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Microscopic analysis of collective states in neutron-deficient doubly even xenon
isotopes
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The low-lying collective states of xenon isotopes are studied by means of the boson expansion
theory. The microscopic Hamiltoniau is comprised. of the self-consistent QQ interaction with higher-
order (three- and four-body) terms, monopole- and quadrupole-pairing interactions in addition to
the spherical limit of the Nilsson Hamiltonian. It is shown that the difFiculty of weak strengths
of the monopole-pairing interaction in this region, indicated by Rohozinski et al. , can be naturally
remedied by including the quadrupole-pairing interactions.
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I. INTRODUCTION

Since Bohr, Mottelson, and Pines [1] introduced the
concept of nuclear superconductivity, the pairing interac-
tions have played crucial role in understanding various as-
pects of nuclear structure. Among them, the monopole-
pairing interaction has been extensively studied since it
seems to be the main component of the pairing interac-
tions in nuclear physics.

Over 15 years ago, Rohozinski et al. [2) performed
dynamic calculations of collective states for neutron-
deficient doubly even Xe and Ba isotopes, making use
of the collective Hamiltonian obtained fully microscopi-
cally. They found that in this region the pairing interac-
tion strengths need to be reduced by 20% to reproduce
roughly the general trends of the energy spectra. This is a
characteristic problem of the effective interactions in this
mass region. In their calculation, the monopole-pairing
interaction was included but the quadrupole-pairing in-
teraction was not. From our present point of view, how-
ever, the quadrupole-pairing interaction is expected to
play important role in investigating nuclear quadrupole
collective phenomena.

In the early 1970s, Bes and Broglia [3] introduced
multipole-pairing interactions to explain the strong L g
0 (t, p) transitions around closed shell nuclei. Since then,
the q~zadrupole-pairing interaction has found many ap-
plications, e.g. , to low-lying quadrupole collective states
in boson expansion theory [4,5], to the attenuation of the
Coriolis interaction in an odd mass nucleus [6,7], to the
shift in the band crossing frequency [8,9], etc.

Recently the origin of the multipole-pairing interac-
tions has been clarified in terms of the local Galilean
invariance of a nuclear system and, at the same time, the
self-consistent strengths of such interactions are proposed
[10]. So it is advisable to perform microscopic calculation
of nuclear quadrupole collective motion in this region in-
cluding the quadrupole-pairing interaction. The present
paper is devoted for this purpose, and the strengths of
the pairing interactions are investigated.

Numerical calculations are made by means of the bo-

son expansion theory (BET), since it allows us to take
into account higher-order terms neglected in the ran-
dom phase approximation (RPA), and furtherinore the
adiabatic condition for particle motions can be avoided.
Among various types of BET's, extensive numerical cal-
culations have been performed with the formalism devel-
oped by Kishimoto and Tamura [4,5] (referred to as KT-1
and KT-2), and good agreements with experiments have
been obtained in various region of the periodic table. The
BET of Kishimoto and Tamura has been reformulated
in a mathematically rigorous form as a normal-ordered
linked-cluster expansion of the modified Marumori bo-
son mapping [ll] (referred to as KT-3). Boson operators
in KT-3 are allowed to act upon the ideal-boson states.
It is a very promising method for the description of an-
harmonicities in nuclear quadrupole collective motions, if
the coupling to noncollective states is faithfully included
in the calculation. The calculation in this paper is per-
formed based on the BET formalism of Kishimoto and
Tamura [4,5,11]with several refinements developed in our
previous work [12,13].

II. MODEL HAMILTONIAN

In the microscopic analysis of nuclear structure, it is
desirable to introduce reliable effective interactions be-
tween nucleons in the nucleus. The pairing + multipole
interaction model has been extensively and successfully
applied not only to low-lying collective states but also to
giant resonances in spherical nuclei [14—17]. However, it
has been shown that the same model failed to reproduce
the prominent features of the observed data in deformed
nuclei. The reason for it has been traced to the vio-
lation of the nuclear saturation and the self-consistency
between the shape of an average potential and that of
a density distribution (nuclear self consistency) for the-
conventional multipole (QpQp) interaction model, and
an improved version of it, i.e., the doubly stretched
multipole (Q&Q&) interaction model, has been proposed
[18,19]. The model has found many applications, e.g. , to
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giant resonances in deformed nuclei in RPA [18,19], to
anharmonic p vibrations in a self-consistent —collective-
coordinate (SCC) method [20], to octupole modes built
on superdeforrned bands in the cranked shell model +
RPA [21], and even to the octupole softness of the super-
and hyperdeformed states [22,23].

