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Microcanonical treatment of hadronizing the quark-gluon plasma
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We recently introduced a completely new way to study ultrarelativistic nuclear scattering by providing a link

between the string model approach and a statistical description. A key issue is the microcanonical treatment of
hadronizing individual quark matter droplets. In this paper we describe in detail the hadronization of these

droplets according to n-body phase space, by using methods of statistical physics, i.e., constructing Markov
chains of hadron configurations.
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I. INTRODUCTION

Studying nuclear collisions at ultrarelativistic energies
(F, , /nucleon&) 1 GeV) is motivated mainly by the expecta-
tion that a thermalized system of quarks and gluons (quark-
gluon plasma) is created [1].There are essentially two direc-
tions for modeling such interactions: dynamical and thermal
approaches. The former ones refer to string models [2—7] or
related methods [8], supplemented by semihard interactions
at very high energies [9—12]. Here, a well-established treat-
ment of hadron-hadron scattering, based on Pomerons and
Abramovskii-Gribov-Kancheli (AGK) rules [13],is extended
to nuclear interactions. Thermal methods [14—19] amount to
assuming thermalization after some initial time ~0, with evo-
lution and hadronization being mostly based on ideal gas
assumptions.

We recently introduced a completely new approach
[20,21], more realistic than the string model and more real-
istic than thermal approaches, providing a link between the
two. Based on the string model, we first determine connected
regions of high energy density. These regions are referred to
as quark matter (QM) droplets. Presently, a purely longitudi-
nal expansion of the QM droplets is assumed. Once the en-

ergy density falls beyond some critical energy density e, ,
the droplet D hadronizes into an n-hadron configuration
IC = (h, h z

. .h„) with a probability proportional to
where A represents the microcanonical partition function of
an n-hadron system. Because of the huge configuration
space, sophisticated methods of statistical physics [22,23]
have to be employed to solve the problem without further
approximations.

So our approach amounts to treating high density regions
(droplets) for some time (between formation r& and hadroni-
zation rt, ) macroscopically, whereas before ~& and after r„a
microscopic treatment is employed. What happens, micro-
scopically, between ~& and 7.I, is not specified; there may be a
first or second order transition, just a crossover, or even some

nonequilibrium transition. The macroscopic treatment is cho-
sen due to the lack of appropriate transport theories of dense
hadronic or quark matter. So at present we parametrize the
behavior of the dense matter in a simple fashion, the time
evolution as longitudinal expansion and a hadronization ac-
cording to n-body phase space. The hadronization of a drop-
let is not meant to represent a dynamical description of a
phase transition; it means that at 7& one observes a multihad-
ron system, whatever happened between ~& and 7.&. Whether
our parametrization is realistic and what happens micro-
scopically between ~& and rI, remain to be investigated by
the theories mentioned above.

The first stage of our approach is the identification of high
energy density regions, based on the string model, which is
already discussed elsewhere [20].Because of the empirically
found correlation $ s between the average rapidity y of
particles and of the space-time rapidity j, a hypersurface
,lY~, of constant proper time 7. can be introduced, in the cen-
tral region simply defined by t z= r . Afte—r having used
the string model (VENUS 5.08) to get complete information on
hadron trajectories in space and time, we may now, for given
~, determine the energy densities on ~, and thus locate high
density regions on ~, .

High density regions are considered as QM droplets; pres-
ently it is assumed that they expand purely longitudinally.
Whenever other droplets or hadrons cross its way, the two
objects fuse to form a new, more energetic droplet. Because
of the expansion, the energy density of a droplet will at some
stage drop below e, , which causes hadronization, to be de-
scribed in the following sections.

We consider the concept of QM droplets to be crucial, in
particular at SPS energies. It has been shown [21] that at
these energies energy density fluctuations are important: One
observes intermediate size regions of high density rather than
a uniform distribution. Typical sizes of few tens of fm are
observed for these high density regions.

II. HADRONIZATION ACCORDING TO n-BODY
PHASE SPACE

'
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For the hadronization of QM droplets we employ the fol-
lowing procedure: The probability of a droplet D with invari-
ant mass E and volume V to hadronize into a configuration
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K=(h, , . . . , h„) of hadrons h; is given as

prob(D —+ K) —II (K)

with A(K) being the microcanonical partition function of an
ideal, relativistic gas of the n hadrons h;. We first have to
define a set W of hadron species; we take W to contain the
pseudoscalar and vector mesons (m, K, rg, g', P,K*,co, @),
the lowest spin--,' and spin--', baryons
(N, A, X,R,b„,X",B*,A), and the corresponding antibary-
ons. A configuration is then an arbitrary set (hi, . . . ,h„]
with h; ~W

The partition function is given as

A(K) = C oi Cdeg Cident @, (2)

with

Un

(22rfi) " ' Cdeg=
Il= 1

@=P(E,m, , . . . , m„)

d3p; 8(E Xe;) 8(XP;) —8g gqJ:=i (4)

is the so-called phase space integral, with e;= ym, . +p,. be-/ 2 2

ing the energy and p; the three-momentum of particle i. The
term 8'& ~ ensures flavor conservation; q; is the flavor vec-

tor of hadron t, and Q is the fiavor vector of the droplet (the
components of the flavor vectors represent the net quark con-
tent for the quark flavors u, d, . . . ). Expression (4) is valid
for the center-of-mass frame of the droplet D.

We are going to employ Monte Carlo techniques, and so
we have to generate randomly configurations K according to
the probability distribution A(K). We want to develop a

Here, Cd, g
accounts for degeneracies (g; is the degeneracy of

particle i), and C;d,„,accounts for the occurrence of identical
particles in K (n is the number of particles of species n).
The last factor

method in particular for intermediate size droplets, covering
droplet masses from few GeV up to 100 or 1000 GeV. So the
method should work for particle numbers n =

~IC~ between 2
and 10, which means that we have to deal with a huge
configuration space. Such problems are well known in statis-
tical physics, and the method at hand is to construct a Mar-
kov process, specified by an initial configuration Ko, and a
transition probability matrix p(K; &K;+—,). In generating a
sequence EO, K&,K2, . . . , two fundamental issues have to
be payed attention to: (i) initial transient: starting usually off
equilibrium, it takes a number of iterations, I,q, before one
reaches equilibrium; (ii) autocorrelation in equilibrium: even
in equilibrium, subsequent configurations E, and E +; are
correlated for some range I,„„ofi. In general, both I,q

and

I,„„should be as small as possible.
We are going to proceed as follows: For a given droplet D

with mass E and volume V, we start from some initial con-
figuration Ko, and generate a sequence KO, K&, . . . ,Kl,eq'

with Ieq being sufficiently large to have reached equilibrium
(which is defined to be the steady state of the Markov pro-
cess). If we repeat this procedure many times, getting con-
figurations Kl', Kl~, . . . , these configurations are distrib-

eq eq

uted as II(K). So for our problem, we have only to deal with
the initial transient, not with the autocorrelation in equilib-
rium. We have to find a transition probability p such that it
leads to an equilibrium distribution A(K), with the initial
transient I,q being as small as possible.

