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Towards a madel independent analysis of single particle spectra:
Application to hypernuclei
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Considering one particle motion in a local potential, we derive a set of bounds relating moments
of the ground state density to successive excitation energies. We check the validity of these bounds
for potentials currently used in nuclear physics. The method is then applied to hypernuclear spectra.
We investigate the possibility of determining the local potential experienced by the A particle inside
the nucleus in a model independent way.

PACS number(s): 21.80.+a, 21.10.Pc, 21.60.—n

I. INTRODUCTION

Up to now the analysis of hypernuclear spectra has
been performed in a model dependent way, by guessing
or deriving the radial shape of the average potential and
6tting parameters to the measured single particle ener-
gies. Although this approach is legitimate, giving at least
a first insight into the physical situation, it is always de-
sirable to establish or to complete the scheme with a
model independent analysis. This has been the case, for
instance, of the nuclear charge density, allowing then for
valuable comparisons between models and experiments.

The situation is somewhat difFerent for a discrete spec-
trum, in comparison to a scattering amplitude. A con-
tinuous variable, namely the momentum transfer, which
can be measured up to large values, is replaced by a set
of data usually considerably smaller and extending not
so high above the ground state. The standard approach
relies on the inverse problem method, which is mathemat-
ically involved [1]. Consequently, determining a potential
Rom a bunch of bound levels could be a difBcult task.

It is the purpose of the present work to investigate the
possibility of extracting information from a single parti-
cle spectrum by using a method which is simpler than
the standard inverse problem. The technique is based on
bounds which are established &om sum rules. It gener-
alizes the approach of Bertlmann and Martin [2], linking
the rms radius of the ground state orbital to the 18-1p
energy splitting, and which has already been applied to
hypernuclei [3]. This method is specially well adapted to
one-body problems, and the hypernuclei offer a unique
possibility of application in the context of strong inter-
actions.

A somewhat similar approach has been proposed long
ago for the analysis of muonic x-ray energies [4,5], and
later on applied to pionic atoms [6). From transition

energies, moments of the nuclear charge or matter density
were extracted. The method was established empirically
and shown to be roughly model independent [7]. The
problem of mesic atoms is simpler than the one we are
treating here, because it is dominated at large distances
by the 1/r tail of the Coulomb potential.

It is important to recall that the derivation of the
bounds presented here is only valid in the case of the
Schrodinger equation with a local potential. This is an
obvious lack of generality. From this point of view, it
would be very interesting to have internal consistency
relationships, telling us how good a local approximation
is. If the nonlocality can be expressed in the form of an
effective mass depending on the radial coordinate, the
techniques used in Ref. [3] can be applied. However,
we restrict our discussion to local potentials and post-
pone more detailed analysis of nonlocal effects to future
investigation.

The paper is organized as follows. In Secs. II and III
we derive the bounds in the one- and three-dimensional
space, respectively, and we check their validity in a num-
ber of simple potentials. In Sec. IV, the technique is
applied to hypernuclei. Conclusions are drawn in Sec. V.

II. BOUNDS ON (x") IN THE
ONE-DIMENSIONAL CASE

The model independent method we are proposing is
based on a set of bounds for the ground state average
values of (0~x ~0). First, we sketch the derivation of the
bounds and test their degree of conMence, i.e., how far
they are saturated in the case of some typical potentials.
Although limited in its applications, the one-dimensional
case is useful to establish and illustrate the method. In
this respect, the Poschl-Teller potential [8) provides us
with an interesting possibility of analytic tests.

We start from the Schrodinger equation for a particle
of mass m in a local potential V(x):
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where j labels the single-particle states, and the basic
commutation relations:

nih „ i n(n —1)Hx] —— x p— 5 x"
m 2m (2)

From (2), it is easy to obtain the set of sum rules cor-
responding to x

n h) (E. —E )(olx"lj)'=
2

(olx'" 'lo) (3)

Here, IO) and
Ij) denote the ground and jth excited

state, respectively. For n = 1, we get the usual Thomas-
Reiche-Kuhn sum rule.

