtained with modified
Skyrme functionals. In this way we try to analyze the inhu-
ence of the time-odd terms on the relative alignments dis-
cussed here.

B. Modified gauge-invariant SkM* functional

As discussed above, the gauge-invariance conditions
(2.10a)—(2.10c) restrict the values of six time-odd coupling
constants and leave the freedom to modify the values of C",

and C, ' . If one decides to depart from the complete
Skyrme-interaction functional, in which the time-odd cou-
pling constants are uniquely defined by the time-even ones
(see the Appendix), one may, in principle, use arbitrary val-

ues of C', and C, '. However, independent variations of
these coupling constants have never been considered in the
literature, and their effects are, up to now, unknown. There-
fore in the present study we restrict our analysis to function-
als in which one or more of the coupling constants, Table I,
are assumed to be equal to zero. Moreover, in order to further
restrict the number of possible variants, we only consider
simultaneous modifications of the isoscalar and isovector
coupling constants within given species. In the frame of
gauge-invariant functionals, this leaves us the possibility of
putting C =0 and/or C, '=0.

Another modified gauge-invariant functional can be ob-

tained by removing the term s, T,—J, , i.e., by putting

C, =C, =0, in accordance with Eq. (2.10b). This leads to a
modification of time-odd and time-even mean fields. How-

ever, the term J, was anyhow neglected in most parametri-2

zations of the Skyrme forces used for time-even studies, and
in particular in SkM*. Therefore below we discuss four pos-
sibilities corresponding to (i) the complete functional, (ii)
C, =C, =0, (iii) C, '=C, =C, =0, and then (iv) C', =C, '=
C, =C, =0. We have studied several other possibilities, but
the principal conclusions can be drawn from these four cases.

The results for the SkM* force are presented in
Figs. 3 and 4 for the pairs of bands ' 'Tb(2)-' Dy(1) and

Gd(2)-' 'Tb(1), respectively. We have also performed
analogous calculations for the SkP force, and the results are
briefly described in Sec. III D.
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FIG. 4. Same as Fig. 3, but for the ' Gd(2)-"'Tb(l) pair of
bands.

FIG. 3. Same as Fig. 1, but for the complete SkM* functional

(open squares) compared to three versions of the modified SkM*
functional, namely, C, =0 (open circles), C, =C, ' =0 (full

squares), and C, =C, '=C', =0 (full circles). The modified function-
als are gauge invariant, i.e., C, =0 whenever C, =0, Eq. (2.10b).

not give the experimental sameness of the y-transition ener-
gies, Eq. (3.1).

In Fig. 4, for the pairs of bands ' Gd(2)-' 'Tb(1)
we present a similar analysis of the role of different time-
odd terms in the Skyrme functional. In this case, the inhu-

ence of the s, T, 1, term on g l —is weaker than for the
' 'Tb(2)-' Dy(1) pair, while its removal leads to a good
agreement with experiment, with only a slightly too slow
decrease of g l as function of the angular velocity. At the
same time the relative alignments become much closer to
experimental data, but an overestimation by a few tenths of
A, persists at all angular frequencies. The influence of the
other two time-odd terms considered here, s, and s, As, , is
much weaker, although a non-negligible influence on relative
alignments can be seen.

We conclude this section by noting that the importance of
the gauge-invariant time-odd terms for the rotational proper-
ties is not simply related to the order of the given term. (By
the order of a term we understand the number of gradient
operators appearing in the corresponding densities. ) In fact,
the zero-order term s, , which depends on the density of spin,
has a very small inhuence on the results. At the same time,

two second-order terms, s, . As, and s, T,—J, , which in the
previous studies have been simultaneously neglected, have a
small and a rather large influence, respectively. On the other
hand, the latter term, which in principle cannot be neglected
because of its magnitude, leads to larger deviations from
experimental data, as compared with calculations which do
disregard it. Of course, the present analysis is not sufficient

For ' Dy(1), the dynamical moments g l, Fig. 3(a), are

(at high spin) sensitive only to the C, = —C, coupling con-
stants. The influence of C, ' and C', is visible only at low

spins, and moreover, their effects have opposite signs and

partially cancel one another. Removing from the functional

the term s, T,—J, decreases the dynamical moments, and, at
the high-spin end of the band, brings the calculated value
down to the experimental result. At lower spins one obtains a
smaller than previous overestimation of the data (by about
5%).

A very interesting result is obtained for the relative dy-
namical moments Bg 1, Fig. 3(b). For any studied combi-
nation of the time-odd mean fields taken into account, the
dynamical moments in both nuclei are almost identical. Even

if the values of +~i depend on whether the term s, T, 1, —
is taken into account or not, the differences of g ~ do not
depend on it at all. This is a rather general observation, valid
also for other cases of modified functionals discussed below.

