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We investigate the intermittent and multifractal behaviors of the multiplicity fluctuations of medium energy

particles in 800 GeV proton interactions with emulsion nuclei. For our analysis, we have used ordinary scaled
factorial moments (SFM) denoted as F, modified SFM, (F') and modified multifractal moments, (G') with

suppressed statistical contributions. For a close comparison between the F' and G' moments, they have both

been expanded in a set of basic functions each of which has a characteristic fractal behavior as a function of
the resolution in phase space. The experimental values of anomalous fractal dimensions dq and Renyi dimen-

sions Dq are determined for q= 2 —5. The latter are corrected for statistical contamination in the multiplicity

fluctuations. The observed variation of dq and D " with q supports a self-similar random cascading mecha-

nism for the particle production process. It is found that D "+d = 1.

PACS number(s): 13.85.Hd, 24.60.Ky, 29.40.Rg

I. INTRODUCTION

Recently, the dynamics of multiparticle production has
been probed from the interesting investigations of nonstatis-
tical multiplicity fluctuations in narrow regions of phase
space (intermittency) [1—4]. An attractive formalism pro-
posed by Bialas and Peschanski using scaled factorial mo-
ments (SFM's) suggested a self-similar behavior of the par-
ticle production process [5]. Evidence for intermittency has
been reported in a variety of processes like e+e [6],
hadron-hadron [7], hadron-nucleus [8], and nucleus-nucleus

[9] collisions. Apart from the intermittent behavior, the mul-

tifractal nature of particle density fluctuations has also been
confirmed in various collision processes with different tar-

gets and varying primary energies. Some authors [10] have
attributed the observed multiplicity fluctuations to the exist-
ence of short-range correlations among the secondary par-
ticles. This approach, while accounting for the nonstatistical
multiplicity fluctuations, still falls far short of explaining the
power-law scaling in various reactions. The latter reflects a
multifractal or self-similar property of the underlying dy-
namics. Hwa and co-worker [11,12] proposed a set of mul-

tifractal moments G in order to investigate the observed
large density fluctuations. These Gq moments are, however,
dominated by statistical fluctuations when the event multi-
plicity is low. In order to overcome this limitation, Hwa and
Pan [13]and Derado et al. [14]suggested a modified form of
these multifractal moments, denoted here as G ', which sup-
press statistical noise. These authors have also established a
relation between the fractal and intermittency indices [13—
16]. In these investigations, the analysis has been performed
on the fast shower particles (P~ 0.7). It would be interesting
to investigate the intermittency in terms of multifractals for
medium-energy particles (0.7)P~ 0.3), for this will provide
another window to understand the dynamics of particle pro-
duction process.

Recently [17], we have found evidence of multifractal
behavior in target-fragmented medium-energy protons in
proton-AgBr interactions at 800 GeV, which is presently the
highest energy for fixed targets. The present work has been
done at the same energy in proton interactions with all nuclei
in emulsion. Here attention will be focused on the analysis of
intermittency in terms of multifractals for medium-energy
particles and to obtain a relation between the two. Following
Hwa and Pan [13],we analyze the modified SFM's, denoted
her e by Fq and expand them in a set of basic functions

Bq k, each of which exhibits a characteristic fractal behavior
as the size of the phase space is reduced. This is similar to
the expansion of a scattering amplitude in terms of a set of
Regge poles, each of which exhibits characteristic Regge-
type asymptotic behavior. We determine the value of the tra-
jectory function X(q) which specifies the fractal behavior
M ~ with the number of bins M tending to infinity. Here

k(q) is analogous to the Regge trajectory n(t) which char-
acterizes the power-law behavior s ~'~ with s tending to in-

finity. In order to study the relation between the fractal and
intermittency indices, we perform a multifractal analysis of
the present interactions using the noise-suppressed G' rno-

q
ments which are also expanded in the same set of basic func-
tions. Our analysis exhibits a close analogy between inter-
mittency and multifractality for medium-energy particles.

