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Are octupole vibrations harmonic?
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The anharmonicity of octupole vibrations is deduced over a wide range of Z and A through the examination
of summed B(E3)1' values for all 3 states in a given nuclide versus the centroid energy for those states. Data
obtained with the (p,p'), (d, d'), and (nn') ,reactions are used, as opposed to an earlier study based on

Coulomb excitation and lifetime data. Results of the new analysis support earlier observations of significant
anharmonicity, but leave open the possibility of greater harmonicity than was previously supposed. Fits to the

experimental data are discussed within the framework of the hydrodynamical model and possible mechanisms
for the observed behavior are suggested.

PACS number(s): 21.10.Re, 23.20.Js, 21.60.Ev

I. INTRODUCTION

Low-lying vibrational excitations of the nucleus have
been studied almost since the very beginning of nuclear
spectroscopy, and a great deal of information has been accu-
mulated. The systematic behavior of quadrupole transition
probabilities B(E2)T from the ground states to the lowest

2,+ states in even-even nuclei shows smooth behavior as a
function of Z, A and excitation energy [1].This behavior can
be reproduced using the simple harmonic-vibrational model,
even though individual nuclei display strong anharmonic ef-
fects. However, the empirical situation for transition prob-
abilities from the ground states to the low-energy octupole
states (LEOS) appears to be more complicated than in the
quadrupole case.

In this work, we investigate the systematic behavior of
octupole transition probabilities B(E3)t' from the ground
states of even-even nuclei to the LEOS. In addition to exam-
ining the systematic behavior of quadrupole transition prob-
abilities, the authors of Ref. [1]also examined octupole tran-
sition probabilities to the lowest 3 states. They applied an
empirical criterion to show that while the quadrupole mode
is almost harmonic, the octupole mode has strong anharmo-
nicity. Reference [1]restricted attention to B(E3) values de-
rived from Coulomb excitation and lifetime data. Here we
consider data obtained with inelastic scattering measure-
ments. It is well known that in many nuclei the LEOS is
fragmented among a number of 3 states. Here we take into
account all of the observed fragments by considering the
octupole strength for all observed 3 states in the low-energy
regime. This expanded data set gives a revised estimate of
the anharmonicity of the octupole mode. In addition, a sche-
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matic model is described, in terms of which such an anhar-
monicity may be understood.

II. THEORETICAL BASIS OF THE ANALYSIS

We recapitulate the description of the quadrupole and oc-
tupole vibrations put forth by Bohr and Mottelson [2]. Be-
cause we are interested in describing only rough systematics,
this theoretical framework is deliberately presented here in
its most general form.

Multipole excitations (phonons) with angular momentum
X and projection p, are described by collective coordinates
nz and conjugate momenta viz„. To introduce a physical
scale for transition probabilities requires knowing how the
phonons are connected to the original nucleon variables. The
collective transition operator for electric multipole excita-
tions is usually taken to be proportional to the collective
coordinate,

(E) ) = Q~~~

where the amplitude Qz can be determined from microscopic
theory or phenomenological model. Equation (1) defines the
scale, which leads in the harmonic approximation to the re-
duced transition probability for the single-phonon excitation

2P +1
B(EX)1'=B(Ek;0—+X) = — Qx.

Here cuz is the phonon frequency and D), is the inertial pa-
rameter for the mode under consideration. The inverse de-
pendence on the transition energy is therefore a characteristic
feature of any model with harmonic vibrations and "natural"
transition operators as defined in Eq. (1).

The simplest and best-known example is the hydrody-
namical model, in which the excitations correspond to small-
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amplitude shape vibrations of an incompressible liquid drop.
It gives the collective multipole moment, as used in Eq. (1),

3
Qx= ZeR,

where Z is the nuclear charge and R is the average (spheri-
cal) nuclear radius (~A" ). If the liquid motion is irrota-
tional, the hydrodynamical mass parameter is, for a nucleus
with mass number A,

3

4mb
(4)

where I is the nucleon mass. Combining these expressions,
the model then predicts global behavior for transition prob-
abilities as follows:

B(EX)]'~Z A~

Z'R'
B(E3)T-

3 3-

Assuming RA" and replacing the mass parameter D3
for octupole vibrational fIow with its irrotational value D3"
~AR, we obtain

B(E3))~Z A" (E —)

We are therefore interested in determining whether this
expression for harmonic behavior reproduces the data. To
this end, we perform a fit of the function

The simplest general form for the dependence of
B(E3)$ on A, Z, and 3 state energy Es for ha-rmonic

octupole vibrations is therefore straightforward —B(E3)T
will be inversely proportional to E3—.

