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We investigate the consequences on the order/chaos transition of replacing the scalar rotational energy of the
particles-rotor model by a one-body cranking term. The nearest-neighbor distribution of energy levels and the
spectral rigidity are studied as a function of the spin or cranking frequency, respectively. Exact energies for our
statistical analyses are obtained from a full diagonalization of a many-body Hamiltonian with two-body forces
for six particles in an i, 3/2 shell coupled to a deformed core. In this model, the competing physical effects
(two-body interaction strength, quadrupole deformation, and moment of inertia) are easily parametrized and
studied. The dependence of the chaoticity on model parameters reveals the stabilizing inhuence of a large
quadrupole deformation. For low spins, the considerable effects of the (effectively two-body) recoil term give
significant differences between the two descriptions.

PACS number(s): 24.60.Lz, 05.45+b, 21.60.Ev

I. INTRODUCTION

The connection between statistical measures of a
quantum-mechanical spectrum and the phase-space behavior
of the corresponding classical system has been recently re-
vealed. Numerical studies of systems with few degrees of
freedom have confirmed that fluctuating properties of quantal
systems fall into one of the four universality classes of
Dyson and Mehta depending on the space-time symmetries
of the Hamiltonian. In the case of nuclei, it is reasonable to
assume that time-reversal invariance and rotational symme-
try will hold, though many model calculations explicitly
break one or both of these symmetries, or indeed others, in
the interests of obtaining more tractable calculations.

The short-range correlation between the energy levels is
measured by the nearest-neighbor distribution (NND)
whereas the long-range correlation is probed by the Dyson-
Mehta As statistics (spectral rigidity). Exact numerical cal-
culations and analytical investigations based on semi-
classical arguments support the observation that the Gaussian
orthogonal ensemble (GOE) and Poissonian spectral statis-
tics are signs of classically chaotic and ordered motion, re-
spectively. For generic systems Berry and Tabor showed [1]
that the NND is Poissonian provided that the system is clas-
sically integrable (fully ordered). As far as spectral rigidity is
concerned Berry proved [2] that A3 statistics display GOE or
Poissonian form depending on whether the classical motion
is fully chaotic or fully ordered. Although there is no formal
proof that the NND is of the GOE type for chaotic systems,
this suggestion [3] is now widely accepted and is supported
by several numerical studies.

Fluctuation properties of the observed spectra of nuclei
are in agreement with those of random matrices that belong

Permanent address; CLRC Daresbury Laboratory, Warrington
WA4 4AD, UK.

to the GOE [4—9].This conclusion is based mainly on slow-
neutron resonance data. These resonances lie several MeV
above the yrast line in the region of high level density, where
the complicated structure of the compound nucleus appar-
ently justifies the use of random matrix theories.

Abul-Magd and Weidenmuller in 1985 evaluated [10] the
spectral statistics of low-lying levels and concluded that
states of a rotational character tend to deviate from GOE
statistics. The suggestion of the pioneering work of Ref. [10],
that the collective nuclear rotation introduces some type of
regularity into the system, has gained further support in re-
cent experimental investigations [11,12]. The NND of rota-
tional states near the yrast line is very similar to the Poisso-
nian form.

A theoretical investigation [13] in the low-spin region
(I~8) using the algebraic interacting-boson model in the
SU(3) dynamical symmetry limit also confirmed that rota-
tional states behave more regularly. The spectral statistics of
other limits of the interacting boson model and intermediate
situations (vibrational and rotational coupling) [14—16,18)
have been thoroughly investigated. For higher spins Alhassid
and Vretenar [17] found that the Coriolis force increases the
chaoticity, but that around I=16, due to the decoupling of
the particles from the core and the alignment of their spins
along the axis of rotation, the behavior of the system be-
comes more regular.

The effect of a rotation on chaotic motion has also been
investigated in two-dimensional models. An interesting fact
emerged from the study of rotating "billiards" [19—22]. It
was shown that the cranking of the regular elliptic billiard
introduces chaotic regions into the phase space whereas ro-
tating a chaotic billiard leads to some regularity; i.e., the
collective rotation can act in opposite ways in different sys-
tems: It can either increase or decrease the degree of chao-
ticity.