II. EXPERIMENTAL DETAILS

A stack of 40 Ilford 65 emulsion pellicles of dimension
10X8X0.06 cm was exposed to a proton beam of energy
800 GeV at Fermilab. The beam flux was 8.7 X 10
particles/cm . The scanning of interactions was done with
high-resolution microscopes at 40X resolution by the area-
scanning method. Using the double-scan data, the scanning
efficiency was calculated for each observer and the overall
efficiency was found to be greater than 90%o. In order to
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(4)

where 4q and Cq are constants. The observation of such a
scale invariant behavior encourages us to understand this
characteristic in terms of the theory of multifractals [20],
which assumes a self-similar cascading type of scenario in
particle production. In this approach, after the collision be-
tween initial particles, the system is assumed to first decay
into, say, P pieces. After a proper time interval, each of these
pieces further dissociate into P pieces and this fragmentation
process continues until the total energy has dissipated. The
multifractal behavior of the interaction is illustrated from the
observed variation of the anomalous fractal dimension

dq=4q/q —1 as a function of q, as shown in Fig. 2. The
values of intermittency index 4q are given in Table I for q in
the range 2—5.

To facilitate comparison with a proper multifractal de-
scription, Hwa and Pan [13] and Derado et al. [14] have
proposed the following definition of SFM's:

n/(n/ 1)— (n/
—

q + 1)
N(N 1) .—(N —q+ 1)

The double-logarithm plot of the modified SFM as a function
of M is shown in Fig. 1(b). The intermittency strength pa-
rameters which specify the power-law behavior of F', i.e.,

a~= Rn(F~)/blnM, were determined from slopes of the least-
squares fittings in the linear region of Fig. 1(b), which ex-
tends for M only in the range of 1—5. The values of these
indices are shown in Table I, and their dependence on q is
shown in Fig. 8, below. Although the normalizations of
(F ) and (F') moments are quite different, the values of the

slope parameters determined from their power-law behaviors
are not significantly different. From the definition of Fq
(F') moments [Eqs. (2) and (4)], it is clear that the deviation
of the slope parameters @q (a~) from zero is a measure of
nonstatistical fluctuations of dynamical origin. A slope pa-
rameter equal to zero would imply no power law and hence
no dynamics. It is clear that following different approaches
we should arrive at the final underlying dynamics. Hence it
would be natural to expect the similarity in the values of
4q and aq

The multifractal description of the multiplicity fluctua-
tions was investigated using an alternative to the factorial
moments. These multifractal moments provide a direct mea-
sure of generalized dimensions of multiplicity fluctuations in
particle physics. To suppress the contributions from statisti-
cal noise, multifractal moments are defined as [13,14]

(G')= g (n, !N) 8(n, —q)
J=1

where 0" (n —q) is the step function that cuts off at n~= q,
i.e., 0'(n —q) =0 for n/(q and 0'(n q) =1 for n )q. —
The introduction of the cut in the definition of G' moments

allows one to make a closer comparison between the F' and
G' moments. This definition allows q to be a real integer,
positive or negative. The low multiplicity of the present in-
teractions puts a serious constraint on our ability to obtain
any information based on negative q values. We obtained an

increasing dependence of ln(G') on lnM only for two to
three values of lnM. This was considered to be statistically
insufficient, and hence negative q moments were not consid-

TABLE I. Values of slope parameters a, 4, r ~", k(q, O), and the dynamical Renyi dimensions D ""as
calculated from (i) r ~"/q —1 and (ii) —k(q, O)/q —1. The errors (in parentheses) are standard.

0.167 (0.028)
0.398 (0.028)
0.764 (0.025)
1.209 (0.001)

0.068 (0.010)
0.236 (0.027)
0.560 (0.049)
0.848 (0.094)

dyn
q

0.941 (0.015)
1.832 (0.036)
2.466 (0.093)
2.916 (0.119)

k(q, O)

—0.889 (0.023)
—1.737 (0.100)
—2.322 (0.200)
—2.719 (0.381)

7- y"/q —1

0.941 (0.015)
0.916 (0.018)
0.822 (0.031)
0.729 (0.029)

—k(q, O)/q —1

0.941 (0.026)
0.921 (0.054)
0.833 (0.071)
0.725 (0.099)