So our task is twofold: We need to find efficient ways to
calculate, for given K, the partition function II(K), and we
have to find an appropriate transition probability
p(K, &Kb). —

III. PARTITION FUNCTION A(X)

The partition function is given as [Eq. (2)]

+(K) Cvol Cdeg Cident 0 ~

with the phase-space integral @[Eq. (4)] and some prefactors
C; [Eq. (3)]. In the following we discuss methods to calcu-
late P for an arbitrary number n of particles, starting with
n = 2.

For two particles (n = 2), we have

f
0(E ml m2) d pl d p2 ~(E ~1 e2) ~(pl+p2) =42r dp p' ~(E—umt+p' lm2+p'). — (6)

With po representing the root of the argument of the 8 function,

1/2

we get

@(E,m m2) =41 tvrpo[(m, +po) " +(m2+p(1) " ]
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In the following we consider n ~ 3. We propose a method to calculate @, introduced by Cerulus and Hagedorn [24]. The
phase-space integral, Eq. (4), may be written as

n

P(E,mi, . . . ,m„)=(4~)" [i=1

n ( n

dp; Hp. ; ~' E—X ~; W(pi. .p.),i=1 ( i=1 )

with p;= lp;l, and with the "random walk function" W given as

with e, =p;/lp;l, and with

de;= sin@; d6; dy;

representing the integration over all directions for a given length lp;l of a momentum vector of a particle. The name "random
walk function" is due to the fact that W represents the probability to return back to the origin after n "random walks" p;e; with
given step sizes p; .

We first evaluate W for n = 3. One may write

. 8(a; —p;)
W(pt, p2 p3)= Il d'q; IH. 4 2 ~(&q;)

t;= j 4m'a;
(12)

with a;:= lq;l. The integration over d q3 may be performed, and one obtains

1 1
W(pi, p2, ps)= 4 3 ~ 2 z d'qi d'q2 ~(~t-pt) ~(~2 —p2) ~(lqt+q21 —s»).477 ptp2ps J

(13)

Taking 4- to be the angle between q& and qz, we have

Iqi+q2I= v'ai+a2 —2ata2 cos 6= y'p, +p2 —2p, p2 cos 6,t 2 2 ! 2 2 (14)

and so we may perform five of the six integrations, to obtain

2(2') 1
W(pi pp2 &P3) 3 2 d cos 6 6( gp t +p2 —2p tp2 cos 6—ps),

O'T7 ps J —i

and we get the final result

(8~ p lp2p3)
' tf lpt —

p2I ~P3& I» i+p21,
W(pt p2 p3) =

otherwise.
(16)

In the following, we discuss methods to calculate W, for n~4. The random walk function may be written as

1 1
W(p, , . . . ,p„)=(,„, , d k g d,

which leads to

1 " sin pj'sW(p, , . . . ,p„)= dk X
2'7T j p p P

(18)

This is easy to evaluate via numerical integration, as long as n, tf is large (~ 10), where n, &f is the number of momenta with
p;~ e, with some small e. Otherwise the integrand fluctuates so strongly that we have to find a different method, as discussed
in the following.

From Eq. (18), we get
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1 1 1 ~ —l~ dP
(19)

The product II( ) in Eq. (19) can be written as

n

e l XOJPJ

J=1 0- ~(1,—1)

which is equal to

O e l Xg 0JPJ

(20)

(21)

digit, counting from right to left. For example for
v=7 = 111, we have j7= 1; for v= 8 = 1000, we have

j&=4. With this prescription actually all possible o.'s are

accounted for. Using this sequence of o's as described
above, we obtain

n

~,p, = g ~,p, -2~,"p, , (26)
~(v+1) g ~ ~(v)

For X o;p, being non-negative, we have

dk

J $n 2 :2~'i Res(k2 e ~~~j Pj) X=O

dn —3
lXX P

(n —3)! dk"

1=27ri, (iso;p, )"
n —3 ! (22)

whereas for negative Xo;p, the integral is zero. So we get

1W(, . . . , )=(Pl Pn 2n+1 ~ (n 3) i p

( )n —3

x g ~, ~„g ~p,
~n

which means that rather than performing the whole sum
Xo.;p;, only one term —2o('~p has to be added.

V V

Equation (23) provides a method to calculate W, as long
as the number n of particles is not too large (n~20). We
discussed earlier [Eq. (18)] a way to calculate W for large n

(n,ft~10). Fortunately, there is some overlap between the
two methods, and so we may always use one or the other
procedure to evaluate W to any given accuracy. In practice,
we use Eq. (23) for n~n0 (with n0=10); for larger n we use
Eq. (18). It may happen that for n)n0 the desired accuracy
cannot be achieved, due to the fact that one or several mo-
menta p; are small, leading to a strong oscillation of the
integrand of Eq. (18). In this case, we use the other method,
Eq. (23).

Having a reliable and efficient method to calculate W, we
may return to the problem of how to calculate the phase-
space integral P efficiently. From Eq. (9), we obtain

$g .p .OOJ J

(23)

I' co

@(E,mt, . . . , m„) =(4')", de)
3mI

$
co d. E[p, ,

Jm„

To perform the summation X . . . , it is useful to take a
1 n

specific sequence of cr's (using o=(crt, .. . . , tr„)), namely
[24],

( n

X 8 E ge; W(p&, . . —. ,p„),
)

(27)
ot'l=(++++. . . ),

o-!2l=(—+++. . . ),
after a change of variables toward particle energies

e; = gm, +p, . We introduce the kinetic energy variables

a~3&=( ——++. . . ),

a-&4l=(+ —++. . . },

tl .' = 8l PEl.