In order to get inequalities we can apply to (3) the
procedure used by Bertlmann and Martin (BM) [2]. It
consists in minoring the sum by retaining only the lowest
transition energy E~. In the dipole case (n = 1), we get

this could be simulated by considering polynomial oper-
ators O„(x) rather than x", in such a way that the lowest
nonzero matrix element of 0 (x) connects the ground to
the nth excited state. However this procedure leads to
complicated relations, and we discard this possibility in
the present work.

In general, inequalities are not so useful, unless they
are close to being equalities. Indeed, it is easy to check
that in the case of the harmonic oscillator both bounds
(5) and (7) are saturated, i.e. are strict equalities.

The infinite square well potential, with particle in the
interval [—2, 2], is providing us with a second trivial ex-
ample. From

(8)

(Ei —Eo) ).(Ol*lj)' &
2

and using the closure rule to sum over j gives the first
BM inequality:

h2
(*') &

2m(Ei —Ep)

For n = 2, the technique is similar, but we have to take
care of the fact that the matrix element (Olx Io) is not
zero, and therefore should be substracted. To be explicit,
consider

4h'~'
2 0 ma2

it is easy to verify that inequality (7) yields 0.1463
0.1612. In other words it is saturated within 10 %.

As a third example, we chose the modified Poschl-
Teller potential, a case we have used in a previous work
devoted to the BM inequalities [3]. We recall that this
potential is defined by [8]

52
2 A(A —1)V x = — a 2cosh (ax)

The two parameters to be fixed are the strength A and
the length scale o.. The energy eigenvalues are deter-
mined by

= ).(E; —Eo) (OI&'I j)' + (Ei —Eo) (ol&'ll)' E, = — (A —1 —j)'
2m

(10)
j)2

+(E. —E.) (OI*'Io)' (6)
The ground state averages of x2 and x4 are given by

The last two terms on the right-hand side do not
contribute, the matrix element or the energy di6'er-
ence being zero. However, in order to use the closure
while factorizing (E2 —Ep), we shall add and substract
(E2 —Eo)(olx Io) to the whole sum. Consequently we
are left with

(x )g = 2(A —2)a (x )g

262
(E2 —Eo)((&') —(&')') & (*') .

m (7)

Here, (x ) stands for the ground state average value
of x . In principle we can proceed further and obtain
the whole set of inequalities relating (x ") to (x ) in
a similar way. However, with n & 3, the quantities to
be substracted are transition matrix elements, and thus
the great advantage of the two first cases (n = 1, 2) of
dealing only with ground state expectation values is lost.
As we shall see, the situation is diBerent in three dimen-
sions due to orthogonality of the wave functions with
respect to the angular momentum. In one dimension,

6
(A-2) (* )"- (i2)

4 7Vr4
(T') g 2

—— and (x )p, —
120,' 240o.4

respectively.
The last two equations have to be taken for A ) 2. The

index j is the order of the level: j = 0, 1, 2, etc. For A =
2, we have
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TABLE I. Test of the inequality (7) in the case of the
Poschl-Teller potential for few values of A.

(E, —E.) ) l(olq-, olj)l

(*') —(~')'
0.2695

2 2
n&(4& —s) (* )

0.3225

0.0926

0.0454

0.0266

0.098

0.0476

0.0278

Noticing that

(olq*.,oq-, lo) = (r'") = (r")

we easily get

Taking into account
h2 (r2v —2)

(r ") ( v(2v + 1)

h2o. 2

E2 —Eo = (4A —8)
2m

the inequality (7) becomes

or equivalently

h2 v(2v + 1)(r2"—2)
(16)

Note that the inequality is independent of o., as it can
be checked easily. It is also independent of the mass of
the particle. The comparison of the two sides of the in-
equality (13) is displayed for a few values of A in Table
I. Being off by about 20% for A = 3, the discrepancy is
still of the order of 4% for A = 6. Even if the difference
continues to diminish at a rate of about 0.5%%up as A in-
creases by 1 unit, the inequality is not expected to reach
the 1% level before A 15. Thus the situation is not as
favorable as for inequality (5). In this case, the 1% level
is reached already with A = 5.

Here, Eq(v) is the energy of the lowest state reach-
able with the operator Q o &om the ground state. Be-
cause of the orthogonality of the single-particle wave
function with respect to the angular momentum, states
with energy lower than Eq(v) do not contribute to

(01Q„olj)(j]q„olo). Thus, these inequalities have a
simpler form than in the one-dimensional case.