Though the doubly stretched multipole interactions
are noninvariant under spatial rotation when the equi-
librium shape is not spherical, they have advantages
that they are responsible for the Huctuation about de-
formed equilibrium. Furthermore, the doubly stretched
multipole interactions simulate nicely some important
eÃects of self-consistent and rotational-invariant higher-
order (many-body) interactions which are induced so as
to satisfy the nuclear self consis-tency with higher-order
accuracy especially when more than one mode is simul-
taneously excited in a system [19]. In this paper, to keep
the rotational invariance of the model Hamiltonian, the
conventional QQ interaction and additional quadrupole
higher-order interactions are adopted instead of the dou-
bly stretched Q"Q" interaction, since, as shown in Ref.
[19], effective two-body contracted part of the (Qq+
quadrupole higher-order interactions) is almost equiva-
lent to the Q"Q" interaction in a deformed system.

The model Hamiltonian with which we start is given
in fermion operators as

Bp —— ) {jm~r
~

j'm'): at a~-

Dmin'm'

(12)

where the abbreviated notations are de6ned by

(Q~ Q~) =) Qi Q„—„, Q„—„—:(—1)" "Qi— (13)

(q.q.q.)
-=([q.q.]'"'q.) (14)

In the above Hamiltonian, II0 pair and H2 pai, are
monopole- and quadrupole-pairing interactions, V( ) is
the ordinary two-body QQ interaction, while V( ) and
V( ) are the efFective three- and four-body interactions
introduced as the higher-order terms of the QQ interac-
tion to recover the saturation and the self-consistency in
higher-order accuracy [19,24,25].

In this paper we will expand our model Hamiltonian
up to fourth order with respect to bosons, and in prin-
ciple, we intend to take account of contributions &om
all the possible interactions up to the same order so as
to include the efFects of the kinematical anharmonicities
originating &om the fermion algebra and dynamical an-
harmonicities originating from the higher-order interac-
tions on the same footing. This is the reason we adopt the
quadrupole interaction up to the four-body interaction.
In fact, the (QQQ) part of V(s) and (QQ)2 part of V(4)
are expected to contribute directly, i.e., without any re-
coupling of the angular momentum, to third- and fourth-
order quadrupole collective boson Hamiltonians, respec-
tively, while the R(qq) part of V( ) is expected to con-
tribute to the fourth- order quadrupole collective Hamil-
tonian through the coupling between a two-quadrupole
phonon 0+ state and two-quasiparticle 0+ states. Since
V( ) and V( ) can be understood as higher-order terms
of a Taylor expansion series of the Q"Q" interaction with
respect to the quadrupole deformation parameter, they
are relatively small quantities compared to the QQ inter-
action. Therefore, in practical calculations, it is sufhcient
to include only a few of their lower-order boson expanded
terms and their higher-order boson terms coming through
the recoupling of the angular momentum are negligible
except for a nucleus having very large quadrupole defor-
mation. In fact the effect of V( ) is not so important
in the present mass region because of a small coupling
constant, though, as shown later, V( ) has visible contri-
butions.

It should be noted that, because of the derivation, V( ),
V( ), and V( ) are written in terms of the normal-ordered
one-body operators Q2~ and Bp, where the normal prod-
uct: .~: is defined with respect to quasiparticle oper-
ators. A detailed derivation and further discussions of
such higher-order (many-body) interactions are given in
Ref. [19]. Essentially the same type of many-body in-
teractions has been independently derived by Marshalek
[26], and the three-body interaction has been applied to
the analysis of anharmonic p vibrations in Er by Mat-
suo and Matsuyanagi [27] and Stotts and Tamura [28], to
the analysis of two-phonon states in Ru and Se isotopes
by Aiba [29], and to the analysis of shape transition in
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Sm isotopes by Yamada [30].
In t;he present calculation, single-particle base is con-

structed by using the spherical limit of the Nilsson Hamil-
tonian h, ~ [31]. The xnodel space is spanned by 2px/2,
2ps/2, 1fs/2, 3sx/2, 2ds/2, 2ds/2, Igv/2, lgs/2, and Ihxx/2
orbits for protons and 3sx/2, 2ds/2, 2ds/2, Igr/z, 2'/2,
1h9y2, lhzzy2, and li&3/2 orbits for neutrons.