and a total kinetic energy T,

(24) T:=E—g m, , (29)

where we simply write + and —rather than +1 and —1.
The general rule is that o. +' is obtained from a. ', by
changing position number j, , where j&,j2,j3, . . . is given
as

and obtain

tco t
co

P(E,m, , . . . , m„) =(47r)" dt, dt„Q p; e;
0 0 i= 1

1,2, 1,3,1,2, 1,4, 1,2, 1, . . . (25)

with obvious continuation; the rule to obtain the sequence
(j,) is the following: Taking the binary representation of
v, one obtains j, as the position of the rightmost nonzero

n

X 8 T g t; W(pi, . . . ,p„). —

(30)
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We now introduce "accumulated" kinetic energies s; via The variables are replaced successively,

s, :=g
J=1

(3l)
t1= s1,

$2 $1~

dt1 d$1

dt2=ds2, (33)

with the inverse t„=sn —sn 1, dt„= dsn

t;=s; —s; sO= 0. (32) and we obtain

!' ao t' co

f(E,m1, . . . ,mn) = (4') ds1
~

ds2
JO Jsi Js„

ds„p; e; 8'(T s„)W(p—, , . . . ,p„). (34)

The integration over s„ is trivial and may be performed, to obtain

P(E,m, , . . . , m„) =(47r)"
Jo

f oo

ds1 ds2J., dsn
Js„2

n

ds„1 ]P p; e; W(p1, . . . ,p„)l= 1

All upper limits may be replaced by T. Introducing the energy fractions

(36)

we get

f
$(E,m1, . . . , m„)=(4m)" T"

J O~~xy ~» «~x
I
~~1n—

dx1' ' dx„1 p; 8; W(p1, . . . ,p„). (37)

Using the definition

(4 )n Tn —1

'p.):=, „, .l. P, e, W(pl, ,p.), (38)

we may write

y(E, m, , . . . ,m„)=(n —l)!
0 O~x(~ ~ .~x j ~1n—

dx1' ' dxn —1'Axl l lxn —1)l (39)

N

y(E, m, , . . . ,m„) = —g y(x!P' .x„'P', ),N P=1
(40)

where P(x, , . . . ,x„,) is meant to be P(p, , . . . ,p„) with

P; and s; exPressed in terms of x1, . . . ,xn 1. This may be
solved via the Monte Carlo method as

using the definition x„:= 1. We get

n 1

dx; —dz;x; 1
—dz; P z. ,

j=i+1

the last equation holding for i(n —1; so we have

(43)

where the x~~) are ordered random numbers,

x1 ~x2 »«~~x —1~~1.(P) (P) . . . (P)
n —1 (4l)

n 1 n —1 n —2 n —1 n —1

H d, =II d. , II II .,=II .,)=1 t= 1 t=1 J=i+1 i=1

n —1

i 1—
l=1

(44)

xL
Zl

Xi+1
(42)

So for each Monte Carlo step, n —1 random numbers have to
be generated, ordered according to size, and then used to
evaluate P(x,p, . . . ,X„P,). To avoid ordering, one may in-
troduce the variables

From Eq. (39), we get

@(E,m, , . . . , m„)

dZ1'
JO

f 1
n 1

dz„1 II 1 z'; ' p(z1, . . . ,z„1),
JO i=1

(45)
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where obviously P(z, , . . . ,z„&) is meant to be

P(p, , . . . ,p„) with p; expressed in terms of z;. We now
introduce

In the following, we discuss how to construct an "appropri-
ate" p, which makes the Kt ~ being distributed as A(K).

Sufficient for the convergence to fl(K) is the detailed
balance condition

Z,t

0o
i g' ' dg=z', , (46) n(K, ) p(K, ~Kb)=n(Kb) p(Kb —+K ) (51)

to obtain

f1 f 1

@(E,mi, . . . ,m„) = dr, . . . dr„~ P(rt, . . . ,r„&).
o Jo

(47)
0, : =A(K, ), p'. b

—p(K. Kb). (52)

and ergodicity, which means that for any E, ,Eb there must
exist some r with the probability to get from EC, to Kb in r
steps being nonzero. Henceforth, we use the abbreviations

The r; are now uncorrelated; no ordering is required. A
Monte Carlo solution is simply

Following Metropolis et al. [22], we make the ansatz

I ab Wab ab~ (53)

N

y(F, m, , . . . ,m„) = —g P(rI/), . . . , r„'~', ), (48)
N P=1

IV. METROPOLIS ALGORITHM

As mentioned earlier, we want to generate randomly had-
ron configurations K=(h&, . . . , h„) according to the prob-
ability distribution A(K), where O(K) is the microcanoni-
cal partition function discussed extensively in the previous
section. With K( ) being such configurations, mean values of
observables O(K) are then simply calculated as

(49)

To construct a configuration K( ~, for each u, a chain of
configurations EO, IC&,Ez, . . . ,El is constructed, which is

eq

characterized by an initial configuration Eo and a random
matrix p(K; +K;+,), which spe—cifies the probability of a
configuration E; being followed by E;+1. The number I,„of
iterations must be large enough to ensure equilibrium; only
then are the randomly generated Kt distributed as A(K),

eq

for an appropriate p, and we take

x( )=z, .
eq

(50)

with uncorrelated random numbers r~p). So for each Monte
Carlo step P the following procedure is followed (we drop
the index P):

(i) Generate n —1 random numbers r; .
(ii) Calculate z; = '+r; and then the energy fractions

xq=xI+1Q), x~= 1.
(iii) Calculate the accumulated energies s; = Tx;, and then

the kinetic energies t; =s; —s; 1, using so=0. Then calcu-
late the energies e;= t; + m; and the momenta

p;= gt;(t;+2m;).
(iv) Calculate P(p&, . . . ,p„) according to Eq. (38), by

using the above methods to calculate W(p&, . . . ,p„).
Summing up all the P's and dividing by the number N of

Monte Carlo iterations [see Eq. (48)] provides the Monte
Carlo result for $(E,m, , . . . , m„). Clearly most of the com-
puting time goes into the calculation of W(p&, . . . ,p„), in

particular into the evaluation of sinpP. /p;k for large n [see
Eq. (18)].

with a so-called proposal matrix w and an acceptance matrix
u. The detailed balance now reads

Bab Ab Wb

~ba a Wab
(54)

which is obviously fulfilled for

(Qb Wb, l
Ltah —F IA W b/

(55)

with some function F fulfilling F(z) / F(z ') =z. Follow-
ing Metropolis et al. [22], we take

F(z) =min(z, l). (56)

1
A(K„)= —, g n ! O(K, ), (57)

with n being the number of hadrons of type a. Taking for
example K= (p, vr, vr j, there are three microconfigurations

(p, m. , vP), (7r,p, m ), and (m, m, p), with weight
A(K)/3.

