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Longitudinal response functions of He and H by Lorentz kernel transformations
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The longitudinal response functions of three-body nuclei are obtained from the inversion of their integral
transforms with a Lorentz kernel. The full dynamics of initial and final states is treated within this method.
Results are in excellent agreement with those of previous quite different calculations. A comparison with
experimental data is also presented.
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I. INTRODUCTION

Inclusive electron scattering on nuclei leads to nuclear
continuum states. Already for three nucleons the boundary
conditions of those states are quite complex [1],not to speak
of a larger number of particles. For three nucleons the con-
tinuum has been mastered [2] and already applications to
inelastic electron scattering on three-nucleon ground states
have appeared [3,4]. Nevertheless a method which relies on
bound state techniques, avoiding asymptotic boundary con-
ditions of oscillatory nature or related singularity structures
in momentum space treatments, would be welcome.

Two attempts in this direction have been done to calculate
inclusive scattering response functions. One relies on a
Stieltjes transform [5], the other on a Laplace transform [6].
Both are still plagued by the ill posed nature of the corre-
sponding inverse transformations. Nevertheless they have
been already successfully applied [6,7] to inclusive scatter-
ing on the u particle and He, thereby treating the nuclear
dynamics in its full complexity. The transforms of both the
theoretical and experimental responses have been compared
to each other. This provided very important information
through the insight that in the cases studied final state inter-
actions were absolutely mandatory. Though that useful infor-
mation was obtained without transforming into the energy
space the direct view onto the measured responses should be
the aim.

In Ref. [8] an integral transform with a Lorentz kernel
was proposed and tested in a soluble case, i.e., the deuteron.

The particular shape of the kernel which does not spread the
information about the response function, but averages it in a
more or less narrow range, has allowed the inversion with
great accuracy. Encouraged by that work we have now per-
formed a realistic study of inclusive electron scattering on
the 3N bound states. Realistic forces are employed and the
predictions are compared both to results obtained with a
more direct method and to data.

The theoretical formulation will be given in Sec. II and
our results in Sec. III. We finish with a brief outlook.

II. THEORETICAL FORMULATION

We start by reviewing briefly the initial steps of the inte-
gral transform with a Lorentz kernel as introduced in [8].Let

+(~~ ~t) =
Ct) th

(2)

where ~,h corresponds to the lowest inelastic threshold. In-
serting (1) into (2) yields

R(~) = 2 I(flolo)l'a(~+E, —E,)
fwo

be an inelastic response function, where IO) and lf) are
eigenstates to the underlying Hamiltonian H with energies
Eo and Ef, respectively. Then the transformation with a Lor-
entz kernel is defined by

c'(~, , ~,)= 2 l(flolo)l', , =(olo' . . olo)—I(ol olo) I'

f40 ol +(EI Eo —og) —H Eo og lot H Eo 0/l+ t trt ol + ail
(3)

The transform iIi(oil, ot) is the sum of an elastic contribu-
tion and a norm ( I'ol'iIto), with I'iIro) defined by

For crt40 the asymptotic behavior of %0) is exponentially
damped like for a bound state. Obviously I'Ifo) obeys the
inhomogeneous equation

1
olo)H —Eo —o-~+i o (4)

(H EO crR+ l trl) I po) = o 0)
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H=Ho+g V; (6)

(V; being the pair interactions in usual odd man out notation)
and assuming a single particle operator

O=g O/r

we can rewrite Eq. (4) as

Let us now regard the case of three nucleons and use the
Faddeev scheme. For

response function R(co,
I g I) at fixed momentum transfer

I Ql, driven by the density operator 0—=p. We solve the in-
homogeneous Faddeev equation by our standard tools in mo-
mentum space I1,9]. In the partial wave decomposition we
keep the NN force only in the dominant states 'So and

S1—D1 . However, we include states of total 3N angular
momenta up to 15/2 —.We have checked that higher angular
momenta give negligible contributions. The resulting set of
two-dimensional integral equations are solved precisely with
a typical accuracy of about 1%. We use the simplest single
nucleon operator without relativistic corrections as described
in Refs. I3,4]

(16)

This defines Faddeev components as

Since the particles are identical only one Faddeev component
is needed and the other two result by the sum of a cyclical
and anticyclical permutation P. Thus

where the Gari-Kriimpelmann I 10] parametrization has been
used for F„and F„representing the proton and neutron form
factors.

The explicit form of the partial wave representation of p
applied on the 3N bound state IO) in momentum space is
given in I 11]. Since p breaks isospin we include states of
total isospin T=1/2 and 3/2. The Coulomb force between
the two protons is neglected. For the 3N bound state we use
consistently just the five channel solutions of the correspond-
ing Faddeev equations.

+o) = (1+P)
I 0) (10) 0.0040

with

0.0030

1
0110).

EO+ &R l 0 I Hp

Replacing I'Po) by (10) and performing the standard steps
one gets

0.0020

e
0.0010

I 0) = Got t PI 0) (Go+ Got t Go) o t 10)

with the free propagator

Gp =—
EP+ CrR

—i Cr&
—HP

and the NN t operator defined by

(12) 0.0000

0.0009

0.0006

1/2
1/2

———— 3/2
——— 5/2

5/2
7/2'
9/2

t1= V1+ V1Gpt1.