The appearance of chaos affects not only the statistical
properties of the spectrum but also other quantities. It was
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shown in Ref. [22] that the dynamical moment of inertia for
particles moving in a rotating elliptical billiard shows abrupt
changes as a function of the rotational frequency. This phe-
nomenon (often appearing as "back-bending") is a common
feature of the high-spin rotational states of nuclei. The ob-
served irregularities in the case of the rotating billiard are
associated with the coupling of the single-particle degrees of
freedom to the collective motion through the Coriolis inter-
action. The most appropriate realistic nuclear models for
studying this type of coupling are the cranking and particles-
rotor models.

Our aim in this paper is to report on the differences in the
spectral measures of these two models. This is an important
point to consider, since the aim of making various approxi-
mations to the nuclear Hamiltonian is usually to obtain sim-
plified calculations by throwing away certain symmetries.
This may in turn have significant effects on the chaotic be-
havior of the system. For example, the BCS treatment of
pairing forces describes a system that does not have good
particle number. It is also specifically designed to give a
good ground-state energy and is, therefore, unlikely to give
the correct level spacings at high excitation energies. Its ad-
vantage of course is that it reduces the Hamiltonian to a
mean-field problem for the resulting quasiparticles. The
cranking approximation similarly neglects a two-body recoil
term, again to obtain a mean-field problem. (See Ref. [23]
for a discussion of the hierarchy of some of the approxima-
tions involved. )

Using the cranked Nilsson formalism an investigation of
the appearance of chaos in rotating nuclei was carried out by
Aberg [24], who applied a very schematic residual interac-
tion (the absolute values of the two-body matrix elements
were all taken to be the same and their signs were chosen
randomly). The main point was to study how chaos appears
for very high-spin states (/= 50+) depending on the strength
of the two-body force. Aberg was able to show that the onset
of chaos affects a readily observable physical quantity: the
average width of the F2 strength function. In his work
"good angular momentum states" were obtained from crank-
ing calculations via an elaborate transformation to the labo-
ratory system. (Actually these states do not have good angu-
lar momentum but only a fixed average projection along the
cranking axis. This is somewhat analogous to the BCS prob-
lem mentioned above, where particle number is good only on
the average. ) The Iluctuation properties of F2 transitions in
the cranking model was further investigated in Ref. [25] but
without the transformation back to the laboratory system.

In what follows, therefore, we shall consider the particles-
rotor Hamiltonian since this yields, in a natural way, states
that have both good particle number and good spin. We shall
then investigate the specific effects of the cranking approxi-
rnation, while retaining a properly rotationally invariant de-
scription of the two-body forces and the deformed mean
field. The major difference between these two approaches is
essentially the neglect of the two-body recoil term. We shall
see that this may have a rather large effect.

In this context, it is perhaps worthwhile making a few
comments on the so-called Coriolis attenuation (see Ref. [26]
and references therein) which is sometimes employed in the
particle-rotor model in order to improve fits to experimental
data. It is somewhat surprising that a correction appears to be

necessary in the model where the rotation is treated in a more
fundamental way. However, the origin of this supposed cor-
rection arises from attempts to reduce an odd-particle-
number system to one of a core plus a single particle (or
quasiparticle). In this case the two-body component of the
recoil term is absent and it is this which leads to the need for
an attenuation of the Coriolis interaction. A detailed analysis
of this point is given in Ref. [26]. In the present paper, we
shall always consider there to be several particles outside the
core and this problem will not then arise.

The appearance of chaos can now be analyzed experimen-
tally using the high-spin states of nuclei thanks to high pre-
cision three-dimensional y-ray correlation measurements and
to a newly developed analyzing method [27—29]. This ap-
proach relies on a statistical analysis of electromagnetic tran-
sition rates. We shall extend our calculations to study this
property in a future publication.

The outline of the paper is as follows. The particles-rotor
and cranking models are reviewed in Sec. II. The methods of
statistical analysis are described in Sec. III. The main empha-
sis in Sec. IV is the dependence of chaos on the total spin
and on the cranking frequency, respectively. The effects of
the core deformation, of the strength of the two-body force,
and of the moment of inertia of the core are also investi-
gated. Our conclusions are summarized in Sec. V.