The relative alignments BI, Fig. 3(c), very strongly de-

pend on the presence of the s, . T, —J, term and are almost2

independent of the s, and s, As, terms. As soon as C, =
C, =0, the value of N at co=0.3 MeV/A, comes down to the
experimental result. On the other hand, the increase of 6I as
a function of the angular frequency is still too large, and does
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TABLE IV. Zero-order time-odd coupling constants as functions
of the time-even coupling constants, expressed by the formula C=
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FIG. 6. Same as Fig. 5, but for the ' Gd(2)-' 'Th(1) pair of
bands.

case, the relative alignments agree with the experiment to
better than 0.16, which corresponds to the sameness of the
y-ray energies to better than 1 keV.

D. Modified SkP functional

We have seen in Sec. III C that the j, term in the SkM~
functional influences the values of dynamical moments in a
significant way. It is therefore interesting to see what kind of
results are obtained for the SkP interaction, for which the
isoscalar effective mass is equal to unity, I*/m=1, i.e., the

coupling constant Co=0, see Table I. Because of the gauge
invariance, relation (2.10a) implies that also Cjo=0, and
therefore the square of the isoscalar current-vector density

jo does not appear in the SkP functional. At the same time the
values of the SkP isoscalar Co= —Co coupling constants are
much smaller than those for SkM", while C,'(p =p„) has an

opposite sign, Table I.

These differences in values of the coupling constants di-
rectly determine the differences in rotational properties of
bands calculated for the SkM* and SkP interactions. First of
all, for SkP the values of the dynamical moments g 3 de-
pend much less on the modifications of the Skyrme func-
tional discussed in Secs. III B and III C. The values of

are within 2—3 6 MeV ' of those obtained for the
complete SkP functional, Sec. III A. In particular, the

s, (V'Xj,) and the isovector j, terms influence g 3 in a neg-
ligible way.

Similarly as for SkM*, the relative dynamical moments

8+ between pairs of bands ' 'Tb(2)-' Dy(1) and
' "Gd(2)-' 'Tb(1) calculated for SkP are identical within 2

MeV
The results for the relative alignments N obtained for

SkM* are qualitatively confirmed by the SkP calculations. In
particular, the relative alignments calculated for C =C, '=
C, =C, =0 (Sec. III B) are for SkM* and SkP similar within
0.16. However, a strong increase of N, which for SkM* is

obtained by including the s, . T,—J, term, does not occur for
SkP due the smallness of the corresponding (isoscalar) cou-
pling constant. In fact, a similar strong increase is here ob-
tained by including the s, term; this is, however, balanced by
the third term, s, As, , in such a way that the results for the
complete SkP functional are very close to those obtained
with C', =C, '=C, =C, =O. Similarly as for SkM*, a very
good agreement of N with the experimental data is obtained
for the ' Gd(2)-' 'Tb(1) pair of bands when the s, (V'&&j,)
term is removed from the SkP functional.

IV. CONCLUSIONS

In the present study we have applied the Hartree-Fock
cranking method with the Skyrme interactions to describe
rotational states in selected superdeformed nuclei. We have
analyzed in detail the properties of two pairs of bands,

TABLE V. Second-order coupling constants as functions of pa-
rameters of the Skyrme interactions, expressed by the formula C=

1«(at&+bt, x, +ct3+dtzx2)

cp
cp

C()
Cs

1

0
—2

2
0

TABLE III. Zero-order coupling constants as functions of param-
eters of the Skyrme interactions, expressed by the formula

1 1C= s(at„+btoxp)+4sp (at3+bt3x3).
C"0
CEP

1

Co
C7

Cas
0

Cas
1

CT
0

CT

12

0
6
0

—8
—6

0
8

0

5

1

20
4
1

1

4
4

4
2

16
8

2
0
8

0
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TABLE VI. Second-order time-odd coupling constants as func-
tions of the time-even coupling constants, expressed by the formula
C= „(a—Cp~+bC. , ~+cC(')+dC', )

pAs
0

Cz's
1

QT
0

QT
1

0
—4

0
16

48
—16

—3
12

—12

namely, 's'Tb(2)-' Dy(1) and ' Gd(2)-' 'Tb(1). Experi-

mentally, these bands are pairwise identical, i.e., the corre-
sponding y-transition energies are identical within 2 keV
each.

In agreement with the previous interpretations, we have
fixed the configuration of the ' 'Tb(1) band as a hole struc-
ture created in the 7r[651]3/2 (r=+i) or 7r64 Nilsson in-
truder orbital with respect to the magic superdeformed

'66Dys6 core. Similarly, the ' 'Tb(2) and ' "Gd(2) bands
have been constructed as the sr[301]I/2 (r=+ i) hole con-
figurations in the corresponding ' Dy(1) and ' 'Tb(1) cores.