The monopole transition operator, r, does not belong
to the class of r Y p. Thus, it allows us to establish an
independent inequality from

).(E~ —Eo) l(olr'lj) I' =

III. BOUNDS ON (r") IN THE
THREE-DIMENSIGNAL SPACE

As stated before, the three-dimensional case allows
us to extend further the method sketched in the one-
dimensional case and to derive a series of inequalities
for the moments of the ground state density (r ). This
is due to the orthogonality of states with different an-
gular momentum. Note that this is strictly true under
the assumption of spherical symmetry. In the case of a
nonspherical potential, corrections are expected to play
a role and to become increasingly important as the de-
parture ft. om sphericity is increasing. In the present work
we restrict the discussion to the spherical case.

In order to derive the inequalities, we start from the
well-known sum rule for the multipole operator Q
~ +„o, namely

):(E'—Eo)1(OIQ-,.lj)' = v(2v+ 1)(r'" ') (14)

(This sum rule has been derived in many papers. Here
we refer to lecture notes given by Fallieros at Orsay [9].)
By using the same method as before, the sum rule is
bound &om below by

Note, however, that in this case, a correction occurs,
which is similar to the one encountered in one dimension,
due to the fact that the operator r has a nonzero average
value in the ground state. In this case, as it can be
verified, the inequality reads

25' ~r'~

2s 0

Contrary to the one-dimensional case, in three dimen-
sions we have to face corrections arising &om the spin-
orbit splitting. This problem was already discussed in
our previous work [3] dealing with the TRK sum rule.
The same argument applies here: since we are consider-
ing sum rules which are linear in energy, Eq(v) should be
replaced by the average

2(2g+ 1) ~ 2(2E+ 1)

Since the spin-orbit effects are negligible in A hyper-
nuclei, we shall not care about this average and pursue
our reasoning as if the two spin-orbit partners were de-
generated.

As stated in the preceeding section, the key point is
to check how far the derived inequalities can be used to
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extract information on the moments of the ground state
density. This has to be investigated by considering a few
typical potentials. Whereas the method is not general, it
nevertheless fixes limits of con6dence.

As a 6rst example, it is easy to show that the inequal-
ities (15)—(17) are saturated for the harmonic oscillator
potential, i.e. they become equalities in this particular
case.

The I/r p—otential constitutes another interesting an-
alytical case. A simple relationship exists, for this po-
tential, among the moxnents of the ground state density,
namely

The inequality (15) takes the following forin:

(n+ 1)(n+ 2) n (n+ 2)2

4 2 n(n+4) '

(20)

2(n+ 2)

( +4)
Consequently we see that (15) is never close to an

equality. It is already off by 33% for n = 2.
At this point, it is opportune to remark that in the

analysis of mesic atoms [4—7], it was found useful to in-
troduce the equivalent radius R(n) instead of the moment
M(n). The former is defined by

R(n) = M(n)'~" = (r")'~" . (21)

By taking the nth root on both sides of (15) and (17),
we get automatically bounds for R(n). The equivalent ra-
dius does not contain more information than the moment;
however, its spreading is much smaller, in particular as
n becomes large. This can be shown easily by expand-
ing M(n) and R(n), respectively, around some average
value. As a consequence, the inequalities for R(n) are
much better saturated than for M(n). Taking the nth
root on both sides of (20) shows that even for the I/r
potential, the inequality for R(n) is saturated as n —i oo,
the worst case being around n, = 4. This result underlines
the specificity of the moment (r") at large n in discrimi-
nating among various wave functions.

The next question to ask is to which extent the inequal-
ities (15)—(17) are saturated for potentials typical for nu-
clear or hypernuclear physics. The tests are achieved
nuxnerically. To this aim we consider a four parameter
Woods-Saxon potential:

( )
(~+ )(~+ ) 2( n —2)

4

where ao is related to the decay of the wave function and
to the radius ((r2) = 3ap2). The energy difference is given
by

Ei(v) —E(0) = 2, v = n/2 .
h2 n(n+ 4)

p

TABLE II. Test of the inequalities (16) for the equivalent
( n)1/n

radius R(n) divided by the sum rule (
~" ~

& ) is listed up to
n = 10. The three potentials WSI, WSII, and WSIII corre-
spond to those given in the text. Harmonic oscillator values
are recalled for comparison.