The power of the method is due to the fact that an arbitrary w

may be chosen, in connection with u being given by Eq.
(55). So the task is twofold: One needs an efficient algorithm
to calculate, for given K, the weight A(K), and one needs to
find an appropriate proposal matrix w which leads to fast
convergence (small I,q). The first task can be solved, as
shown in the previous section. In the following we discuss
constructing an appropriate matrix w.

Most natural, though not necessary, is to consider sym-
metric proposal matrices w, b

= wb, , which simplifies the ac-
ceptance matrix to u, b

=F(Ab/0, ). This is usually referred
to as the Metropolis algorithm. Whereas for spin system it is
obvious how to define a symmetric matrix w, this is not so
clear in our case. We may take spin systems as guidance. A
configuration K is per definition a set of hadrons

(h, , . . . ,h„) with the ordering not being relevant, and so
(m, m. ,p) is the same as (p, m, 7r ). We introduce "micro-
configurations" to be sequences (h, , . . . , h„) of hadrons,
where the ordering does matter. So for a given configuration
K, =(h, , . . . , h„} there exist several microconfigurations

K„=(h &», . . . ,h &„&), with ~J representing a permuta-

tion. The weight of a microconfiguration is
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So far we deal with sequences (hi, . . . , h„) of arbitrary
length n, to be compared with a spin system with fixed lat-
tice size. We therefore introduce "zeros"; i.e., we supple-
ment the sequences (h, , . . . ,h„j by adding L n—zeros, as

(h, , . . . ,h„,0, . . . ,0), to obtain sequences of fixed length L
The zeros may be inserted at any place, not necessarily at the
end. Therefore the weight of a microconfiguration K, with

zeros relative to the one without, K,j, is one divided by the
number of possibilities to insert L n—zeros; so from Eq. (57)
we get

1
(

n! (L n)t—
A(K,)) = —, I I n ! A(K, ). (58)

We now have an analogy with a spin system: We have a
one-dimensional lattice of fixed size L, with each lattice site
containing either a hadron or a zero. Henceforth, we
use for microconfigurations with zeros the notation
K,/=(h&, . . . , hL) with h; being a hadron or zero.

Since from now on we only consider microconfigurations
with zeros (K, ) rather than configurations (K,), we are
going to write K, instead of K,j, keeping in mind that a
represents a double index, and use "configuration" rather
than "microconfiguration with zeros. "The advantage is that
we can use the above formulas specifying the Metropolis
algorithm without changes.

We are now in a position to define a symmetric proposal
matrix w(K, ~Kb), with K,= (h &, . . . , h~) and

Kb=(h), . . . ,ht), as

2
(K, K„)= g I 8„.„(h",h,

'
h,"h, ),I

P(E,m, , . . . ,m„)

I 1

dl 1 Jo30
drn —i P(E,mt, . mn ', r], . . . , rn —))

with P given in Eq. (38) as

(E,m), . . . , mn 'r) . rn ))—

ration K~ ~, which is distributed as A(K). This approach is
not yet satisfactory for the following reasons: We do not
want to make predictions for multiplicities only, but also
consider momentum distributions of the hadrons; the method
is also extremely slow due to the fact that, for each Metropo-
lis step, the function A(K) has to be evaluated, which itself
requires a Monte Carlo procedure with many iterations.
There is a way to cure both problems: One has to consider a
generalized configuration space, such that not only are had-
ron species considered but also hadron momenta.

A naive generalization would be to introduce configura-
tions as (h&, . . . , h„;p&, . . . ,p„), with p; representing the
particle momenta. The symbols h; represent again the hadron
species. There are two problems about the naive generaliza-
tion: The momenta are not independent, since their sum must
be zero, and, in addition, we lose the symmetry property of
the proposal matrix w(K ~Kb). This symmetry is not really
necessary, but at least one needs to be able to calculate the
asymmetry w(K, ~Kb)/w(Kb~K, ).

To find a reasonable generalization one should recall the
discussion following Eq. (27), where a couple of coordinate
transformations were applied to calculate the phase space
integral @. The final result was Eq. (47),

with

(59) )n Tn —1

p; a; W(p, , . . . ,p„). (62)
n —1~1 i=i

~~h', h')~ ' if h,"h, e~h,'h'),
v(hnh+~hbhb)—

0 otherwise,
(60)

where ~~h', h') is the set of all pairs (h;hj) with the same
total fiavor as the pair (h', h'). The symbol ~g~ refers to the
number of pairs of W. The term ( ) in Eq. (59) makes sure
that up to one pair all hadrons in K and Kb are the same; the
term 2/L(L 1) is the probab—ility to randomly choose some
pair of lattice indices i and j. So our proposal matrix
amounts to randomly choosing a pair in K, and replacing
this pair by some pair with the same Aavor, with all possible
replacements having the same weight. The proposal matrix is
obviously symmetric, since v is symmetric (the symmetry of
v is crucial). We have now fully defined an algorithm, which
due to general theorems will converge, but how fast, i.e.,
how large, is I,q. This is going to be investigated later.

V. GENERALIZED CONFIGURATION SPACE

p;= gt;(t;+2m;),

t;= T(x;—x;,), xo=0, (63)

x, =x,„'+r,, x„= l.

Contrary to the p;, the r; are independent of each other.
Based on Eq. (61), we introduce generalized configurations
G as

G=( )h, . . . , h„;ri, . . . ,r„,), (64)

where the r; are related to the momenta p, via Eq. (63). The
weight of such a configuration is

Here we also indicate the dependence of P on E and
m1, . . . , m„, which was dropped in the previous section.
The symbol T denotes the total kinetic energy E Pm;, and-
the absolute values of the momenta are expressed in terms of
the r; as

So far, a configuration was defined to be given as
K= (h &, . . . , h „) with h; specifying the hadron species, for
example, K=(7ro, vr, p). The Metropolis algorithm intro-
duced in the previous section will provide a random configu-

A(G) = C, 1 Cd~g C;de„t. P (65)

[see Eq. (2)], with P given in Eq. (62). We always use the
same symbol 0 for the different functions A, (x), depending
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whether x is a configuration E, , a microconfiguration E,J,
or a generalized configuration G, .