II. CRANKING AND PARTICLES-ROTOR HAMILTONIANS

m, m /

(def)

+ — Z, V ' «a a a /a(12) t t
1 2 1 2 2

mi, m2, mi, m2

where a~ and a are the one-particle creation and annihila-
tion operators. Here we make the restriction that the particles
can occupy only a single shell of j=13/2 orbitals. For the
residual two-body interaction V ' we choose a delta force

We consider an even-even nucleus visualised as an axially
symmetric rotor with a number of valence particles outside

the core. The spin I of the system is the sum of the angular

momentum R of the core and J, the sum of the angular
momenta of the particles. The total Hamiltonian of the
particles-rotor model Hpz is the sum of a collective part
and an intrinsic part H;„,. The collective part

H„~~=& l20 = (I J) l20 co—nsists of three terms

H„,+H„„;&+H&„;,&;, . The pure rotational operator

H„,= (I —I3)l20, the recoil term H„„;&=(J& + J2)/20,
and the Coriolis interaction Hc„;,&;,

= —(I&
Jt + I2J2)/0,

where 0' is the moment of inertia of the core. The indices
1,2,3 refer to the body-fixed frame, where the three-axis is
taken to be the symmetry axis. Note that the recoil term
operates only on the valence particles and contains one-body
and two-body terms if there is more than one particle outside
the core. It thus has the same essential structure as H,„,(see
below).

For the intrinsic part of the Hamiltonian we take the form
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—G 6(r, —rz), which can be characterized by the single
interaction strength G. Its two-body matrix elements are
given by

(j Jllv '
l j J)= ——G (2j+1)

2 ( 1/2 —1/2 0/
(2)

The particles also feel the presence of the core through a
quadrupole mean field. The radial form factor of the de-
formed field is unimportant for a single j shell and the field
can be characterized by the single parameter ~ appearing in

matrix will be diagonalized exactly. The results of these cal-
culations will, therefore, correspond to cranking without
mapping back to the laboratory frame referred to in the In-
troduction. The mapping back procedure used by [24] is con-
siderably more tedious, since it involves the transformation
I=It =(J,)+t00 (the corresponding laboratory energy is
given in Ref. [23]). Since (Ji) is state dependent, one must
vary the frequency for each state until all states yield the
same (even then only average) spin values. This essentially
means that one will end up studying spectral statistics by
comparing energy levels which have been generated as the
eigenstates of different Hamiltonians. We shall not present
such results in this paper.

3m —j(j+ 1)
(Jm V""lJm)= —~ j(j+ I) (3) III. EVALUATION OF SPECTRAL STATISTICS

(We omit the spherical part of the mean field and the kinetic
energy of the particles since, in a single j shell, they simply
add an overall constant energy to the spectrum. ) The param-
eters of this model are then G, ~, and O. They succinctly
describe the competition between two-body forces, deforma-
tion, and the core rotation.

The eigenfunctions of the particles-rotor Hamiltonian are
of the form

where the symmetrized basis states are defined by

The smooth part of the level density p(E) is calculated
using the Strutinsky averaging method [30] with curvature
correction of order M, i.e.,

1
p(E) = v2+ LM [(E—E;)'/B']exp[ —(E E,)'/8'—]

where 6 is the energy-smoothing parameter and LM is the
generalized Laguerre polynomial. Having fixed M the
energy-smoothing parameter is obtained by minimising the
expression

2I+1~ '"
l
@'M~) = 16~

with respect to 6, where X, are the unfolded energy levels:

and primes denote positions with respect to the body-fixed
axes (see, e.g. , Ref. [23]). Here DMS is the usual rotation
matrix and A describes the orientation of the core with re-
spect to space-fixed axes. The N-body wave functions

Ptr(r&, . . . , r~) are antisymmetrized products of N single-
particle states having good angular momentum projection K
along the symmetry (intrinsic three-) axis. The state Px is
obtained by rotating Px through an angle 7r about the intrin-
sic one-axis. [For K= 0, we may have @tr = ~ @~, when all
the odd or even spin states vanish, respectively. The normal-
ization of the wave function (5) then requires an extra factor
f 2

—I/2 ]
In a much bigger space the diagonalization of the full

many-particle matrix becomes prohibitive and many of the
approximations discussed above are invoked, including
cranking. We shall, therefore, within our present space, per-
form a cranking calculation to study its consequences. This
simply involves a consideration of the Routhian or "energy
in the rotating frame. "This may be written