HO
1.000

WSI
0.991

WSII
0.985

WSIII
0.996

1.000 0.988 0.982 0.994

n=6 1.000 0.985 0.979 0.992

The presence of a positive or negative hump allows us
to investigate the inequalities under slightly different ge-
ometrical conditions. The parameters have been 6xed
to the following values in model WSI (WSII, WSIII):
V(0) = —28.82 MeV (—27.6, —29.8), rp = 1.057 fm (0.98,
1.18), a = 0.4 fm (0.4, 0.4), b = 0.0 (+0.2, —0.2). The ra-
dius parameter R from (22) is defined as R = i.pAi~s,
where A = 209. For comparison. , we used also the har-
monic oscillator (HO) potential V(r) = V(0) + emu r,
with V(0) = —30.75 MeV, and hu = 3.9 MeV. The
above parametrizations describe more or less a A hyperon
embedded in Pb. The nucleus is large enough to allow
bound states up to l = 5, which means the 1h state in the
spectroscopic notation. The bounds on R(n) can thus be
tested up to n = 10. The results are displayed in Ta-
ble II. For the three Woods-Saxon potentials the bounds
are saturated within 2%. We have verified on a number
of similar examples that these results are typical for a
wide range of potentials. It fixes the confidence degree
of the method within a couple of percent.

Note that the few analytical cases we have worked out
in one and three dixnensions show that the inequalities are
independent of the mass of the particle. In the numerical
examples, however, the mass has to be speci6ed in order
to solve the Schrodinger equation. In view of application
to hypernuclear spectra, it has been 6xed to the &ee A
mass, namely 1115.6 MeV.

The monopole inequality (17) provides us with a sec-
ond constraint on (r4), and consequently a consistency
check. To illustrate the situation, the two inequalities
for R(4) obtained &om (15) and (17), respectively, are
displayed in Table III, for the three potentials quoted
above.

The results of Table II show that the inequalities for
R(n) are saturated within 1—3 % even up to n = 10. This
is fixing the confidence level to which they can be used as
equalities. The two bounds for R(4), on the other hand,
agree to better than 1% (see Table III).

We shall end up this section by a remark concerning
nonlocal e8ects. The present work is exploratory in na-
ture, therefore we keep the difBculty at its lowest level
and consider local potential. On the other hand, if the

V(r) = 1+ b V(0) 1+exp (22)

1.000

1.000

0.984

0.984

0.979

0.977

0.990

0.990
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4) 1/4

Quadrupole sum rule
HO

4.163
WSI
4.039

WSII
3.997

WSIII
4.103

Monopole sum rule 4.163 4.005 3.939 4.088

nonlocality can be put under the form of an effective mass
depending on the radial coordinate, the problem can be
tackled without tears, as was shown for the TRK sum
rule in a preceeding work [3]. The hint is to recall that
for Hamiltonians of the type

TABLE III. Comparison of the equivalent radius of order
4 (r ) ~ obtained from the quadrupole sum rule (15, v=2)
and from the value deduced from the monopole sum rule (17).
The potentials are the same as in Table II.

spectrum has been measured recently at KEK [11],how-
ever, the results of the analysis are still to be published
[12]. Thus we take the predictions of the scalar deriva-
tive coupling model, relying on its good fit to known
hypernuclear spectra [13] to expect reasonable extrapo-
lated values for & Pb. We shall refer to these values as
experimental data for simplicity.

Equivalent radii R(n) obtained from the inequalities
can be first compared to values calculated &om a few sim-
ple models for the ground state density. Assuming spher-
ical symmetry, three typical forms are used. They are
listed below together with their expression for (r") ~".