The strengths of the self-consistent Qq interaction and
its higher-order terms are parametrized as
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where the order estimations are performed by assuming
the uniform density distribution for the nucleus. The
dimensionless parameters f2, fs, and f4 are introduced
as adjustable parameters. To reduce the number of &ee
parameters, they are set to f2 ——fs ——f4, and f2 is
varied slightly around the vicinity of the predicted value,
i.e., unity.

For the strength of the quadrupole-pairing interac-
tion, following the manner of Refs. [5,13], a similar
parametrization is introduced as

self|"2= e~X2 (18)

and g2 is varied as another adjustable parameter. For
simplicity, a single value of g2 is used both for proton
pairs and for neutron pairs.

For the monopole pairing, the interaction strengths
Gp(p) for protons and Gp(n) for neutrons are fixed to fit
the experimental gap energy through the gap equation.
The gap parameters are derived &om the experimental
data of nuclear binding energy taken &om the compila-
tion by Wapstra and Audi [33]. Figure 1 shows the values
of these quantities. For comparison, Rohozinski et al. [2]
have used two different parameter sets for the strengths
of the monopole-pairing interaction in their calculation.
One is the standard pairing strengths (SPS's) given by

Gp(p) = 28.5/A [MeV], Gp(n) = 25.0/A [MeV], (19)

and the other is the weak pairing strengths (WPS's) given
by

Gp(p) = 22.8/A [MeV], Gp(n) = 20.0/A [MeV]. (20)

The strengths of the monopole-pairing interaction

where y', y&', and y4' are the self-consistent values of
y(2), y(s~, and y( ), respectively, which are derived in Ref.
[19]. Including the extra factor of 2 due to the renormal-
ization of quadrupole core polarization effect [32], they
are given as
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FIG. 1. The gap parameters (triangles) are shown in units
of MeV, while the strengths of the monopole-pairing inter-
action (circles) are plotted in units of MeV/nucleon. Solid
(dashed) lines connect the values for protons (neutrons).

adopt;ed in the present calculation are in between t;he
SPS's and the WPS's. Because of the derivation, how-
ever, they can be understood as the conventional stan-
dard values. In fact, these values are nearly compatible
with the systexnatics [34]
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FIG. 2. The parameter for the strength of the QQ inter-
action fs and that of the quadrupole-pairing interactloil g2
adopted in the present calculation. As a reference, the the-
oretical value of the self-consistent strength y2' for the QQ
interaction is plotted in units of MeV v, where v = Mugs/h.

where the plus (minus) sign is for protons (neutrons).
Figure 2 shows the interaction strengths adopted in the

present calculation to 6t the experimental energy spectra.
To reduce the number of Bee parameters, a single value of
f2 ——0.93 is used for all the isotopes. Thus g2 is the only
parameter which is varied &eely to 6t the experimental
data.

Recently by using the concept of the local Galilean in-
variance as an important guiding principle, the origin of
the multipole pairing interaction has been clari6ed and
the self-consistent strength of the 2 -pole pairing inter-
action is proposed in Ref. [10] as
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In the Taxnm-Dancoff (TD) representation we use Bt de-
fined by

FIG. 3. The strength of the quadrupole-pairing inter-
action Gq adopted in the present calculation is shown in
units of Gz' . As a reference, the theoretical value of the
self-consistent strength G2' is plotted in units of MeV v,
where v = M~0 jh.

where a = {crit), n denoting a TD component for a
fixed multipolarity A, and D~,j, ——(1+ bj,j, )x~2. The
basic commutation relations for these operators are given
by
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The comparison between the value of g2 adopted in
the present calculation and that of the theoretical self-
consistent strength is given in Fig. 3. Here, a bump ap-
pears at A = 122 in the behavior of the absolute value of
G2 both for protons and for neutrons. A similar bump
can also be seen in Fig. 2 for the behavior of g2 (i.e., |q

plotted in units of y2' ). These bumps are due to the cor-
responding bump of the gap parameter of Fig. 1 which
seem to be rather unnatural. However, as can be seen
&om Fig. 3, such an anomalous bump disappears when
we plot G2 in units of G2, and the value of G2 is close
to that of G2 both for protons and for neutrons. This
means that even if there exists some unnatural behav-
ior in the adopted parameters for the monopole-pairing
interaction, the theoretical value of G2' can faithfully re-
Bect such behavior and it can be a good reference value
for the strength of the quadrupole-pairing interaction.

