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Folded potential analysis of the excitation of giant resonances by heavy ions
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Measurements of the excitation of nuclear giant resonances by heavy-ion inelastic scattering have previously
been analyzed using the deformed optical potential model. Here we reexamine these data using a folded

potential model which employs a simple, but effective, nucleon-nucleon interaction that was deduced recently
from heavy-ion elastic scattering measurements. The resulting estimates of the sum-rule exhaustion by the

giant quadrupole resonance increase by amounts ranging from about 20% for the lighter targets to no change
for Pb. Applying the same model to data for excitation of the giant monopole resonance, we find that these
transitions overexhaust the corresponding sum rule even more than previously indicated.

PACS number(s): 24.30.Cz, 24. 10,—i, 25.70.Bc

I. INTRODUCTION

There are advantages to the excitation of nuclear giant
multipole resonances by the inelastic scattering of heavy ions
with intermediate energies [1,2]. In particular, a number of
recent experiments have employed beams of ' 0 ions at
F/A = 84 MeV [3—7]. We concentrate our attention on these
because they provide the most complete results on giant
resonance excitation.

The deformed optical potential (DP) model [8,9] has been
the primary tool for the analysis of these measurements.
However, it has long been known that the DP model may
give results differing significantly from a more microscopic
approach in which a transition potential is obtained by fold-
ing an effective nucleon-nucleon interaction over the target
transition density and the projectile ground-state density. We
take the view that the transition density and its properties are
the quantities of interest, characteristic of a given target
nucleus, that we wish to deduce from measured cross sec-
tions. The folding procedure provides a direct link between
the transition density and the corresponding transition poten-
tial for a particular projectile ion that is responsible for the
observed inelastic scattering. This link is left ambiguous and
obscure by use of the DP model. This situation has been
reexamined recently [10]. In particular, applications of the
folding and DP models to the excitation of low states by
'70 ions with F/A = 84 MeV have been compared [11],and
an apparent hindrance in the hadronic excitation of 3 states
[7], compared to electromagnetic measurements, could be
ascribed to the use of the DP model. The "hindrance" is
removed when the folding model is used [11].The apparent
discrepancy was not small, being typically a factor of order
2.

The differences between folding and the DP model that
are found for the excitation of low 2+ states are somewhat
smaller [11],especially for transitions in which Coulomb ex-
citation is very important, but nonetheless they can be sig-
nificant. Consequently one may ask how a folding approach
will affect our estimate of the fraction of the sum-rule limit

[8,9] that is exhausted by excitation of a giant quadrupole
resonance (GQR). Furthermore, there has been a long-
standing disagreement over the interpretation of these transi-
tions as induced by pion inelastic scattering compared to the
use of other hadrons, especially heavy ions [12]. This dis-
agreement translates into very different conclusions about
the isospin character of the GQR. The heavy-ion data have
previously been analyzed using the DP model; we show here
that the folding model approach does not change this dis-
agreement significantly.

The choice of a DP model to generate a transition poten-
tial for the excitation of a giant monopole ("breathing
mode" ) resonance (GMR) is particularly ambiguous, espe-
cially for heavy ions. Here again the folding procedure pro-
vides a direct link between the potential and the underlying
transition density. Hence we have also applied folding to
GMR transitions.

II. THE MODELS

The simple models chosen for use here for illustration are
standard ones, and we follow the notation of Ref. [9].

G~(r) = gr~(rT) v~(r. rT) rr«r. (2.1)

where gT~(r) is the transition density for a 2 -pole excita-
tion of the target and u~(r, rr) is the 2 -pole component of
an effective nucleon-nucleon interaction v(s) averaged over
the (spherical) projectile density distribution p„(r ). The in-
tegral (2.1) is most simply expressed and evaluated in terms
of Fourier transforms [13]

G~(r) = (2m ) ' k dkj ~(kr) v (k) g r~(k) p„(k),
(2 2)

A. Folded transition potential

In the folding procedure, the transition potential can be
written as [8]

Present address: Department of Physics, University of Connecti-
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where f(k) is the Fourier transform of f(r). For v(s), we
take the isoscalar Yukawa form
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TABLE I. Density distribution parameters and sum-rule limits for giant quadrupole resonances with
excitation energy E, .

Target

0NI

"Zr
118S

'"Sn
124S

208Pb

E,
(MeV)

16.0
14.0
12.8
13.1
12.5
10.6

(fm)

4.20
4.90
5.52
5.55
5.62
6.67

(fm)

0.475
0.515
0.515
0.515
0.515
0.545

2 I/2

(fin)

3.702
4.251
4.685
4.706
4.756
5.550

B(IS,2)
(b')

0.427
0.966
1.683
1.687
1.866
5.026

B(E2)
(e' b')

0.093
0.191
0.302
0.293
0.303
0.781

Bq

(fm)

0.971
0.846
0.771
0.755
0.761
0.636

A'2

0.200
0.152
0.126
0.123
0.122
0.088

e
—sit

v(s) = —(v+ ice) sit (2 3)

with t=0.7 fm, recently found to give a good account of
heavy-ion elastic scattering in peripheral collisions. The
strengths U and w were obtained by fitting the elastic data
[14].