(jml jul jm')a a
m, m I

where ~ is the cranking frequency and ji is the one-
component of the single-particle angular momentum. As
with the full rotationally invariant Hamiltonian, the routhian

X;=N(E;), i = 1,2, . . . , N

The smooth part of the cumulative level density is given by
/J(E) = dN(E)/dE. The level spacing is defined by

S;=X;+ )
—X;, i = 1,2, . . . . (10)

S;=(E;+ i
—E,)p(E, ), i = 1,2, . . . ,N 1. —

This unfolding of the spectra ensures that the average spac-
ing in the series X, is unity. In this way the fluctuation prop-
erties of the spectra of different systems can be compared. In
our investigations both types of unfolding procedures led
qualitatively to the same outcome. The results in the rest of
the paper were produced using the mapping (9).

The first spectral statistics we use is the nearest neighbor
distribution P(S). The quantity P(S)dS gives the probabil-
ity that the nearest neighbor of an arbitrarily selected level
S; lies in the interval (S;+S,S;+S+dS). From the finite set
of (S,), , only a histogram can be constructed as a NND. In
order to have good statistics the bin size of the histogram is
chosen to ensure that there are at least seven spacings in each
bin. We considered the NND in the interval S ~ (0,2).

Roughly speaking S; is the original level spacing
(E;+ i E;) in units of the lo—cal average level separation. The
unfolding of the spectra can be carried out in a different way
using
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FIG. 2. The best-fit parameters for the degree of chaoticity with
mixed statistics are shown for (a) the particles-rotor model and (b)
the cranking model as functions of spin and cranking frequency,
respectively. Both calculations use our standard parameter set. The
NND is analyzed with both the Berry-Robnik (squares) and Brody
(circles) parametrizations. On the top of the lower figure, we show
the values of (I&) for the yrast state at the corresponding frequen-
cies. As mentioned in the text, the relationship between these two
quantities is not linear, due to particle alignments.

menta. The above falloff is unphysical but must occur in our
model due to the finite single-particle space we employ.
(Such a basis is of course necessary if one wishes to perform
an exact diagonalisation of the Hamiltonian. ) For high even
angular momenta (signature +1) the total basis size is 1519.
This number is smaller for I(24 since for these spins, not all
values of K are possible; e.g. , for I=20 one has 1512 states
and this falls to just the 93 positive signature K=O states for
I=O. In the cranking calculation the basis size is of course
independent of co and always contains all 1519 configura-
tions. In our subsequent statistical analyses, all of the al-
lowed configurations are taken into account, except in Fig.
5(b) where the spectral rigidity is considered for sets of 100
levels of increasing energy.

Fig. 1(b) shows the level density for 1=20 with
K = Kp, 2 Kp, and 3 Kp . Again a roughly Gaussian shape is
obtained whose width increases with increasing deformation.

The calculated NND's were fitted both with the formulas
(12) and (13). In Figs. 2(a) and 2(b) we show the best-fit

FIG. 3. The nearest-neighbor distributions are shown for (a)
states of the intrinsic Hamiltonian with K=2+ and (b) states of the
particles-rotor Hamiltonian with I= 20+.

Brody and Berry-Robnik parameters as functions of the spin
and cranking frequency. Our observation from this and a
series of other calculations (not shown here) is that the
Berry-Robnik parametrization shows a greater degree of
chaoticity than the Brody distribution (though bear in mind
that interpreting the parameters b and q as the degree of
chaoticity is a great simplification). Although the quantitative
predictions for the degree of chaoticity are quite different for
the two parametrizations, the qualitative behavior was the
same in each of the cases we studied. In the Berry-Robnik
prescription one may define the chaoticity using either the
NND or the spectral rigidity and it is reassuring to note that
the same degree of chaoticity is predicted by both of these
measures. For the rest of the paper we shall, however, in
common with most of the current literature, simply use the
NND statistics of the Brody parametrization.