52 INTERMITTENCY AND MULTIFRACTALITY OF MEDIUM-. . . 1575

-2.0—

A
-4.0—

~U

y -6.0—

q=2

X„o Q„(M,N) =M and X„,ng„(M, N)=N. Further-
more, the angular brackets ( )~ denote an average over all
events with fixed multiplicity N In .terms of Q„(M,N), a
summation over all bins in W is equivalent to that over the
elements of the subset S„containing n particles followed by
summation over all n. Thus the F' and the G' moments can
be expanded to give

-8.0—

-10.0-

-12.0-
I I I I I I I I

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2. 8 3.2 3.6 4.0
ln M

and

Q„(M,N)N qn!
F,'=Mq-'

(n —q)!

G'= g g„(M,N)(nlN)q

(10a)

(lob)

FIG. 3. ln(G') as a function of 1nM for q = 1 —5. Straight lines
represent the least-squares fits to the data points. Putting n =q+ k, k = 0,1. . . , we have,

ered for further analysis. On the other hand, we obtained 28
values of lnM for positive q values.

Figure 3 shows a plot of (G') as a function of M for
positive q. It is evident that (G') exhibits power-law behav-
ior at large M as given by

(G')~M

and

q+k)qF:Mq g N qQq+k(M N)
k=o

N —
q

G'= g N qgq+I, (M,N)(q+k)q
k=o
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The values of mass exponents 7.
q

in the power-law behavior
have been determined from the slopes of ln(G') vs lnM
plots. The generalized dimensions Dq= r l(q —1) were ob-
tained from 7 q and the variation with q is shown in Fig. 2. In
order to determine the degree of statistical contribution in the
multiplicity fluctuations, we have adopted the procedure pro-
posed by Chiu er al. [21]. For determining (Gq)„,„, the
tracks in each event were distributed randomly; G' was
evaluated for corresponding randomized events and averaged
with respect to the experimental distribution. It is found in
our data that (G ') „„exhibits power-law behavior at large M
with exponents 7."" close to q

—1. The variation of
r'™l(q—1)=D"" as a function of q is also shown in Fig. 2.
The dynamical contributions to D""were obtained from

Ddyn D Dstat+ 1
q q q

Table I lists the values of 7. " and D ". The behavior of
D " vs q is also shown in Fig. 2. The multifractal structure

q
of the self-similarity problem is evident from the decrease of
D " with increase in q. Figure 2 clearly illustrates the
complementary nature of the intermittency and multifractal
approaches. As can be seen, the anomalous fractal dimension

dq and the Renyi dimension Dq add up to unity.
We have also studied in the present interactions a simple

fractal interpretation for the power-law dependence of (F')
and (G') on M. First, we have considered the unnormalized

weights Q„(M,N) that a bin has n out of N particles in an
event. Define

Q„(M,N) = (Q„(M,N))~

Here Q„(M,N) is the frequency of occurrence of multiplic-
ity n over M bins in an event of multiplicity N, i.e.,

Averaging over the resulting expansion of modified SFM's
gives

B k(M)(q+k)!
k=O k! (12a)

(G') = g Bq k(M) (q+ k)q (12b)

Here we have expanded moments in terms of the basic func-
tions

Bq p(M) =(N qgq+k(M, N)) (13)

The quantities Bq t(M) have been introduced by Hwa and
Pan [13]to investigate their connection with the multifractal
moments.

Figures 4(a)—4(c) show the behavior of Q„(M,N) as a
function of M for various values of n and for N=4, 5, and 6,
respectively. As the resolution is increased indefinitely, it is
expected that Qo(M, N) +M N, Q, (M, N)—~N,
Q„(M,N) ~0 for n~2. These features are evident in Figs.
4(a) —4(c), which show that, for M&)N, Q& becomes inde-

pendent of M and Qz, Q3, etc. , drop to zero. For large M,
Q„(M,N) shows a power-law dependence on M:

Q „(M,N) ~M "~"~i (14)

The slope values are obtained by least-squares fits to the
linear regimes of the double-logarithm plots in Figs. 4(a)—
4(c). As expected, we have found co(O, N) =1, co(1,N) =0,
and co(n, N)(0 for n~2. The observed small deviation of
co(O, N) from 1 and co(1,N) from 0 is due to the limited
value of M (~40) considered by us. Figure 5 shows the
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functional dependence of experimental values of ni(n, N) as
a function of n for N=4, 5, and 6.