(a) The homogenous sphere with sharp boundary,

( 3
pp(r) = s O(Ro —r), (r") i" = Rp

4vrRp
'

I n+ 3)

= p'II = + V(r),
2m(r)

the commutation relation with the mult. 'pole operator
Q„p reads

(b) The Gaussian,

) even.

pp(r) = e

(
„,]„[35 7...(n+ I)]'~"

(23)

(24)

[H, Q-,o] =
2 ( )

[p', Q-,o]

In such a case, the right-hand side of the inequality
(15) undergoes the following transformation

2~' (
1&r ( 2

- 1/n
1

A
(r")'~" = (n+ 2)!—8

15

(c) The sum of two exponentials,

(25)

To the extent that

p2u —2 p2v —2

m r m

is an acceptable approximation, we conclude that the ra-
tio R(n+ 2)/R(n) is nearly independent of nonlocal ef-
fects (within the class of nonlocality considered here).
Obviously such a conjecture needs to be confirmed by a
careful numerical analysis, which we postpone to future
work.

IV. APPLICATION TO HYPERNUCLEAR
SPECTRA

V

r

e
e

o

e

~

Hypernuclei constitute an almost ideal case to apply
the technique presented in the preceeding sections and
to try a model independent analysis of the single particle
spectra. Indeed, the hypernucleus is essentially a one-
body problem, due to the absence of Pauli correlations
between the hyperon and the nucleons, small nonlocality
effects and almost negligible spin-orbit interaction [10].
Consequently, in this section, we shall investigate how
the inequalities we have derived are working in practice.
Two hypernuclei will be considered for which experimen-
tal data exist: & Y and & Pb. In the latter case, the

I s s I s3
0 2

I s i i, I i ~ s s I s i i I I

8 10

FIG. 1. The equivalent radii R(n) obtained from the & Pb
spectrum (crosses) are compared to three simple models of
the ground state density of the A. The solid line is the ho-
mogenous sphere with sharp boundary (22). The dotted line
is the Gaussian (23) and the dashed line is a sum of two ex-
ponentials (24). An experimental error of 2.5% is plotted for
the sake of comparison.
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Taking & Pb as an illustrative example, we fix the rms
radius to 3.7 fm, according to the values obtained from
the BM inequality applied to the A in the 1s state. It
determines in each case the single free parameter, Ro,
P, and n, respectively. The calculated values of (r")~~
are plotted against n in Fig. 1, and compared to experi-
ments. The quoted error of 2.5% is essentially reflecting
the uncertainty in the inequalities, and is displayed in
order to judge the uniqueness of the solution. It is quite
clear from Fig. 1 that the two extreme ground state den-
sities are excluded by experimental data.

The three ground state densities we have used in Fig.
1 have simply been adjusted to the rms radius, without
any reference to the measured energy levels. Ignoring
the spectrum is justified as long as one can deal with a
sufEciently large functional basis for the trial functional
space, together with a sufhcient amount of measured mo-
ments. This would constitute an ideal situation leading
to a properly model independent determination of the
ground state density. In practice, however, the analysis
cannot be achieved in this way, the number of values to
be fitted being too small. Consequently, it is more ef-
ficient to take into account constraints brought by the
spectrum itself. This is done by choosing an ensemble of
potentials which fit the spectrum, in particular the 1s-
1p splitting, and by comparing their predictions for the
moments with the estimates obtained from inequalities.

The procedure is obviously not unique and could be
biased by peculiar choices. On the other hand, one can
wonder if fitting the spectrum is not sufBcient by itself
to fix the potential. Actually, apart from the very few
lower levels, the spectrum is never fitted with such a great
accuracy. It leaves some undetermination which can be
completed by the bounds on moments. Moreover, testing
the moments of the ground state density yields a rather
direct way of appreciating the geometrical shape of the
potential and its pertinence. Thus, even if an excellent
fit is achieved, the bounds on Inoments are checking the
uniqueness of the potential.