In order to define a symmetric proposal matrix
w(K ~Kb), we introduced in the previous section micro-
configurations. We proceed similarly for the generalized con-
figurations G„. For a given G, = (h, , . . . , ttt„;
r, , . . . ,r„,), one obtains several microconfigurations
G J, by introducing L —n zeros, leading to a sequence of
hadrons fh, , . . . , hL) of fixed length, with h; being a hadron
or zero. The sequence r&, . . . , r„& represents the momenta
of the nonzero h; (the hadron s). We supplement
r&, . . . , r„& by L —n numbers r„, . . . , rL I, with
O~r;~1. A generalized microconfiguration is thus given as

(66)

with weight

+(Gaj) =
vol des C ident Cmicro P~ (67)

with P= ter(E, m&, . . . ,m„;r, , . . . , r„&) given in Eq. (62),
the prefactors C„,i, Cd,s, C;d,„,given in Eq. (3), and the other
prefactor given as

1 - — n! (L n)!—
n !~micro=

t . . +n
ci iN

[see Eq. (55)]. The r; for i~n seem to be obsolete, since
only r&, . . . , r„& are needed to calculate the momenta of
the n hadrons; however, the numbers are needed to define a
symmetric proposal matrix. As for the configuration K, also
for the generalized ones, we write simply G, rather than

G,J and drop the term "micro. "
We are now going to define a symmetric proposal matrix

w(G, ~Gb), with G, given as

—f t,.—f l. a I„a. a a
a yll i ) 0 ~ ~ )llL )ri ) 4 ~ ~ )rL (69)

and Gb correspondingly. We introduce a "species part"

K =(h', , . . . , hL)

and a "momentum part"

Ra ("1 ~ ~rL 1)~—
(7o)

(71)

and corresponding definitions for Kb and Rb. We may now
define a proposal matrix w as

+mom

(R, R)= P dR, , (R, R, )

&&tv, (R, ~R, )

(73)

with dR =dridr2- . drL g, and with

W(G, ~Gb) =W,z„(K,~Kb) Wmom(Ra~Rb), (72)

where the "species matrix" w,~„ is defined in Eq. (16), with
w instead of w,z„being used. The "momentum matrix" is
defined as

L —]

w', (R,~Rb) = g, 8(rj' r—, ).
J J=1

Jgl

(74)

VI. ASYMMETRIC PROPOSAL MATRIX

Considering particle ratios, like n 0/n +, we find imme-
diately that we have a very slow convergence, and so I,q

is
too large for the method to be of practical importance. This is
obvious, since the proposal matrix w does not act very demo-
cratically: Flavorless particles like m. , p, or also zeros are
much more frequently proposed than all the rest. This short-
coming can be fixed by defining w such that two pairs are
exchanged rather than one, the first pair being replaced by a
completely arbitrary pair, the second one by some pair to
guarantee fIavor conservation.

Such a proposal matrix is not symmetric any more, and
the new method is therefore referred to as the "asymmetric"
or "double-pair-exchange" procedure. In the following, we
provide some details about the asymmetric method.

The new proposal matrix is still of the form
w = w,z„w, [see Eq. (72)], where tv, „refers to particle
species and w, to momenta. We take the same w as
before; only w,~„ is changed. We define

The term (L —1) indicates the probability to randomly
choose a position i between 1 and L —1, the second part of
Eq. (74) ensures that all r' for j4i are not allowed to be
changed; however, the number r',. is replaced by an arbitrary
number r, e [0,1] with probability 1. The following Monte
Carlo procedure generates an "updated" Rb, starting from
R, , according to Eq. (74): Choose randomly a position
i(1~i~ L —1), and then replace r,' by some random number
r ~ [0,1]. This provides Rb . Equation (73) simply accounts
for repeating the above procedure N, times.

N, is an important technical parameter of our proce-
dure (in addition to I,q

and L), which may be chosen be-
tween 1 and L —1. Let us consider the weight A(G) for fixed
hadron species h &, . . . , AI, but varying the momentum vari-
ables R=(r, , . . . , rL i). Out of the huge R phase space (for
large n) only a very small region contributes with significant
weight; for most values of R, A(G) is practically zero. So
taking N, =L —1, representing a complete R update,
would frequently propose configurations with zero weight,
which are rejected with a large probability. So one may get
trapped for a long time. Clearly, this choice of N, leads to
large equilibration times I,q. The other extreme N =1
provides an updated configuration very close to the original
one. Now it takes a long time to test the available phase
space. In particular it might easily happen that one gets
trapped in the neighborhood as a local maximum. We have
actually the following situation: For a given number n of
hadrons in G, we have a local maximum of A(G) at some
G~"~, with 0 dropping very fast with G moving away from
Gt"i. The maximum values Q(Gt"i) for neighboring n's are
not so different though. One easily gets trapped around some
G~"~, even with n being quite far away from the equilibrium
value. So N, must be chosen large enough to explore the
available phase space without getting trapped at a local
maximum, but not too large, to avoid exploring extremely
unlikely regions.
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(L)
w psec(Ka~Kb) 4 (1 + l~)2

with h representing the antiparticle of h, and with

k=1
, k+m, n, i,j

U((h'h'„, h, h"„,h', h;. )~h,. h,. ), (75)

'0
.((h, , h, , . . . )-h', h,') = ~ IW(hi, h. ,

, 0

if ~(h&, h2, . . . )) empty,

if h, hj e~(ht, h2, . . . )),
otherwise.

(76)

w(Gb~G ) A(Gb)
W(G, Gb) Q(G, )t

(77)

rather than using simply u(G, —+Gb) =F[A(Gb)/A(G, )].
Since ~, is symmetric, the "asymmetry" is given as

W(Gb~G~) W p (sKsb~K~)

W(G, ~Gb) Wsp„(K, ~Kb) (78)

To evaluate the right-hand side (RHS) of Eq. (78) we simply
need to calculate the ratio of the probabilities U to exchange
the second pair, which is given as

~(h, , h2, . . . )) represents the set of all pairs h;h/ of had-
rons with the same flavor as the set of hadrons

(h&, h2, . . . ). So the double pair exchange works as follows
(see Fig. 1):Two pairs m(n and i(j (with n(i) are chosen
randomly, with equal probability (4) for all possible double

pairs. The first pair h"„h' is replaced by some arbitrary pair
h„h", all possible pairs having equal weight (1+i+~)
with l.g being the number of hadrons in the basic hadron set
.K (containing the standard hadrons, but for testing purposes
we will later also use reduced hadron sets). We have
1+ lQ rather than lQ, since we are also considering
"zero."To ensure flavor conservation, the second pair h', h,".

has to be replaced by some pair h, h having the same flavor

as the set of hadrons (h",h'„,h, h"„,h, , h,"), where all pos-
sible pairs are taken with equal weight.