We note that the shape of the folded transition potential
(2.1) depends upon 8, through the e dependence of v~,
even if the transition density has a shape that is independent
of 8 [11].This arises because of the finite range of v(s) and
the finite size of the projectile [10,15].

f
M~= gp(r)r + dr, (2.8a)

with i = BM or T. Integration by parts immediately gives

Mp =(/+2) Zg(A/4vr)(r ') (2.9a)

for heavy ions. This is compensated for in part if one de-
mands that both transition models exhaust the same fraction
of the sum-rule limit for the operator r (see Sec. III below).
This condition provides a relationship between the ampli-
tudes 8& and n& for the two models. Define the transition
multipole moment for 8~2 by

B. Transition densities

The transition density g~(r) needed for the folding (2.1)
or (2.2) may be constructed using a simple model or from
detailed nuclear structure calculations. For our purpose, we
adopt the Bohr-Mottelson (BM) [16] model, namely,

gp (r) = —Z~dp(r)/dr (2.4)

for 8~2, where p(r) is the ground-state density distribution
of the target nucleus and 8~ is the deformation length which
provides a measure of the strength of the transition. We take
the breathing mode form [17] for the GMR

Mp= (2Y+ 1)ne (A/47r)(r ) (2.9b)

where the radial averages (r") are taken over the ground-
state matter distribution p(r). Equating M~=M~ gives the
desired relation:

(~+2)(" ')
'(2Z+ I)("~-') (2.10)

In the monopole case, 8=0, we define the transition multi-

pole moment for the operator r,
g 0(")= no [3p(") + "dp(")/dr]. (2 5)

The ground-state densities are represented by two-parameter
Fermi (or Woods-Saxon) functions

This becomes

(2.gb)

p(r) = po(1+ exp[(r —c)/a]) (2.6) Mo=noA(r ) /m' (2.9c)

g~(r) = —n~r 'd p(r)/dr (2.7)

when e ~2, instead of the BM form (2.4). The additional
factor of r ' tends to shift the Tassie transition density to
larger radii than the BM one and hence enhances the transi-
tion potential for the peripheral collisions that are important

The chosen parameter values, indicated in Table I, are the
same as those used in [14] to fit the elastic scattering data.

It is sometimes contended that the Tassie (T), or hydro-
dynamical, model [16] is more appropriate for the transition
density associated with excitation of a giant resonance that
exhausts a large fraction of the sum-rule limit (but see Sec.
III below). Indeed, the model (2.5) for the GMR is an ex-
ample of this approach. Consequently we also made calcula-
tions using the Tassie model. In this we have

if the transition density (2.5) is used.
We may also define an isoscalar transition rate,

a(IS,e') = ~M~~'. (2.11)

p„(r) = (N/A) p(r), pz(r) = (Z/A) p(r). (2.12)

The corresponding parts of the transition density,
gy= g„y+ g„y, have the same property and hence their mo-
ments are also in the ratio

For our present purpose of comparing folding and DP mod-
els, we assume that the transitions are purely "isoscalar. "
That is, we assume that the neutron and proton contributions
to the density distribution, p= p„+p, have the same shape
so that
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M„y/M py= N/Z.

The associated electric transition rate is then

B(EY) t =(ZIA) B(IS,P)e .

(2.13)

(2.14)

considered here. The electric transition rate B(FY) is as-
sumed to be related by Eq. (2.14) to the isoscalar one.

III. SUM-RULE LIMITS

C. Deformed potential model

The standard DP model t 8] results in transition potentials
whose shapes (in contrast to the folding procedure) are inde-
pendent of multipolarity for 8~2:

Gg (r) = —BgdU(r)ldr, (2.15)

where 6& is the potential deformation length for the transi-
tion and U(r) is the optical potential that reproduces the
observed elastic scattering. We take the usual Woods-Saxon
form for U, with the published [3—7] parameter values.

The DP model has also been applied to the excitation of
the GMR, assuming this to be a breathing mode [18].Then,
by analogy with the transition density (2.5), we have

A
B(IS,Y) = Y(2P+ I )'(r'+ ) (3.1)

Certain linearly energy-weighted sum rules (EWSR's) for
the operators r Y~(9,P)(8~2) and r (8=0) provide con-
venient measures of the strength of transitions to giant reso-
nances [19].These transitions exhaust large fractions of the
sum-rule limits. The operators for 8~2 are the same as
those for electric excitation. Hadronic excitation by inelastic
scattering is associated with a different radial dependence,
but the target nucleus surface is emphasized just as it is by
the r operator, and we can expect the sum-rule expressions
to provide a qualitatively reliable guide [8].