III. DETAILS OF THE ANALYSIS

It is well known that observed transition strengths in nu-
clei are dependent upon the reaction energy and type of
probe [3]. This dependence arises from differences in how
various probes interact with protons in the nucleus as op-
posed to neutrons. Because protons and neutrons may have
differing motions within the nucleus, the observed deforma-
tion length 8'=PR depends upon the ratio of the external-
field interaction strengths b„/b~. We refer the reader to Ref.
[3] for a more complete treatment of these differences, and
merely note here that they are significant enough to warrant
separate consideration of trends in scattering data depending
on the probe used.

We have separated our data set into two subsets: (a)
(p,p ') reactions at E„(50MeV for which b, /b„= 3, and

(b) (d, d') and (u, n') reactions for which b, /b„= 1. An
extensive literature search of primary sources from 1967
through 1993 was conducted, and measured E and B(E3)$
data were tabulated for all nuclei with at least two definitely
identified 3 states of energy less than or equal to (20 MeV
A " )—a cutoff chosen to isolate possible contributions

from the low-energy octupole resonance (LEOR) found at or
near (31 MeV A " ) [4]. Data from reactions below the
Coulomb barrier were not included in this analysis, because
there are comparatively little data of good quality on higher-
lying 3 states from these reactions and Coulomb excitation
measures different properties than inelastic scattering reac-
tions above this barrier. A complete list of references used in
the (p, p ') compilation [5—12] and in the (d, d') and
(o., n') compilation [8,11—33] is given at the end.

For inelastic (p,p') scattering, a total of 138 states in 24
nuclei were tabulated, and for inelastic (d, d') and (n, n')
scattering, 238 states in 56 nuclei. The data sets were fitted to
Eq. (8) by means of a least-squares-fit routine identical to
that used in Ref. [1].The B(E3)$ values themselves were
either taken directly from the references, or calculated from
the deformation parameter P (or the deformation length
8= PR). The expression for this calculation is [34]

B(E3)$Z A ' = KE3 (8)
B(E3)T=(3ZR p/47'), (10)

XB(E3)$ XE
XB(E3)T

(9)

and obtain the constants K and r/ given in Eq. (8).

where K and t/ are determined by the fit. Reference [1]used
the same procedure. Purely harmonic behavior results if
g= —1. Deviations from this value indicate the degree of
anharmonicity in octupole vibrations, and the scatter of data
points around the line defined by Eq. (8) indicates the degree
of noncollectivity of the octupole mode.

In this work, we have examined the available data on
octupole states in nuclei with A~60. We consider the entire
LEOS, including all of the known fragments, in nuclei which
have two or more known 3 states with known B(E3)$
values. We compare the summed B(E3)T to the centroid
energy for all 3 states within a given nucleus

where R is the nuclear radius defined by R=1.2A' . The
deformation parameters are usually extracted using the de-
formed optical-model potential. It has recently been sug-
gested by Beene et al [35]. that a more realistic analysis
should use a folding model.

The fits were performed with individual points weighted
by either 1/o or 1/n. , where a is the uncertainty in
XB(E3)$. The 1/o. weighting matches that used in Raman
et al. [1],where it was chosen as a means of accounting for
the often quite optimistic uncertainties quoted in the primary
references. We preferred to use the canonical 1/a. weighting,
and to account for optimistic (or nonexistent) uncertainty
estimates by adjusting the uncertainties themselves. This was
done by using a global estimate of cr(P ) =0.15P for each
state. As will be seen below, choice of weighting had a mea-
surable but not dominant effect on the fits. Figure 1 illus-
trates the fits for the two data sets with 1/o. weighting. Table
I summarizes our results, specifically the exponents for the
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IV. RESULTS AND DISCUSSION

The proton and deuteron/alpha data sets give fits which
are consistent with one another. The spread between values

FIG. 1. Fits of summed transition strength vs centroid energy for
the (a) proton and (b) deuteron and alpha data sets. The solid lines
show results of least-squares fitting with 1/o. weighting (see Table

I). The dashed line in (a) results when the two solid data points for
~o6 ~o Pb are omitted in the fit. The corresponding dashed line in (b)
is nearly indistinguishable from the solid line and, therefore, is not
shown. The fitted K and g values given in Table I are strongly
anticorrelated. Varying only the K values within the uncertainty
ranges given in Table I accounts for —75% of the data points in (a)
and —48% in (b).

fits with Z and A weightings as shown in Eq. (8), where
y= —1.00 for harmonic behavior.