The new proposal matrix is no longer symmetric, which
means that the acceptance matrix has to be calculated ac-
cording to the general expression

l~(h'. ,h„,hb. , hb„, h, , h, ))l-'

l~(h', h"„,h', h„,h, , h/b))
I

((O,~-), (~o, ~-),(~-,0),(~-,~o)). (8o)

Taking equal probabilities, the weight to choose any of these,
for example, (m, 7r ), is 1/4. Taking the inverse case, we
have the two pairs (h, h"„)= (7r, 7r ) and (h";,h,")
=(vr, vr ) where the first pair (m+, m ) is replaced by
(h', h'„) = (m, vr ), with the probability for this replacement
being (1+ l.g) =1/16. The second pair (7r, 7r ) has to
be replaced by (h';, h') =(7r, m ), but the probability for
this is not 1/4. How many pairs would be possible? The pair
must have the flavor of the set (h, h"„,h', h„', h", , h,"),
which is here (~+,vP, vP, m, 7r, m ); so the flavor must be
0. The set of possible pairs is

((0,0),(0,vr'), (vr', 0),(7r', m'), (7r m-), (~- m )), (81)

Let us discuss a simple example (see Fig. 2). After choosing
randomly positions m(n(i&j, we may find for example
two pairs each consisting of two m . So we have
h' =h„=h, =h",. =m . The first pair is replaced by some ar-

bitrary hadron pair; each pair is considered with equal prob-
ability (1+lQ) . Let us choose a (m+, 7r ) pair. In order
to achieve flavor conservation, the new second pair must
have the same flavor as the set of hadrons
(h', h„',h",h„,h', , h'), which is in this case
(no, 7r, 7r+, 7r, 7r, 7r ); so the flavor is ud. Taking just for
testing purposes a reduced hadron set Ws,4

——(m, 7r+, 7r ),
the set of pairs with Aavor ud is

h„'
I
I

h;

16
1 "1
4 6

7r+
I
I
m

s

7t'
I

I
n

FIG. 1. Double pair exchange. FIG. 2. Example for double pair exchange.
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TABLE I. The hadron sets W . Odd p, implies massless had-

rons; for even p, the correct masses are considered.

Hadrons in M

1,2
3,4
5,6
7,8
9,10

77 77 $ 77 p 7T

vf, p, tl, p, n,

7r, K, r), r)',p, n, X, , antibaryons

as 7,8 4 p, I *, co, @,A, X*, 2*, 0, antibaryons

and so the probability to select a pair is 1/6. The asymmetry
w(G& —+ G,)/w(G„~ Gb) is therefore (l/6)/(l/4) ='2/3.

The example demonstrates that, indeed, the proposal ma-
trix is in general asymmetric; however the asymmetry can be
calculated quite easily. For counting the number of possible
pairs, one just has to make sure to account for the ordering;
for example, (7r+, 7r ) and (7r, 7r+) must be considered as
different pairs.

The basic set W of hadrons has been defined to contain
mesons and (anti)baryons from the two lowest multiplets
each. For testing purposes we introduce "test sets" W„; for
example, we define W& = (7r ), with the 7r being considered
massless. We use Wz= (7r ) as well, but considering the cor-
rect mass. The complete list Wj, W2, . . . ,W9,M~O=P is
given in Table I. We consider test sets with massless hadrons,
because in this case an analytical treatment is possible, pro-
viding useful checks of our Monte Carlo procedures. We will
discuss the analytical treatment and detailed comparisons be-
tween analytical and Monte Carlo results later. Presently, we
are just interested how fast our asymmetric algorithm leads
to convergence, depending on the size of the hadron set. We
consider a "test droplet" of size V=10 fm with mass
E= 10 GeV, and we apply our hadronization procedure for
the test set M, , W~, W~, W~, and .W& (so we restrict our-
selves to massless hadrons).

In Fig. 3 we plot the multiplicity n versus the number of
iterations, for different sets M„. One clearly observes a fast
convergence for small sets, but for M7 and in particular M9
(containing the full set of hadrons, just massless), we have a
very slow convergence. We discuss in the next section a
method to improve that.
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probability to propose pairs without zeros, making a reduc-
tion of multiplicity rare. So for W9 or M7, with small
weights for the zeros, there is a large asymmetry in exploring
the phase space; it is much more likely to propose a configu-
ration with increased multiplicity than one with reduced mul-
tiplicity. Such an asymmetry, causing many unsuccessful
suggestions, leads to a slow convergence.

It is obvious how to improve our method: In case of large
sets P'~, the weight of the "0"must be increased relative to
the hadrons. Since in this way we introduce another asym-
metry to the proposal matrix w, we refer to w as the "very
asymmetric" proposal matrix, to distinguish it from the

VII. VERY ASYMMETRIC PROPOSAL MATRIX

So far we have a method which converges fast for small
hadron sets (Wi, W3) but very slowly for the large ones

(W7 W9), and unfortunately the largest is the realistic case.
How can one improve the method? We recall that "0" is
treated like a hadron: When proposing a new pair h&, h2,
each h; may be any hadron from W~ or "0"; so one may
consider extended sets M~„, containing the hadrons from

and in addition "0." So we have W, = (0,7r ),
5 3=(0,7r, 7r+, 7r I, and so on. A major difference between
different W s is that the relative weight of the zeros in

decreases with increasing p, . Whereas for W& the zero
has weight 1/2, for P'9 the weight is only 1/55. On the other
hand, large weight implies a large probability to propose a
pair containing one or even two zeros, which may reduce the
multiplicity, whereas small weight for zeros implies a large

0
0

» i I i i i I

1000 2000 3000 4000
iterations

FIG. 3. The multiplicity n versus the number of iterations, for
different sets W„: .5 i (solid line), .Kz (dotted line), .Wz (dashed
line), M9 (dash-dotted line). An asymmetric proposal matrix is em-

ployed.
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"symmetric" case [Eq. (59)] and the "asymmetric" case [Eq.
(75)]. The "very asymmetric" proposal matrix w is defined
in the following. We again use w= vv, „w, [see Eq. (72)],
where w, is taken as before [Eq. (73)]; only the "species
matrix" ~,~„ is changed. We define

Wtp) . In the following sections we are going to compare the
Monte Carlo results with analytical calculations.

VIII. ZERO-MASS LIMIT

w,p„(K, &Kb—)

I' Ll X:l
(Nzero+ 14) m(n(i (j'

, kWm, n, i,j

with

&& v((h, h'„,h, h„,h';, h, )—+h';h, )

~hahb
k k

(82)

The hadron masses crucially affect the actual results of
the simulations. However, just in order to test the numerical
procedures, it is useful to consider the "zero-mass limit, "
i.e., the case of all hadron masses set equal to zero. In this
case analytical results can be obtained, which may be com-
pared with our Monte Carlo simulations. We introduced al-
ready, for testing purposes, several basic hadron sets, W; (see

v((ht, h2, . . . )~h, h,")

0 If ~(h, , h2, . . . )) empty,

.9- 40 E= 100 V= 100
F

0 otherwise,

(83)

with

Z(h) = N„„ if h=0,
otherwise.