The dynamical moments g ~ calculated for the
' 'Tb(2)-' Dy(1) pair of bands and for the

Gd(2)-' 'Tb(1) pair of bands are identical within 2 A,

MeV '. This result correctly reproduces the sameness of
these two pairs of bands obtained in experiment. It confirms
that the internal structure of the sr[301]1/2 (r =+ t') orbital is
responsible for the occurrence of these particular identical
bands. The obtained sameness of g ~ does not depend on
the version of the Skyrme force used, neither does it depend
on including or disregarding various time-odd components in
the mean field of the studied rotating nuclei. The fact that the
two bands calculated in ' 'Tb, i.e.,

' 'Tb(1) and ' 'Tb(2),
are not identical (similarly as in experiment), indicates a cru-
cial role of the single-particle structure of the involved orbit-
als, and shows that in the HF cranking theory the phenom-
enon of identical bands is not a generic, built-in-by-
assumption result.

The relative alignments of the studied pairs of bands are
more difficult to reproduce than the simple sameness of the
dynamical moments. First of all, the results do depend on the
version of the Skyrme interaction used and on the time-odd
components included in the mean field. When the complete
Skyrme functionals are used, i.e., when all time-odd terms
are taken into account, the calculated relative alignments do
not reproduce the experimental data. The disagreement ob-
tained for the SkM* interaction is particularly large, while
the SIII and SkP interactions also give too large relative

alignments. Within the SkM* parametrization, good agree-
ment with the experimental data is obtained when all time-
odd terms are disregarded except the one which involves the
density of current j and is related to the effective-mass term
by the gauge transformation.

This specific result does not imply that the time-odd terms
present in the formalism should be generally eliminated from
its applications. By studying cases with some time-odd terms
removed we only aimed at gaining information which may
be useful when improving the parametrization of effective
interactions.

As seen from the results obtained in the present study, a

readjustment of the parameters of effective forces in the
time-odd channel seems to be necessary for a detailed de-
scription of identical y-ray transitions in superdeformed nu-
clei. However, this should be done by taking into account
many available high-spin data simultaneously, and also
should involve a readjustment of the time-even part (the
spin-orbit interaction, in particular) which is responsible for
the ordering of the single-particle energies and Routhians.
Work along these lines is now in progress.

Finally, we would like to repeat that in the present study
the pairs of bands with identical dynamical moments are
obtained using the mean-field approach, while correlations
are not taken into account. Among important correlations
which may, in principle, influence this sameness are the pair-
ing effects and the correlations resulting from couplings be-
tween the single-particle and collective motions (vibrations).
A complete explanation of the identical-band phenomenon
should also include an analysis of such correlations, which is
beyond the scope of the present study. On the other hand, the
present study shows that the polarization of the core by an
odd particle as well as the mass and deformation effects,
which are here fully taken into account, do not destroy the
sameness of dynamical moments. The question whether the
correlation effects may or may not inhuence this sameness is
still a missing piece of the puzzle.

ACKNOWLEDGMENTS

We would like to express our thanks to the Institut du
Developpement et de Ressources en Informatique Scienti-
fique (IDRIS) of CNRS, France, which provided us with the
computing facilities under Project No. 940333. This research
was supported in part by the Polish Committee for Scientific
Research under Contract No, 2 P03B 034 08.

APPENDIX: COUPLING CONSTANTS
OF THE SKYRME FUNCTIONAL

In its standard form, the Skyrme interaction (see, e.g. ,
Ref. [12]) depends on ten parameters, tp, xp, t~, x, ,

xp t3 x3 n, and W. For x
&
=xz =0, the energy density

which corresponds to the Skyrme interaction has been de-
rived in Ref. [27]. In terms of the isovector and isoscalar
coupling constants, and for the complete interaction, this en-

ergy density is given in Eqs. (2.2)—(2.4).
The zero-order coupling constants C~f and C correspond

to the velocity-independent terms of the interaction, and can
be expressed by the to, xo, Iq, and x3 parameters, as shown
in Table III. The zero-order time-odd coupling constants C",

(for t=0 and 1) are linear combinations of the zero-order
time-even coupling constants C~ (Table IV).

Similarly, the second-order coupling constants C, ~, C,',
C, ', and C, correspond to the velocity-dependent terms of
the interaction given by the parameters t&, xI, t2, and x2,
and are presented in Table V. The second-order time-odd
coupling constants C, ' and C, are linear combinations of
the second-order time-even coupling constants C, ~ and C,'
(Table VI). Another four second-order coupling constants
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C, and C', , which also depend on the same t&, x], t2, and

x2 parameters, are given by the gauge-invariance conditions
(2.10a) and (2.10b).

Finally, the second-order coupling constants C, are
given by the spin-orbit term of the Skyrme interaction and

depend on the parameter W, Co = —4W and C& = —4W,
while the other two, C, ~, follow from the gauge-invariance
condition (2.10c). An extension of the Skyrme energy den-

sity, which introduces the coupling constants Co and C,
independent of one another, is discussed in Ref. [45].
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