According to Ohm et al. [36],B(E3)t' values for the first
3 states of a small subset of nuclei near closed shells do
show an g= —1 dependence. However, this conclusion has
been questioned by Horen et al. [37] after a remeasurement
of the lifetime of the first 3 state in Zr and a refitting of
the B(E3)$ data for 13 nuclei.

with the two types of uncertainty weightings is always much
less than the uncertainty of the final numbers, indicating that
the fitting process itself does not contribute strongly to the
final results.

After the initial fit of the (p,p') data set with all data
points included, the points for the Pb isotopes were seen to
lie farther from the fit from most others. One possible expla-
nation for this discrepancy is that in Pb the energy of the
LEOS 3 centroid is much closer to that of the low-energy
octupole resonance (LEOR) than in any other element. The
difference between the LEOS and LEOR energies is approxi-
mately 2.6 MeV for both Pb and Pb, whereas differ-
ences for other nuclei in the set are all 3.5 MeV or greater.
This proximity could lead to greater mixing between the
LEOR and the LEOS, causing the Pb points to skew the data
set. Fits without the Pb data were therefore performed to
examine whether a significantly different result would be ob-
tained. The fitted r/ values for the data sets without Pb (see
Table I) are of some interest, as they are still within one o. of
the results for the full data set, but are also within one o. of
—1.0. From this result, we infer that octupole transitions are
generally not harmonic, but that subsets of nuclei may un-

dergo harmonic octupole vibrations. This inference allows
for the possibility of a few instances of observable two-
octupole-phonon multiplets in the chart of the nuclides, and
lends some encouragement to those searching for such states.
However, more high-resolution scattering data are needed to
improve the reliability of this analysis.

It is worth noting that while the values of y deduced from
the (p,p') data set are identical to those deduced from the

(d, d'), (a, n') data set, the values of K from the two data
sets are somewhat different. If the LEOS is a purely isoscalar
excitation, then the B(E3)t' values measured with different
probes should be equal, and it would be expected that the
values of K are equal as well. The difference in the K values
determined here warrants further investigation.

V. THEORETICAL PREDICTIONS
FOR THE FIT PARAMETERS

To make microscopic predictions for the average global
behavior of transition probabilities, we may use the sche-
matic microscopic model with pairing and multipole-
multipole forces as the main components of the residual in-
teraction. The coupling constant of multipole interaction is
given [2] by the self-consistency condition between the den-

TABLE I. Summary of fits from the current study.

Multipolarity

F.3

E3, no Pb

E3

E3, no Pb

E3 from Ref. [Ij

Probe

various

Weighting

1/o

1/o

1/o
1/o.

1/o

1/o

1/o

1/o

1/o

1/o

K(X10 )

2.12~0.42
2.134- 0.41
2.31~ 0.44
2.27 ~ 0.43
1.51~0.15
1.55 ~ 0.15
1.52~ 0.15
1.55 ~ 0.15

1.8~ 0.3
0.59~ 0.05

—0.75 ~ 0.26
—0.79~ 0.26
—0.91~0.26
—0.90~ 0.25
—0.78 ~ 0.15
—0.85 ~ 0.15
—0.82~ 0.15
—0.89~ 0.15

—0.72~ 0.13 (vibrational)
—0.55 ~ 0.15 (rotational)
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2K+1 Z 22E
B(Eli.) t' = e — Aqq

A
g co),

Here, qi,
——(r )g is the typical reduced matrix element for

a single-particle transition (/=1/2 is an average reduction
factor connected with the pairing effects), and 2E= eF/+A
is the two-quasiparticle excitation energy. The factor
0= +A characterizes the degree of collectivity of the pho-
non mode (the number of quasiparticles contributing to the
phonon formation). In the quadrupole case, using
(r4) =0.95A ' fm, we obtain (co2 is given in keV)

B(+2)t 8 5(2Z2A —2/3' —le2b2 (12)

We can directly compare this with the empirical fit of Raman
et al. [1],

B(E2)T=(2.6~0.6)Z A co& e b . (13)

Although the numerical agreement may be coincidental, the
general trend is reproduced in a natural way. Because the
zero-point vibrational amplitude in soft spherical nuclei is of
the same order of magnitude as the static quadrupole defor-
mation in permanently deformed (rotational) nuclei, we ex-
pect the same estimate to be valid for rotational excitations
as well. This expectation is confirmed in Ref. [1].