(84)

~th, , h2, . . . )) represents the set of all pairs h;h. of had-
rons (or "0")with the same flavor as the set th I thz, . . . ).
The symbol ~~g~ represents a weighted sum of pairs of 9,

Z(h;)Z(hj).
h;h~ eM~

(85)

//~(h". , h„,hb, hb, h, ,h;1) //-'

/)~{h.', h„b, h:,h„,h,",h,"&)[[-'
(86)

Whereas in Eq. (75) all pairs h,"h have the same relative
weight 1, we now consider a relative weight Z(h, )Z(h, ),
which means that the zero has a weight being N„„ times
larger than that of a hadron. Having defined the proposal
matrix w, we have to determine the asymmetry
M',~„(Kb~K,)/w, ~„(K,~Kb), necessary to calculate the
acceptance matrix. Similar to Eq. (79), the asymmetry is
given as
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.
~. The "zero weight" N„„

(meant to be an integer larger or equal to 1) is a technical
parameter, which has to be chosen to guarantee fast conver-
gence for a given hadron set P' in particular for the fall set
K9 (or M~I o) .

From the fact that the "asymmetric method" (which cor-
responds to N„„=1) works well for Wt, where the weight
of the zero is 1/2, one might expect in general good results
for N z«, = ~W„~, i.e., N„„=54 for W9 or W,o. In Fig. 4, we
see that, indeed, the performance improves significantly by
increasing N„„from 1 to 54.

We did finally set up an algorithm, which seems to be
sufficiently fast also for a realistic hadron set (W9 and

0 I I I I I I I I I I I l I I I

0 1000 2000 3000 4000
iterations

FIG. 4. The multiplicity n versus the number of iterations, for
different values of N„„: 1 (solid line), 3 (dotted line), 54 (dashed
line). We refer to a droplet with F= 10 GeV, V= 10 fm, and the
hadron set P'9.
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Table I), where W, , P'3, Ws, W7, and W9 refer to massless
hadrons, with an increasing number of hadrons considered.
In the following we discuss the analytical treatment for the
case of massless hadrons [25,26].

We consider a configuration with the Aavor of the
n-hadron system, X", ,q;, being equal to the flavor Q of the
droplet D. The phase-space integral is then

P„(E):= lim P(E,m, , . . . ,I„). (95)

H2 (m;ga —k ) =
arm, a —X

which may be substituted into Eq. (94), to obtain

(96)

In this case we may expand the Hankel function about the
origin and keep only the first term. We obtain

d p; 8(E—Xe;) 8(Xp;)
I, = 1

d
d'p; 8(E Xe,)—8(Xp;).

i=1
(87)

with

23n 3 'n

4'.(E)= ~nei aE (97)

Representing the 8' function as
H2„=

J —co
2

1 2)2n (98)

8'(x)= d k e' '
(22r) g

and the 0 function as

(88)
As shown in Appendix B, the integration can be done, and
one obtains

1 I
—i& du

6i(x)= . e' ',
27Tl ) —oo —ip A

(89)

i 2r (4n —4)! 1

2 " (2 —1)! (2 —2)!

The phase-space integral is thus given as

(99)

the phase-space integral may be written as

1 d ~,—- ~ . - - f du
d3 d31 i 4Xp; I iu(,E Xe;)—

i(27r) dE J,'=. . i
'
J g u

(90)

which may be rewritten as
3 —oo —i a

inE

dA
A

i"+' (4n —4)!
"2" (2n —1)! (2n —2)! (100)

(101)

da —e' d X I(A. , a, m;),

By choosing the contour in the upper half-plane, we obtain
for the integral

(91) ( E)3n —4

(3n —4)! ' (102)

with the "single particle integral" I given as

~ . . / 2 2d3 imp —ia vm +p
J

(92)

and so the phase-space integral, in the zero-mass limit, is
given as

P„(E)= lim $(E,m&,—. . . ,m„)

As proved in [25,26] and shown in Appendix A, one may
write

I(a, k, m)=22r m 2 2 H2! ~(mga2 —X ), (93)

@=$(E,m, , . . . ,m„)

2++ ~ ~2& ! oo ig
= (, ) ]El nei uE

3 —oo —is

CQ

X dX „ I [ Ht ~(m;ga —X ). (94)

We are now considering the "zero-mass limit"; i.e., we cal-
culate

with H2 representing a Hankel function. The phase-space
integral may thus be written as

=m" ' (4n —4)! g3n —4
2" (2n —1)! (2n —2)! (3n —4)!

(103)

This expression, Eq. (103), can be evaluated easily, and is the
basis for calculating multiplicity distributions, as discussed
in the next section.

IX. MULTIPLICITY SPECTRA
IN THE ZERO-MASS LIMIT

In this section we demonstrate how to calculate multiplic-
ity spectra in the zero-mass limit, and compare the results
with the outcome of our Monte Carlo procedure, introduced
earlier. This is not only a valuable check of the complicated
numerical procedures, but also a very useful tool for optimiz-
ing our algorithm [27].

In our statistical treatment, the weight for a hadron con-
figuration E= jh, , . . . ,h„) is proportional to the partition
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function A(K); correspondingly, the probability P„ to find n

hadrons is given as

1
n(lc.

1 $
gn =n

$nq =Q

(104)

Here, I= ~Q is the number of hadrons in the basic hadron
set.W= Jtcri, . . . , o,), and K„„is the configuration with

n, hadrons of species o, The condition Xn„q„=Q ac-
counts for flavor conservation, q, is the flavor vector of had-
ron species v, and Q is the flavor vector of the droplet. In the
zero-mass limit, Eq. (104) may be written as

- E= 10.0 V— 10.0

are obtained from a single run per spectrum (20 000 itera-
tions for the 10 GeV droplet and 200000 for the 2 GeV
droplet), which provides an accuracy of about 1% for the 10
GeV case and of few percent for the 2 GeV case for the
average multiplicities.