For illustrative purpose, both cases of the & Y and
Pb spectra have been analyzed. We used Woods-

Saxon (22) as well as harmonic oscillator potentials. For

1.4

1.3

FIG. 2. The equivalent radii, relative to the rms radius,
obtained from the z Y spectrum (crosses) compared to the
values calculated by using potentials 6tting the lowest en-
ergy levels. The dotted, dashed, and solid lines correspond
to the potential WSI, WSII, and WSIII, respectively. The
dot-dashed line is the harmonic oscillator case. An experi-
mental error of 2.5'F0 has been plotted for the sake of compar-
ison.

s&sY, the parameters of WSI(WSII,WSIII) were the fol-
lowing: V(0) = —29.95 MeV (—28.4, —30.98), ro ——1.037
fm (0.968, 1.1095), a = 0.5 fm (0.4, 0.5), b = 0.0
(+0.2, —0.2); for HO: V(0)=—32.75 MeV, Re=6.7 MeV.
For &2 Pb the parameters were those presented already
in the previous section. The spectra are listed in Ta-
ble IV, and the equivalent radii B(n) are displayed in
Figs. 2 and 3. Here, (r")~~ relative to (r2) ~~2 are plot-
ted against n. The continuous curves show the results

1.5

1.4

TABLE IV. A single particle spectra for z Y and z Pb.

89Y

HO
WSI
WSII
WSIII
ZM6
exp.

1s
-22.7
-22.7
-22.7
-22.7
-22.7
-22.7

1J
-16.0
-16.0
-16.05
-16.0
-16.6
-16.

1d
-9.3
-8.4
-8.0
-8.5
-9.9
-9.9

1f
-2.6
-0.3
+0.6
-0.8
-2.9
-2.9

1g 1h

a.s

208Pb

HO
WSI
WSII
WSIII
ZM6

-24.9
-24.9
-24.9
-24.9
-24.9

-21.0
-21.0
-21.0
-21.0
-21.0

-17.1
-16.2
-15.9
-16.6
-16.7

-13.2
-10.6
-9.9
-11.6
-11.7

-9.3
-4.5
-3.2
-6.2
-6.4

-5.4
+2.1
+3.9
-0.4
-0.8

FIG. 3. Saxne legend as Fig 2 for the case of z Pb.
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obtained &om the fitted potentials, whereas the discrete
values are obtained &om the experimental energies. The
&ee mass of the A was used, which is consistent with our
assumption of locality.

As in the preceeding case of Fig. 1, we have attributed
a 2.5%%up error to the moments deduced from experiment,
which merely accounts for the uncertainty due to the
nonsaturation of the inequalites. Although it does not
give the actual error bars, it indicates the limits of the
analysis assuming accurate measurements of the energy
levels, which is not reached at present (the quoted errors
on experimental levels is of the order of 1—2 MeV). The
main salient feature is the lack of clear discrimination
between the harmonic oscillator and the Woods-Saxon
shapes, specially for & Y. In this respect the highest mo-
ments are of key importance, as shown by the last value
obtained in & Pb. It means that besides the radius and
the strength of the potential, the energy spectrum is not
terribly sensitive to details of the radial shapes.

V. CONCLUSIONS

In the present work, following the approach of Bertl-
mann and Martin [2], we have derived a set of inequalities
for moments of the ground. state density in one and three
dimensions. In the three-dimensional case, they appear
as recurrence relations among the even moments (r"), n
even. The derivation is restricted to local Schrodinger
equations.

The bounds obtained for the moments M(n) are read-

ily extended to the equivalent radii B(n), defined as the
nth roots of M(n).

These bounds become equalities in the case of the har-
monic oscillator potential. We have verified on some ex-
amples that the inequalities for B(n) are saturated within
a few percent for potentials currently used in nuclear
physics. Thus, in principle, the bounds can be used to
detemine the ground state density (or the ground state
wave function) from the measured energy levels. The
potential is then obtained by inverting the Schrodinger
equation. This method provides an alternative to the
standard inverse method [1], simpler mathematically but
of course less general.

In practice, however, the very finite number of mo-
ments available &om experiment limits the possibility of
the method. This is what we have learned &om the ap-
plication to hypernuclear spectra. In & Y, with n & 6,
it is not possible to disentangle between a harmonic os-
cillator or a Woods-Saxon shape for the potential. Ac-
tually it is surprising that the experimental results favor
the harmonic oscillator potential instead of the Woods-
Saxon potential, as expected &om the shape of nuclear
densities. The situation is somewhat different in & Pb,
with n & 8 and a Woods-Saxon shape prefered by the ex-
perimental moments. These two examples show that the
method appears merely complementary to the usual fit
to energy levels. It basically yields a possibility of testing
the uniqueness of the potential in a model independent
way.
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