(2S)

We also introduce the ideal boson operators At and A
which satisfy

[A, Ats] = h g„[A,Ag, ] = [At, A~~] = 0. (29)

Orthonormal n boson states, which span the ideal bo-
son space, are introduced as

ln: a) =—N(n: a) 'At, At, . At l0),

where N(n: a) is the boson norxnalization factor,

N(n: a)—:(OlA „.. .A, At . At l0),

(30)

with the abbreviated notation (n: a) = (ai, a2, . . . , a„)
with a~ & a2 & ~ - & a . The corresponding n TD
fermion-pair states

ln: a)) = N(n: a) Bt Bt . Bt l0) (32)

III. BOSON EXPANSION are not generally orthonormal and linearly independent.
The fermion norm matrix is denoted as

We first define some of the basic quantities. The op-
erator dt creates a quasiparticle in an orbit

l jm), while

djm annihilates it. The pair-creation operator and the
so-called scattering operator are defined as

Bt ( 1)j x j2 &Bt- —
j1jZ~p j~j1&I

) (jimij2m2]&p)d
m1mg

((n: aim: b))—:8„(z„'),s —= b„(z„'),. . .
= h (1 —Y );b, (33)

where the corresponding ideal boson norm matrix is de-
fined by

(n: aim: b) =—b„(1„),s =—h'„(1„),... „,g, . ..g„, (34)

and Y is regarded as a matrix which measures the devi-
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ation of the fermion norm Rom the corresponding ideal
boson norm. For example, we have for n = 2 as (B,, )~ = A, ——) Y(tgt2tst4)A, ,A,,Ag, + O(e )

tgtst4

(12)~.,s = N(2: a) N(2: b) (b ,q, b ,s, + b ,q, b ,s, ),
(35)

(Y2)~,~ = N(2: a) N(2: b) Y(bqaqa2b2),

where

Ag ) N(t2ts)N(tgt4)(Y2)g, g, ,g, g,
tgtgt4

xAJ, AJ, Ag, + O(e ),
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(44)
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Y(aza2asa4) = )

p

(38)

in: t) —= ) (Z„')~., ~ in, : t'));

here and. in the following t, t', etc. , indicate the com-
ponents that belong to the T~ space while t, t', etc. ,
indicate those that belong to the (1 —T~) space. To de-
rive a physically meaningful boson mapping, the ideal
boson space (in: a)) is also divided into two parts,
T and (1 —T); i.e. , the truncated space T for boson
states is introduced as a replica of the T~ space for the
fermion states. The one-to-one correspondence between
the fermion state in: t) and the boson state in: t) in the
truncated space is obtained by using a mapping operator

In order to construct orthonormalized fermion states,
we have to assume that the inverse of Z, i.e., Z, exists.
One of the possible ways would be to divide the fermion
space (in: a))) into two parts, TJ: and (1 —TJ;), i.e., the
T~ space including the components that are retained,
and (1 —T~) excluding those. Then the orthonormalized
fermion states can be obtained as

.'=o = ).@,', ),=o,',oo/~ (46)

with

(~ p)
@,,i:o = Q)~

) ~g = 2g + 1th~v~)
E, (~')'

(47)

where e denotes the expansion parameter such as iY2i.
In Eq. (45), b(Ct)~ represents the fourth- and much
higher-order terms, and it consists only of such terms,
the so-called t-sum terms, which contains only the TD
components that are outside of the T space. The e is
very small, if we truncate the system to the collective TD
component [ll]. For the noncollective components, the
corresponding e is not always small. However, it is shown
in KT-3 that if none of the noncollective components ap-
pears more than once (although the collective component
may appear multiply), the theory remains still applica-
ble, even if we retain only the lower-order terms of the
expansion.