For the larger set W7, and in particular for the realistic set
K9 the exact expression cannot be handled. In this case we
use an approximation, by neglecting Aavor conservation; i.e.,
we ignore the condition Xn,q„=Q. In this case, using the
obvious identity

1
P„=—C,ol P

n~. . . n

&n =nv
Xn q =Q

(105)

where Eqs. (2,3) have been used. The g, in Eq. (105) has a
different meaning than the g; in Eq. (3):g, is the degeneracy
of hadron species o, Z is a normalization factor. The pre-
factor C„,l and the phase-space integral @„[inthe zero-mass
limit; see Eq. (103)j do not depend on n, , . . . , n, , but only
on n, and therefore appear in front of the summation symbol.
We define
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711 its

tlv n

f71 vq v= Q

n! (107)

which is equal to P„ for the case of g;=1 and only one
hadron species. In general, we have
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This is the final result for the multiplicity distribution in the
zero-mass limit, which can be evaluated numerically as long
as s is not too large, for example, for our "test sets" M&,
W3, or W5.

In Figs. 5 and 6 we compare Monte Carlo (MC) results
for the multiplicity with the "analytical results" for the av-
erage multiplicity,
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with P„ from Eq. (107). We consider a medium size droplet
(E=10 GeV and V=10 fm ) in Fig. 5 and a small size
droplet (F= 2 GeV and V=2 fm ) in Fig. 6; in both cases
we have zero net flavor (Q = 0).We observe, indeed, that the
MC results converge towards the analytical value.

We now turn to multiplicity distributions. In Figs. 7 and 8
we compare Monte Carlo (MC) results, again for a medium
size droplet (F.= 10 GeV and V= 10 fm ) and for a small
size droplet (F=2 GeV and V=2 fm ), with the corre-
sponding "analytical results, " obtained from Eq. (107).Also
the average values NMC and N,„,are shown. The MC results
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FIG. 5. Medium size droplet: The multiplicity n versus the num-
ber of iterations for the hadron sets 5 l (a), ,%3 (b), and. 5 5 (c). The
MC results, averaged over 200 iterations (solid lines) and 20 itera-
tions (dotted lines), are compared with the analytical results for the
average multiplicity (dashed lines).
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n! n~

&=1 n v v=1

we get

( s ) n

P„=P„' g g„(v=t )

which can be evaluated also for M7 and, &9. But first we

compare in Figs. 9 and 10 the exact and approximate results
for the sets M3 and W5. Whereas for the medium size drop-
let the difference is quite small, we observe some disagree-
ment for the small size droplet. We now turn to the large
hadron sets: In Figs. 11 and 12, we plot multiplicity distri-
butions for the sets W7 and W9, comparing MC results with
the approximate analytical spectra. The MC spectra are
shifted towards somewhat smaller multiplicities, which is
consistent with the observation in Figs. 9 and 10 that the
exact results are "left shifted" compared to the approximate
ones.
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FIG. 6. Small size droplet: The multiplicity n versus the number
of iterations for the hadron sets, W~, (a), Mz (b), and. F'~ (c).The MC
results, averaged over 200 iterations (solid lines) and 20 iterations
(dotted lines), are compared with the analytical results for the av-

erage multiplicity (dashed lines).

FIG. 7. Medium size droplet: Multiplicity distributions for the
hadron sets M, (a), Ws (b), and W5 (c). MC results (solid lines) are
compared with analytical results (dashed lines).
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Introducing polar coordinates, we have

POO f —EuV'm'+ 'I=27r dp p d cos t) e' " e ' ~ +" (A2)
00

to obtain

p=m sinh f, k =km, u =um, (A5)

=2m dp p . (e'"—e '")e ' ' +" (A3)
leap

27r t'

dg m2cos ( sin g
eikmsinh f i—om cosh t (A6)

ikey

2w
imp —iuVm +p

iX J

We define g, k, and n via

(A4)

2am d
ik sinh (—ia cosh g

dk

We introduce an auxiliary variable y via
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FIG. 14. Small size droplet: Multiplicity distributions for 7r+

(a), sr (b), p (c), and P (d) for the hadron set Ms. MC results

(solid lines) are compared with the analytical ones (dashed lines).

FIG. 15. Medium size droplet: Multiplicity distributions for

(a), K+ (b), p (c), and X (d) for the hadron set W&. MC results
(solid lines) are compared with the approximate analytical ones
(dashed lines).
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sinh y=
n

nm
cosh y=

n
(A8)

With the integration variable

(A11)

The exponent in Eq. (A7) may thus be written as

i)s. sinh j—ia cosh s

= —i ga k—( —sinh p sinh j+cosh q& cosh g) (A9)

using the identity

cosh /=cosh g cosh q&+ sinh ( sinh q&,

Eq. (A7) may be written as

(A12)

= —i ga X—cosh(g —y).

= id= 120

(A1O)
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we have

1 d 1
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z dz z J

(A15)

Using the identities (see [25,26])
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with H ' representing Hankel functions, we obtain

1
I=27r m'am 2 H, (z ).

m

(A18)

Using the definitions for z, n, and k, we obtain the
desired identity, Eq. (Al).

10

= id= 1130 APPENDIX B

We are going to prove the relation
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10 H2„=— 2 ) 2)2n (B1)
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for n=Re n —ia. The integrand may be written as

(B2)

FIG. 16. Small size droplet: Multiplicity distributions for sr+

(a), K+ (b), p (c), and X (d) for the hadron set W9. MC results
(solid lines) are compared with the approximate analytical ones
(dashed lines).

1 1
2 ) 2)2n a

( 2 ) 2)2 (
n2 ) 2)2n 1—

and, correspondingly, H2„may be expressed as
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2H2„=a A2„—A2

with A„being defined as

1
m'

(
2 )2)m

(B4)

(BS)

t —m ~

A =2vri (2n)™ ( —2n)'
m —1~

=2mi (2n)' ( —1)'
—m( —m —1) ( —2m+2)

X
1 2 (m —1)

(B9)

(B10)

The integrand has one pole in the upper half-plane, at
X= —n= —Re a+i', since we are considering the case
a=Re n —ia. So we have

(2m —2)!
=2mi (2n)'

( I)( ( 1)( . (Bll)

A =2mi Res{(n —)t ) )q

Expanding (n —k )™around e = k+ n, we obtain

(B6) Using Eq. (87), we obtain

(2n)' " (4n —2)!
(2n —1)! (2n —1)! (B12)

( )
—m

(n —X ) =(2n)™1 — e™
2nj (B7) (2n) " (4n —4)!

(2n —2)! (2n —2)!
—mi (4n —4)!

(2n) " (2n —1)! (2n —2)! '

(B13)

(B14)

We can read off the residue of (n —)t. ) and obtain which proves Eq. (Bl).
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