Equation (12) is an inhomogeneous Faddeev equation,
evaluated at the complex energy Ep+ o.

R
—iaI. Once the

Faddeev amplitude P has been determined we get

0.0003

1&0
I
o

I
0) I'

@(~R ~l)=3(t l(1+p)lt ) —
2 2~1+ ~R

(15)
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where the factor 3 results from the antisymmetry of I'Po).
As an application we now regard inelastic electron scat-

tering on He and H and concentrate on the longitudinal

FIG. 1. The Lorentz transform of the longitudinal response

function of He at IQI =300 MeV/c (or=10 MeV); (a) the total
sum of all channels contributions; (b) single channel contributions.
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III. RESULTS AND DISCUSSIAN

In Ref. 11 we h
fun

ave shown that the longitudinal responponse
unction has little sensitivity to the choice of the WN force.

Therefore here we restrict ourselves to the Reid [12] and
Bonn-8 [13]NN forces.

The inhe inhomogeneous Faddeev equation has to be solved
or each total 3% angular momentum J and the two parities

separately. 4(o~, al) is then obtained from Eq. (3) summing

up all partial amplitudes.
In Fig. 1(a) we show 4'(o~, oi) for oi = 10 MeV as a

function of or~ and for ~Q~
= 300 MeV/c. In this example

t e Reid potential has been used. One can notice how the

form of the transform resembles that of R(c0,
~ Q~), with the

typical quasielastic peak around ~Q /2M=50 MeV. Of
course this is expected because of the bell shaped nature of
the kernel.

Since R(cu, Q~) builds up additively out of the different
contributions, one could generate them separately out of

the corresponding 4 amplitudes. In Fig. 1(b) some of these
amplitudes are shown for J ranging from 1/2+ to 9/2+. One
sees that the shapes of the transforms are very similar in all
cases but in the channel J"=1/2+ Th'is corresponds to the
monopole part of the operator and it is directly connected to
the three nucleon ground state. So it is wise to add first all
J contributions up to 15/2 —except for 1/2+ and then invert
that sum and the 1/2+ ipiece separately. This same procedure
was applied successfully in Ref. [8].The second term in (15)
is present only in the state 1/2+. In this case the cancellation

etween the two terms may be delicate. We notice that the

second term can be replaced identically b —9 0
is t e way we actually determine 4 for J=1/2+ which is
superior since the Faddeev component

~

' l k
tor on five channels for the ground state. If we did not make
this replacement the full bound state i0) with an infinite
number of channels should have been taken into account.

The inversion follows the way proposed in [8]. We ex-
pand the structure function in a set of functions y cuunctlons g~

with

n —1/2 —col EO (18)

This leads to

(19)

(20)

FIG. 3. The le longitudinal response function of He at

|gal

=300
MeV: dependence on the number of b fasis unctions; a monopole
contribution; (b) sum of all other amplitudes.
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"wavelength" seems to be smaller than the resolution o.I of
the kernel. So they are presumably to be considered unphysi-
cal since, in addition, no such structures are seen in the trans-
form (see Fig. 1).

The sum of the two contributions to the response function
is shown in Fig. 4(a). The curve corresponding to N=6 has
been chosen for the reasons mentioned above. Nevertheless a
sort of shoulder shows up at low energy. In the same figure
and also in Fig. 2 the present results are compared with those
obtained in a totally different way in Ref. [14], i.e. , using
directly the continuum. The agreement is almost perfect but
for the first and maybe the last point, i.e., just in the regions
where the inversion seems to be affected by larger uncertain-
ties.

As to the low energy part of the spectrum one could try to
improve the situation using the results on the Stieltjes trans-
form [5,15] or applying the following procedure. Since the
low energy behavior of the result in Fig. 3(b) is rather un-

certain and since, as it was also shown in Ref. [Sj, the mono-

pole contribution will dominate the response up to about
15—20 MeV above threshold, one could obtain the total re-
sponse matching the pure monopole part at lower energies
and the total sum at higher ones (we choose in this case
N= 7) at some point between 15 and 20 MeV above thresh-
old. The result of this procedure is shown in Fig. 4(b) where
a nice agreement is obtained also for the first point of the
direct calculation.

In Figs. 5 and 6 our predictions obtained with the Bonn-B
potential for both He and H are compared to experimental

data for ~Q~
= 250 MeV/c and ~Q~

= 300 MeV/c. One can
see an overall satisfactory agreement, except in the peak of

H at ~Q = 250 MeV/c and of He at ~Q = 300 MeV/c.
In conclusion we have shown that obtaining the response

function of the three body systems from the inversion of a
Lorentz kernel integral transform is a feasible task. The re-
sults are in excellent agreement with those obtained with the
direct method and in rather good accord with experimental
data. While the results do contain the full dynamics of both
initial and final states the lengthy calculation of the con-
tinuum is avoided.

The present method has been applied within a completely
nonrelativistic framework and the good agreement with the

experimental data suggests that at these values of ~Q~ rela-
tivistic corrections are of minor importance. Results at larger
momentum transfer could also be obtained in the same way,
provided that higher J components are included in the so-
lution of Eq. (5). One could then explore at which values of

Q~ relativistic effects would begin to become significant.
Work along these lines is in progress.
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