Since the above forxnalism of BET is based on the
quasiparticle representation, it seers &om the spuri-
ous particle-number excitations associated with particle-
number nonconservation. To remove such spurious
modes, we use the prescription developed in Ref. [12].
Vv'ithin the TD representation in our &amework, a basic
creation operator for the spurious mode can be expressed
as

as

U = ) in: t)(n: ti
(n:t)

(40)
where u~ and v~ are the u and v factors in the BCS
formalism. Then the spurious states in: a)) in general
are expressed as

in: t) = Uin: t), in: t) = U'in: t). (41)

(Oy)~ = UO~Ut (42)

At the same time, a boson image (O~)~ of a fermion
operator O~ is de6ned by

in ~ a)) —ial —0 a2 a3 ~ ~ ~, a„))
= N(n: a) BotBt . . .Bt io), (48)

which contains at least one spurious excitation mode Bp.
Here abbreviated notations are de6ned by

so as to satisfy (n: a) —= (a, = o, a2, as, . . . , a„)
with 0 & a2 & a3 & . . - & a (49)

(m: tioy in: t') = (m: ti(oy )

gamin:

t') (48)

in the truncated subspace.
The normal-ordered linked-cluster expansion of (O~)~

is obtained by expressing io)(oi and (Z )q.q in an expan-
sion form. For example, the basic operators are expressed
as

in: a) = iai —
O, a2) as, . . . , a„)

= N(n: a) AtoAt . At io),

N(n: a) = N(aq —0 a2 a3 a )'
= (OiA.„"A.,AoAo'At, . . .At iO). (51)
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A projection operator onto the so-called physical quasi-
particle subspace in the truncated space, which does not
contain any spurious excitation mode, is introduced as

in: t) = Uin: t), in: t) = U' in: t), (58)

with

I'~ ——T~ —) in: t)(n: ti,
(n:i)

(52)
(Oy)gy = UOp U,

(m: tiOp. in: t') = (m: ti(Oy)~in: t')

(59)

(60)

in: t) =—) (Z„');.;,i:t')), (53)

In:t)) = It t " t )) =P~ln:t))
wltll t1 Q0~. . . ~t~ g 0, (54)

where in: t) are orthonormalized spurious states belong-
ing to the truncated subspace. Defining nonorthogo-
nal physical quasiparticle state in: t)) and corresponding
norm matrices as

As is clearly demonstrated above, the only difFerence be-
tween U and U is whether in: t) or in: t) is mapped
onto in: t); i.e. , whether or not the truncated quasipar-
ticle states contain spurious states. Exploiting the fact
that the evaluation Y involves only the knowledge of Y,
improved boson expansion coeKcients are obtained with
just a few modifications in the previous coeKcients. For
example, we obtain

(B,, )~ = A, , ——) N(t3t3)N(trt4)(Y3)t
C2tgt4

(& )t;t'—:((n: tin: t')) = ((n: ti&1v in: t ))
—= (1„—Y„)t.,t,

then orthonormalized physica/ quasiparticle states are ob-
tained as

with

xAJ A,,At, + O(e ),

Y2 ——Y2 + LY2)

(61)

(62)

) = ) (Z„')t.t. ln: t'))
(n:t') (AY2)t, t, .t~t~ ——) (Y3)t,t, ;ot[(13 —Y2) ]ot;otl (Y2)ot';tits.

U= ) in:t)(n:ti,
(n:t)

(57)

while the mapping rules in the physical quasiparticle sub-
space are given by

A boson mapping operator U for an improved BET,
which maps orthonormal physical quasiparticle states
in: t)) onto ideal boson states in: t), is now given as

(63)

In practice, since there are two basic spurious modes, i.e.,
spurious excitation modes associated with a proton num-
ber and a neutron number, we apply the above procedure
to both of them separately.

By use of Eqs. (45) and (61), we can bosonize the
original fermion Hamiltonian of Eq. (1). The resulting
Hamiltonian, up to fourth order, is given by

(If)H ) hll(tlt2)(At~ ' Atl) + ) h20(tlt2)((At~ . At ) + H.c.)
t1&t2

+ ) ) h21(t1tz . t3)(([A,, A, , ]
" At, ) + H.c.) + ) hsp(t1t3t3) j([A,, A, ]

" A, , ) + H.c.)
t1 &t2 t1 &t2 &f3

+ ) ) ) h33(ttt2 . t3t4, I)(([A,, A, , ] [At, At, ] ))
tg&t2 t3&t4 I

+ ) ) ) h31 (tltgt3 ~ t4 j I)(([At At ] ' [Ats At4] ) + H c )
t, (t2&t, t4 I

+ ) ) h4p(t t t1t34,3I)(([At At ] [At At ] ) + H.c.),
t1 &t2 &t3 &t4 I

(64)

where the explicit expression of the coeKcients h's are
given in Ref. [12]. This Hamiltonian contains many
terms: the purely collective parts in which all the bo-
son labels in the summation are restricted only to the
collective one, the coupling terms which contain collec-
tive as well as noncollective bosons, and finally the purely

noncollective parts which contain noncollective branches
only.