Low-lying octupole excitations appear less regularly and
do not have energies as low as those of quadrupole modes.

sity and the field acting on the particles. In such an approach,
low-lying collective vibrations appear as coherent soundlike
two-quasiparticle excitations rather than pure surface hydro-
dynamical waves. Pairing is very important in this descrip-
tion, because the phonon frequencies as a rule fall within the

energy gap 2E for Cooper pair breaking, 7.—= co),12E~ 1. The
adiabaticity of vibrations allows us to discuss both the soft
quadrupole (r(&1) mode and the octupole mode, whose
adiabaticity is less pronounced.

The overall systematics [1] for quadrupole transitions,
k=2, confirms the co&

' dependence, but clearly prefers
-A scaling, whereas Eq. (5) gives -A '~ (and -A" in
the octupole case). It is also well known that the residual
interactions and shell effects make nonmagic nuclei much
softer than in the hydrodynamical model. Liquid-drop calcu-
lation of the restoring force C2 leads to quadrupole frequen-
cies ~2 which are typically several times higher than empiri-
cal ones (hydrodynamical frequencies are qualitatively
correct only in near-magic nuclei).

For the quadrupole case, nonmagic spherical nuclei are
apparently at the limit of the phase transition to static defor-
mation. Therefore we can make estimates of B(EP,) t' in the
adiabatic random-phase approximation (RPA) [38] near the
critical point where the restoring force vanishes. In fact, in
this region, strong anharmonic effects, mostly due to the
quartic anharmonicity [38,39], stabilize the nucleus. How-
ever, the general structure of the excitation spectrum is still
similar to that of the harmonic vibrator as a result of the
prevailing C7'(5) symmetry. Qualitative estimates [38] give
the following simple expression for the global behavior of
the transition probabilities:

Nevertheless, there are 3 levels with energies lower than

2E which display typical signatures of collective nature. The
liquid-drop model allows octupole shape vibrations among
other isoscalar modes of natural parity. The reduced transi-
tion probabilities in the hydrodynamical model are predicted,
according to Eqs. (4)—(6), to satisfy

B(E3)t'Z A ' =2 2X 10 [&03(MeV)] 'e b . (14)

The value of E thus obtained is larger than that seen in the
fits by an order of magnitude. The inverse energy depen-
dence shown here is stronger than that seen in the fits; we
will discuss the discrepancy below.

The adiabatic microscopic model used earlier in the quad-
rupole case gives a different A dependence for the octupole
mode. Expressed in a form similar to Eq. (14), it reads

B(E3)t'Z A "=15X10 (BA '
)

X g [~u3(MeV) ] ' e b3. (15)

The collectivity factor 0 should be weaker here than in the
quadrupole case (-A" ). Because the elementary octupole
excitation involves an intruder single-particle level with par-
ity opposite to that of the rest of the subshells in the same
major shell, we expect O, -A" . Then the numerical coeffi-
cient in Eq. (15) becomes 15X10 5A "2g =0.4X10 5 for
medium mass nuclei, which is too small when compared to
the fitted value of E. In addition, the approximation of ex-
treme adiabaticity, 7(&1, used in the derivation of Eq. (11)
for the octupole case, is unrealistic. As can be seen from the
RPA solution, the transition amplitude for larger values of
r acquires a factor (1 —r ) ', which can compensate the
coherence factor s and bring the microscopic vibrational
estimate [see Eq. (2)] closer to the average IC seen in the fits.
However, it cannot explain the deviation of the effective ex-
ponent y in the energy dependence towards the values
y( 1. There are, however, other considerations that may ac-
count for this.

Another change in the global behavior can be expected,
resulting from the anharmonicity of vibrations. As we have
already mentioned, the strong anharmonic effects in the
quadrupole case still preserve the general oscillator-like
structure of the 2+ excitations; the situation might well be
different for octupole excitations. Intrinsic anharmonicity of
the octupole mode should be weak, because the negative
parity does not permit mixing of one- and two-phonon states.
Admixture of the two possible three-phonon multiplet mem-
bers 3 is small because of the relatively high co3. However,
the interaction of octupole excitations with the soft quadru-
pole mode can be quite important.