To understand our nuclear model it is instructive to look
first at the situation where the valence particles are not
coupled to the rotor, i.e., to look at the spectrum of the in-
trinsic Hamiltonian H;„„ofEq. (1) alone. The projection K
of the spin on the three-axis of the body-fixed system is now
a good quantum number. In Fig. 3(a) we show the NND for
the states with %=2. It turns out that the spectrum of the
intrinsic Hamiltonian exhibits reasonably ordered behavior
as long as G/Gp(1. 4. However, the ordered NND com-
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distribution) is given as a function of spin for the particles-rotor
model. The solid circles show the case where the two-body interac-
tion is turned off. The open circles show the results for
G = Go = 0 45 MeV.
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pletely changes if the particles are coupled to the rotor. Fig-
ure 3(b) displays the NND for the states with I= 20+. Here a
GOE distribution clearly prevails.

To further emphazise the importance of the two-body
terms from the rotational coupling, we may switch off the
"real" two-body interaction between the valence particles.
Figure 4 shows that the angular momentum fluctuations have
a profound effect on the NND. The degree of chaoticity at
low spins is influenced mainly by the coupling to the core
and the effect of the two-body interaction is of secondary
importance.

In the low-spin regime (I(20) the particles-rotor system
exhibits GOE behavior, i.e., the system is chaotic. Increasing
the value of the spin, the system gradually becomes more
ordered [see, for example, Fig. 2(a)]. This can also be seen
from Fig. 5(a), where the spectral rigidity is displayed for
different spin values. This behavior is due to the decoupling
of the particle spins from the deformation axis of the rotor
and their alignment along the rotation axis which tends to
make the system more regular.

The effect of the excitation energy on the degree of chao-
ticity is shown by the spectral rigidity of Fig. 5(b). Analyzing
the whole energy range for states with I=80+ we find rela-
tively regular behavior. However, dividing the energy scale
into different regions we find that the chaoticity increases
with increasing excitation energy. The analyses were carried
out using groups of one hundred levels of increasing energy.

In Fig. 6 we show the dependence of chaoticity on the
parameter G. We see that the larger the two-body interaction
strength relative to the deformation energy, the larger the
chaoticity. This is true in both models. There is a significant
difference between the cranking and the particles-rotor mod-
els when G is very small and in general when the spin is
small. Consider switching off the two-body interaction be-
tween the valence particles i.e., taking G=O. Aberg found

[24] that in this case the cranking model exhibits regular
behavior. This agrees with our finding [see Fig. 6(b) and
remember the error in the best-fit parameter]. However, from

0.6—
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0.2—

0.0 I I
i

I I I I
i

I I I I j I I I I

10
L

15 20

FIG. 5. The spectral rigidity of the particles-rotor Hamiltonian is

presented for different values of (a) the spin and (b) for different

regions of energy. The first set of energy levels is the first hundred,

the second set is the next hundred, etc. , in order of increasing en-

ergy.

Fig. 6(a) we see that the particles-rotor system exhibits regu-
lar behavior only for very high spins.

The explanation of our finding is that in the cranking
model the spin is not a good quantum number, whereas in the
particles-rotor model rotational symmetry is preserved due to
the Coriolis and the recoil terms. However, the recoil term

(J,+ J2)/20" contains two-body operators, and so there is
always an "interaction" between the particles, even if the
real two-body force is switched off. The regular behavior
that was found in [24] turns out to be an artifact of the
cranking Hamiltonian for which the recoil term is absent.
However, the results of [19—22], where free particles were
moved in a rotating two-dimensional billiard (i.e. , also a
cranking calculation with no two-body forces), yield a mixed
phase space, and so this situation is not entirely clear.

Fixing the two-body strength at our standard value of
GO=0.45 MeV, we next varied the deformation parameter.
The results are shown in Fig. 7. For large ~ an increase in
regularity can be observed at lower spins (or at lower crank-

ing frequencies) relative to smaller a values. This finding

may be understood using similar arguments as those of Ref.
[36].The higher the lc, the better the quantum number K is
conserved. The suppression of the chaos arises from a par-
tially valid symmetry. (It is interesting to note that at higher
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FIG. 6. The degree of chaoticity is plotted as a function of (a)
the spin and (b) the cranking frequency for different values of the
two-body interaction strength G. Note the very large differences
between the two models for slow rotations independent of G.