In order to include approximately the coupling efFect
between the collective and the noncollective modes, we
use the perturbation theory for a quasidegenerate sys-
tem [25,35—38]. The truncated boson space T is divided
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into two parts, i.e. , a P space and a Q space. Since
we are interested in the quadrupole collective motions,
the space spanned only by the coherent quadrupole TD
mode, which we will denote as t, xx = (82@), is referred
to as the P space and the space containing all the other
modes is referred to as the Q space. Then, along the line
of the Feschbach formalisxn [39],we construct an effective
boson Hamiltonian to be used in the P space as

Hpp = Hpp + Hpp~
1

HPP = HPg HgP,E —Hgg

with

Hpp = P(H)IxP, Hqq = Q(H)~Q,
HI q

——Hq'~ = P(H)IxQ,

except for the restriction on the noncollective states. In
the present calculations, all the possible noncollective bo-
son states (I = 0+ —4+) which can couple directly to the
states with one or two collective phonons are included,
while in KT-2 only the 2+ noncollective states were in-
cluded as the Q-states.

By use of the technique developed in Refs. [5,12], which
is based on the closure property for the intermediate
states in the coupling Hamiltonian, the HPP term can be
brought into an operator form so that the formal struc-
ture of it is just same as that of the purely collective
Hamiltonian HPP. The structure of the total Hamil-
tonian HP+p, which will be henceforth referred to as a
collective Hamiltonian, is kept unchanged even when the
coupling term HPP is taken into account. As a result, it
can be expressed in a compact form as

H..x, =—H~~~ = U, + ) h „;H' „',,
where E is a energy of the equation

(Hx I, —E)P4 = 0. (67)

mnc

h „,-=h(-„',. + h'),.'. (72)

Now we must construct the P space and the Q space
more concretely. The above formalism is expressed in
terms of the so-called A bosons, which correspond to the
boson images of the original TD fermion operators in
lowest order. However, it is more desirable to include
the RPA-type correlations at the early stage of the cal-
culation. For this purpose, we introduce new type of
bosons, the so-called o. bosons, for the collective branch
de6ned by

(6S)

with

(69)

Here and in the following, abbreviated notations such as

H(a)
11

H(~)
20

H(cx)
21

H(-)
30
(~)

(cx)
22N
(~)

H22Z
H(~)

31
H(~)

40

(a' a)
(at ut) + (u a),

([ ' '] ) + (
'

[ ])
([u'u'] a')+(a [aa])
(a~ u~) (a a),

( ' )(( ' . ) —1)
J2 —6(at u),
(at . u~) (at a) + (at . u) (u .u),
(u~ . a~)(at at) + (a u)(u. u),

Here H, are operators of the form (at) (u) and the
additional index i distinguishes terms that have the same
m and n. They are expressed as

A A~ Ag2, A Ag

t—
)

with

i —= —lo{[a~u]~xl . [a~u]~'~). (74)

are used for the quadrupole collective A bosons and o.
bosons. Because of Eq. (69), the coefficients @ and P can
be expressed in terms of a single parameter z as

For the noncollective channels, the TD boson repre-
sentation is Axed so as to diagonalize the h11 part of the
boson Hamiltonian (H)xx in the Q space. For practical
purposes, we introduce the following two approximations:
(i) The space truncation is performed so that the Q space
is spanned by only those noncollective states in which
none of the noncollective bosons excites more than once
although the collective boson xnay excite multiply. (ii)
the collective states are treated to have energies that are
harmonic, i.e., N~ for collective N-phonon states, as far
as they appear in the denominator of Eq. (65). These two
approximations are the same as those adopted in KT-2

h2O(z, (u) = 0,

hxx(z, ~) = Ru. (75)

The first condition of Eq. (75) is equivalent to the so-
called elimination of dangerous terms, which helps to
make the P space in which the collective Harniltonian
is to be diagonalized much smaller than otherwise. The
second condition of Eq. (75), which is a kind of the self-
consistency condition, is nothing but a natural conse-
quence of the perturbation theory for a quasidegenerate

The coeKcient h,. comes entirely &om the purely col-

lective parts of Eq. (64), while h, .' is the contribution
&om the noncollective couplings. The explicit expres-
sions of these coefficients are given in Ref. [12].