The simplest anharmonic coupling which conserves the
number of octupole phonons and therefore does not need any
mixing with high-lying states leads to the phenomenological
Hamiltonian
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H=H2+H~~ l+xg [(ftf)2 d-+d (ftf)p„], (16)
and its magnitude 62 is to be found from (19) and (21).
Simple algebra with spherical functions gives

where Hz stands for the quadrupole part, including all anhar-

monic corrections, and H~z is the purely harmonic octupole
vibrator His i ——X ru3fg~ . We introduce the notations f
and d„ for the octupole and quadrupole boson operators,
respectively.

The model Hamiltonian, Eq. (16), gives an expression of
the following type for the energy E3 of the lowest octupole
excitation s:

x'
E =co —a —,3 3

602

td„=cu2d +x(f f)2 (18)

Thus, the presence of the octupole excitation induces the
effective deformation (d„) of the soft quadrupole field,

where the numerical factor a can depend on the details of the
quadrupole anharmonicity. The approximate self-consistent
solution for the low-lying eigenstates of the Hamiltonian of
Eq. (16) which leads to Eq. (17) can be derived as follows.

The quadrupole excitations can be modeled [38,39] by an
effective vibrator with the low frequency co2. This means
that the effective equations of motion for the quadrupole de-
gree of freedom interacting with the octupole mode are

(23)

The same ansatz (21) satisfies the equation of motion in Eq.
(20) for the octupole mode with energy F&, which takes the
form of Eq. (17) with the numerical factor a = 8/21.

The coupling constant x in the model Hamiltonian can be
calculated microscopically in the same way as quadrupole
anharmonic terms [40]; it depends smoothly on the octupole
frequency co3. Then the main modification of the global ex-
pression [Eq. (15)] would be the substitution of co~, which
was identified in the harmonic approximation with the exci-
tation energy F3, by F3+ (const)/cu2. If this is the case, we
may expect an anticorrelation of the transition probability
B(E3) with the quadrupole frequency co@.

In addition, we note that octupole vibrations are more
surfacelike than quadrupole ones. In the limit of surface
waves on a liquid drop, the normal frequencies are scaled as
~~A " . If the collective strength can grow as II~(area)
~A2'3, then we have from Eq. (15),B(E3)~ co . So in this
limiting case, g= —2/3, and we could argue that the physical
situation lies somewhere in the range —1 ~ g~ —2/3. Either
or both of these effects can lead to deviations of y from the
harmonic value, in particular placing it in the range seen in
the various fits.

VI. CONCLUSIONS

(19)

Since the octupole field is time reversal invariant and the
coupling constant can be taken as real, we have

(d.) = «'„-)
The nonzero quadrupole deformation (19), in turn, renor-

malizes the octupole excitation energy as seen from the
equation of motion for the octupole mode,

if~ QJ3f@+xX (3 i% 3 p' I2 v)f '(dp) (20)

4m
I'3„(n), (21)

where the normalization factor is chosen for the single-
phonon octupole state 3, , Xgtg~= l. The induced quad-
rupole deformation has the same symmetry axis,

(d )= I'2~(n)82, (22)

The set of equations (19) and (20) can be easily solved for
the axially symmetric case when the octupole motion singles
out the symmetry axis in the isotropic system. Then we can
look for the solution proportional to the corresponding
spherical function,

To summarize, we have demonstrated that octupole vibra-
tions are generally not harmonic via an analysis of (p,p'),
(d, d'), and (n, n') data on 3 states. We have compared the
summed transition strengths B(E3)t' of all known 3 states
in each nucleus against the centroid of the state energies, and
fitted a functional dependence that serves as a measure of
anharmonicity of octupole vibrations in nuclei. Our results
confirm the earlier results of Raman et al. , which used first
3 states in a larger sampling of nuclei. Trial fits with the Pb
nuclei (in which the LEOS may be mixed with the LEOR)
omitted imply that the overall harmonicity of these octupole
vibrations may be greater than initially anticipated. Our re-
sults for rg do not correspond to the simple harmonic predic-
tion of the hydrodynamical model, but can be explained by
invoking interaction with the quadrupole mode and the sur-
facelike nature of octupole vibrations.

These results are particularly relevant because a new gen-
eration of radiocative ion beam facilities will make possible
the measurement of B(E3) values in many unstable isotopes
via scattering reactions in inverse kinematics. We anticipate
that the availability of such reactions will add significantly to
our knowledge base in this area.
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