FIG. 7. The degree of chaoticity is depicted as a function of (a)
the spin and (b) the cranking frequency for different values of the
quadrupole deformation parameter ~. In the particles-rotor case the
high-spin results rapidly become independent of deformation.

spins in the rotor model, the degree of chaoticity becomes
independent of ~ rather quickly. For cranking, however, this
"convergence" is somewhat slower. )

In the particles-rotor model one should also investigate
the effect of the moment of inertia. From general grounds it
is expected that for very large moments of inertia the
particles-rotor model should yield very similar results to the
cranking description. Figure 8 confirms this expectation for
the spectral statistics. Our previous observation (the larger
the spin the smaller the chaoticity), however, holds only for
smaller values of 0 and the opposite trend prevails for large
moments of inertia. This behavior can, however, be easily
understood. Increasing 0' to large values has essentially two
main effects. First, it will kill off the recoil term which varies
as I/O (this essentially turns the particles-rotor model into
cranking). Second, for a fixed spin, the effective frequency
decreases as 0' increases, since co=I/O. Thus (except at
I=O, where the system appears to remember that it is a
particles-rotor calculation) the large-0' results of Fig. 8 tend
to the low-c0 behavior of Fig. 2(b).

The above jump in chaoticity at I=0 [which is also evi-
dent in Fig. 7(a)] can be understood in the following way.
The intrinsic Hamiltonian has good K and we have already
seen [Fig. 3(a)] that separating out the good-K states gives a

reasonably ordered spectrum. This is, however, least true of
the low-K states (especially E=O) which are most affected
by the pairing force. In the particles-rotor calculation, I is a
good quantum number and the basis for a given I includes
only those intrinsic states with K~I. Thus as I becomes
small, the relative importance of the more "chaotic" K=O
states increases. Hence the jump in chaoticity at I=0. For the
cranking calculation, however, all E values are included for
all co. (This is an intrinsic property of cranking rather than
anything special about the present calculations. ) The crank-
ing results, therefore, give less weight to the low-K states
and remain regular even down to co —. usus it is rather
dangerous to use a cranking calculation to investigate statis-
tical properties in this low-spin regime.

V. CONCLUSIONS

A systematic study of the appearance of chaos in two
reasonably realistic models, capable of qualitatively describ-
ing many of the features of nuclear high-spin states, has been
carried out. It is known that the two-body interaction
strength plays an important role in the appearance of chaotic
motion [24,37]. The present study, however, reveals that the
recoil coupling to the core allows angular momentum Auc-
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FIG. 8. The degree of chaoticity is displayed as a function of
spin for different values of the moment of inertia . The results for
0 = 8, 24, 72, 216, and 648A, MeV ' are indicated by open circles,
open squares, solid circles, solid squares, and solid triangles, re-
spectively.

tuations that lead to chaotic spectral statistics even if the
"true" two-body force is negligible. Indeed at low spins this
coupling principally determines the degree of chaoticity, and
so cranking results in this region should be viewed with
some caution. Of course our calculations have been per-
formed in a somewhat restricted single-particle basis but it is
unlikely that these conclusions regarding the use of cranking
would be qualitatively changed by increasing this space.

There are, however, some effects due to the use of this
relatively small basis which deserve further comment. It is
clear from Fig. 1(b) that an increasing deformation leads to a

lower level density at low excitation energies by broadening
the energy spread. In a similar fashion, a divergence of levels
is brought about by the rotation [see Fig. 1(a)].This in itself
does not alter our conclusions regarding the degree of chao-
ticity, since the nearest-neighbor distributions are always ex-
pressed relative to the local average spacing (see Sec. III).
However, in a more physical space, the level density will
remain more constant because the diverging levels from the
single shell that we consider will tend to be replaced by
levels intruding from other shells. This shell mixing may
have significant additional effects on the degree of chaoticity.

From the study of the particles-rotor model we can con-
clude that a large quadrupole deformation suppresses chaos
at low spins and that at higher spins it has relatively little
effect. The cranking calculation also shows the trend of the
suppression of the chaoticity due to the large quadrupole
deformation. There is, however a delicate balance between
the competition of the different effects. Increasing the mo-
ment of inertia is capable of reversing the above trend.

Fixing the model parameters around standard values we
have found, in agreement with algebraic models, that due to
the Coriolis interaction, the degree of chaoticity decreases
with increasing spin. We conclude that chaos is more pro-
nounced for normal deformations and low spins (where
cranking is poor) than for superdeformations and high spins.
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