The &equency of the harmonic motion, u, and the pa-
rameter for the o. transformation, z, are found by solving
simultaneously the following equations:
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system.
Now the collective Hamiltonian is expressed in terms

entirely of the a bosons and the eigenenergies of the col-
lective states can be obtained by diagonalizing it in the P
space. To visualize the physical properties described by
the collective Hamiltonian, the xx, bosons are transformed
into momentum and conjugate coordinates de6ned by

t 1
p

1
n = (z p—+ izm2„). (76)

Performing this transformation, the collective Hamilto-
nian can be rewritten as

H, xx
= T(p2» xr2„) + V(p2„) + co~

where the potential energy surface is given by

V(P2„) = V(P, p) = c2$ P + c3( P cos3p+ c4$ P .

Q(mac) g/2p(mac) (79)

where A and R are the mass number and average radius
of the nucleus. On the other hand, our P2(„") is related

to the microscopic quadrupole operator Q2(„") in lowest
order as

Q2& = 2qio(cx + 6) = 2~2z qiop2„

Here $ is a suitable scaling parameter which relates our
xnicroscopic P2„, which may be called P2„", to the
macroscopic P2„of the Bohr-Mottelson xnodel. The
latter, called P2(„'), is related to the macroscopic

quadrupole operator Q2„as" (mac)

It should be noted that, as discussed in KT-2, a strong
correlation between the potential energy surface and the
energy spectrum holds only under the condition that all
the anharmonic terms in the kinetic energy T(P2„,xr2„),
i.e., those terms except the vr term, are sufBciently small.
If such a condition is not met and a generalized collec-
tive mass depends crucially on coordinates, then to pre-
dict the energy spectrum &om the shape of the potential
energy surface only can be dangerous. In the boson ex-
pansion approach, the adiabatic assumption is not made
and generally there appear terms that are in higher pow-
ers in vr. Such terms give corrections to the theories based
on the adiabatic assumption.

IV. RESULTS AND DISCUSSION

The effect of the quadrupole-pairing interaction on the
low-lying collective states for 118Xe is shown in Fig. 4.
Here we see that the calculated level spacing is decreased
as increasing the strength of the quadrupole-pairing in-
teraction. The order of the two-phonon triplet states
depends on the choice of g2 in this case. In general,
the order depends also on other force parameters such
as f2, f3, f4, etc. , and is much sensitive to the choice of
the single-particle levels. Therefore the difBculty in the
order of the triplet states is not always so serious but
sometimes can be remedied by the proper choice of the
single-particle energies [40].

To visualize the effect of the higher-order interaction,
the calculated level scheme and potential energy surface
for Xe are shown in Figs. 5 and 6. Though the higher-
order interactions are included up to the four-body in-
teraction for the case (b), we can verify from the order
estimation of the interaction strengths given by Eq. (16)
that the contributions &om the four-body interaction are
almost negligible for this region. Therefore the differ-
ences between (a) and (b) in these figures are xnainly due
to the contributions &om the three-body interaction. In

where an extra factor of 2 comes &om the fact that the
effective charge of the mass quadrupole operator is as-
sumed to be unity [32]. The qio is the first-order coeffi-
cient of the bosonized quadrupole operator, the higher-
order terms being much smaller. By setting

~ (mic) ~ (mac)
'4f 2p WQg )

we obtain

3AB2zp(mic) ~p(mac)
8~2vrqio

'

&2=f3=f4=0.93

2
4 ~ '

--.0

4

2

«8X

0
4

The coeKcients c2, c3, and c4 are given as
0—

0.7 0.8 0.9

exp.

1
cs ——— z (h21 + hso),

7
1 4c4 z (~22P + h22N + 2~31 + 2~40) ~

4 (83)

1 -2
c2 = —z (Ixxx + 2h2o —2h22P —6h22N —6I122j —7631), FIG. 4. Calculated energy levels of the 6rst 2+ and

the two-phonon triplet states as a function of the
quadrupole-pairing force parameter g2 for Xe. The
strengths of the Qq interaction and its higher-order terms
are fixed as fs ——fs ——f4 ——0.93. For comparison, experimen-
tal levels are plotted in the right region.
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FIG. 5. EKect of the higher-order interactions on the spectrum of Xe. The qq interaction strengths are chosen to be
f2 ——0.93, fs ——f4 ——0 for (a) and. f2 ——fs ——f4 ——0.93 for (b). In both cases, the strength of the quadrupole-pairing is fixed
as gz = 0.82. All the resulting states with E & 3 MeV and I & 8 are listed. Especially the states in the ground band, quasi P
band, and quasi p band, are separately accumulated. Experimental levels are plotted in (c).