The fractal interpretation of Bq k(M) is evident from Figs.
6(a)—6(d), which illustrate the M dependences of Bq z(M)
for q = 0, 1, 2, and 3 and 0= 0, 1, 2, 3, and 4. Least-squares
fitting of points in the linear region of the log-log plot yields
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the trajectory function )~.(q, k), which is a fractal dimension
of the set

B„(M) M'« "1

The behavior of Bq k(M) for low values of q and k can be
predicted as tu(0, N) = 1, which implies X (0,0) = 1,
cu(1, N) =0 implies )t.(0,1)= X(1,0) =0, and ni(n, N)(0 for
n) 1 implies )i.(q, k)(0 for q+k) 1. The variation of
X(q, k) with q for k=0, 1, . . . ,4 is shown in Fig. 7(a). It is
seen that X(q, k) is nearly constant for fixed q+k~3. This
can be seen more explicitly in Fig. 7(b), which illustrates the
variation of k(q, k) with q+ k. As is evident from Fig. 7(b),
1~.(q, k) decreases with q+k, making in turn only the first
few terms contribute significantly in the expansion of (F').
The first few terms of this expansion are

-4.0 ~;
0

I

4

FIG. 5. Dependence of r0(n, N) on N for n = 1 —4.

~ 1+B,,(M)(q+1)+(F') =Mq 'B (M)q!
q, O
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To a first approximation, we get

aq=q 1+k(q, O)

The experimental values of X(q,O) are given in Table I, and
the above relation is well reproduced. Thus expansion in
terms of the functions 8 „(M) provides a straightforward
fractal interpretation of intermittency.

Expansion of the (G') moments in terms of the basic
functions B k(M) provides a fractal interpretation for mul-
tifractality. Table I lists the generalized dynamical dimen-
sions calculated from k(q, O), and these are found to be in
good agreement with the dimensions (also listed in Table I)
obtained directly from the slopes of Fig. 3. Comparing the
various values of different parameters listed in Table I, the

dynamical mass exponents r " and intermittency indices
q

a are seen to satisfy approximately the relation

a =q —1 —~y"

Figure 8 illustrates the q dependences of a and

q
—1 —7. ". The approximate equivalence of this relationdyn

arises because N is finite here. Thus intermittency and mul-
tifractal analyses are interconnected and complementary in
character.

IV. CONCLUSIONS

Our analysis of intermittency and multifractality in the
present interactions has led to the following conclusions.
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The one-dimensional Fq and G' moments are found to
exhibit power-law dependence on the bin size. The mass ex-
ponents vq characterizing the power-law behavior of G' mo-
ments have further been corrected for statistical contamina-
tion to yield v. ". The observed q dependence of
intermittency exponents 4q and the dynamical mass expo-
nents 7. " shows that our intermittency and multifractal

q
analyses both support a self-similar cascading mechanism for
particle production process.

The modified SFM F' and G' moments have been ex-
panded in terms of a set of basic functions B~ k(M), each of
which exhibits a power-law behavior at large M. The trajec-
tory functions )i. (q, k) are found to behave linearly for small
values of q+ k. The first term in the expansion contributes to
the fractal dimension Dq, which when corrected for statisti-

FIG. 8. Comparison of a and q
—1 —~ " as functions of order

cal contamination is found to be in excellent agreement with
Renyi dimensions obtained directly from the slopes of a
1n(G') vs lnM plot.

Last, the relation between the fractal and intermittency
analyses has been explored. The dynamical mass exponent

and the intermittency index a (which appears in scaling
relation of F' moments) are found to be approximately re-
lated as a =q —1 —~ ~". Consequently, for each q value,
the dynamical Renyi dimensions D ~" are complementary to
the anomalous fractal dimensions dq . In other words
d +D ~"=1.
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