Fig. 5 we see that the excitation energies of the states
in the quasi p band are relatively lowered while those in
the quasi P band are raised due to the three-body in-
teraction. It should be noted here that if we consider
the case of an axially symmetric deformed nucleus, the
doubly stretched Q"Q" interaction can be expanded as

--,x"(Q", Q".) = --, ).x."Q. Q.—
K

+ y( l —/5/16mERpQ2p, (84)

with

X".' = (1 —-', )X"'
~"' = (1 —-")X"'

~,",' = (1+ -', )~&' (85)

where E is the quadrupole deformation parameter [19].
Therefore in such situation the Q"Q" interaction is al-
most equivalent to the QQ interaction with difFerent
strengths for each K component. Since the eKect of the
three-body interaction can nicely be simulated by the
doubly stretched Q"Q" interaction, the above features of
the excitation energy for the states in the quasi bands can
be consistently understood by the results of the RPA cal-
culations for a deformed nucleus [19] and by preforming

order estimations of the interaction strengths of Eq. (85).
The calculated potential energy surfaces of the Xe iso-

topes studied in the present paper show p-soft features.
In fact, we see in Fig. 6 that the difference in energy be-
tween the two potential minima is rather small compared
to the zero-point energy. These features are enhanced by
the three-body interaction for Xe. In this mass region,
there is an interesting and important problem of the in-
terplay of p softness and triaxiality [41—44]. To obtain
some perspective about this problem &om the present
type of analyses based on the BET, however, we have to
know the p dependence of the calculated potential energy
surface up to at least the order of (Ps cos 3p)2. For this
purpose, we have to expand the original fermion Hamil-
tonian up to at least sixth order in terms of the collective
bosons. In the present calculation, however, the Hamil-
tonian is expanded only up to the fourth order and as a
result the p dependence of the potential surface is limited
up to the order of Ps cos 3p.

The theoretical spectra of Fig. 5(b) reproduce rather
well the relative order of the experimental spectra,
though the tendency to bunching of levels in the quasi. p
band which is characteristic to p instability is too promi-
nent in the theoretical result. The same difficulty was
observed in Refs. [5,13].

The systematics of the energy spectra for Xe isotopes
obtained by the present calculation is shown in Fig. 7(a).
The theoretical spectra reproduce very roughly the gen-
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FIG. 6. EKect of the higher-order interactions on the po-
tential energy surface of Xe. Each potential is obtained
by using the same parameter set as that of the corresponding
spectrum in Fig. 5. The horizontal line indicates the ground
state energy.

N

FIG. 7. Excitation energies for Xe isotopes: (a) theory, (b)
experiment. Only the states in the ground band, quasi P
band, and quasi p band, are accumulated here.
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eral trends of experimental spectra [Fig. 7(b)], though
the characteristic degeneracy or bunching of pairs of
states in the quasi p band is too prominent in the theo-
retical result.

V. CONCLUSIGNS

The low-lying quadrupole collective states of the
neutron-deficient doubly even Xenon isotopes are stud-
ied by means of the BET. The higher-order terms of the
Qq interaction are included to ensure the nuclear self-
consistency, while the quadrupole-pairing interaction is
included to ensure the local Galilean invariance.

In Ref. [2], it is indicated that the strengths of the
monopole-pairing interaction need to be reduced by
20% to reproduce roughly the experimental data in this
mass region, while in the present calculation where the

quadrupole-pairing interaction is explicitly included in
addition to the monopole-pairing interaction, such a con-
spicuous reduction is not necessary. The strengths of the
monopole-pairing interaction adopted in the present cal-
culation are in between SPS's of Eq. (19) and WPS's of
Eq. (20), and at the same time those of the quadrupole-
pairing interaction are close to the predicted values of the
self-consistent strengths of Eq. (22).

The calculated potential energy surfaces in this mass
region show p-soft features. To get detailed inform. ation
about the interplay of the p softness and the triaxiality,
however, further investigations based on a much higher-
order boson expansion are advisable.

In summary, the present calculation gives useful infor-
mation about schematic effective interactions in this mass
region and provides an important step towards the mi-
croscopic description of low-lying quadrupole collective
states in nuclei.
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