If a single state with excitation energy E„exhausts 100%
of the isoscalar EWSR for 8~2, the transition rate is

Go (r) = —no [3U(r) + rd U(r)ldr], (2.16)
This requires a deformation length for the BM model transi-
tion density (2.4) given by

which has a node in the surface. This has been called "ver-
sion 1"of the DP model for monopoles t 18], and was used in
Refs. [5,6]. However, a slightly different "version 2" [18]
was used by the authors of Ref. [7].

We must relate the deformation length 6~ or amplitude

no for the matter distribution to those for the potential in
order to compare the consequences of using folding or the
DP model for a given transition. It has become conventional
to equate the deformation lengths when /~ 2,

47r Y(28+ I) (r'~ ')
gled)

2 (3.2)

(3 3)

On the other hand, if the transition density has the Tassie
form (2.7), we need

8p= 8p,U (2.17)
A monopole excitation that exhausts the sum rule has

because this results in the same displacements of the surfaces
of the potential and matter distribution. It is not at all clear
how the monopole amplitudes should be related, but in the
same spirit we equate the displacements at the corresponding
potential or matter radius,

UORU= ceo c, (2.18)

where RU is the radius of the Woods-Saxon potential and c is
the matter radius in Eq. (2.6). The values of 8~ and no are
related to sum-rule limits in Sec. 3.

D. Coulomb excitation

The effects of Coulomb excitation are included by adding
to the transition potential the almost model-independent term

G~(r) = ~ 4m[8(EE) t']" Z„el(28+ 1)

1l/r
+' r~R

X
r /R r~R (2.19)

where Z e is the charge on the projectile and

R,=1.2(Ar +A„' ) fm. Care must be taken to choose the
appropriate sign relative to the hadronic component [9].The
plus sign is correct for the models and isoscalar transitions

4A
B(IS,O) = (r )2m E, (3.4)

and the transition density (2.5) requires an amplitude

fi. 4' 1
(~0)'=

2m AF (r2) (3.5)

The above expressions are frequently approximated by as-
suming that the density distribution is uniform with a radius
R, for which the radial averages become

3R"
(r") =„+3 . (3 6)

The value R = 1.20A fm is usually adopted. We prefer for
consistency to use the actual averages appropriate for the
model density distributions used in the folding calculations.
These agree, for 8=0 and 2, with the estimate (3.6) if a
slightly larger radius R is used, R = roA', with ro=1.21 to
1.23. The deviations become larger as n increases.

The transition rates and amplitudes resulting from Eqs.
(2.14) and (3.1)—(3.5) for 100% of the EWSR limit are listed
in Tables I and II.

Sum-rule arguments have also been used [19] to show
that, if a single excited state saturates the EWSR for r', the
associated radial transition density has the form
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90Z
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1.397
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10 10

17O~ 120Sn GgR 170+ 208 Pb GQR

10 100% EWSR

g10

010
US

0
Pt

UI
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10
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U

10 1
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10
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I

5

FIG. 3. As Fig. 1, except for ' Sn.

10

"O+ "'Pb GQR

100t EWSR

0

UI
CQ

010
U

10 1
c.III. angle (deg)

FIG. 4. As Fig. 1, except for Pb.

and (3.1)—(3.3), and Table I. The BM and T models give
very similar angular distributions, with the T cross sections
being somewhat larger in magnitude by 10—20 %.

Comparing the folding and DP results suggests that fold-
ing results in less marked oscillations in the angular distri-
butions, except for Ni. However, closer examination re-
veals that this feature is somewhat dependent on the
properties of the Woods-Saxon potentials used for the DP
model. In particular, it is correlated with the ratio of imagi-
nary to real potential strengths. Except for Ni, the Woods-
Saxon potentials t 3—7] have W/V ratios that are smaller than
w/v [14] for the folding interaction by about 30%, even
though the corresponding fits to the elastic scattering data are
similar in quality. This point is emphasized for Pb if the
Woods-Saxon from Ref. [3] is used in the DP model instead
of that from Ref. t7]. The W/V ratio from Ref. [3]equals the

FIG. 5. Predictions for exciting the GQR in Pb using the
folding model with the BM transition density and exhausting 100%
of the sum-rule limit. The short-dashed curve is for Coulomb exci-
tation alone, the long-dashed curve is for the hadronic interaction
alone, while the solid curve is for their coherent sum. The relative
Coulomb and hadronic strengths assume a purely isoscalar transi-

tion, B(E2)=(Ze/A) B(IS,2).

w/U ratio of the folding interaction, and the corresponding
angular distributions are almost identical.

The Coulomb-hadronic interference that occurs when
Coulomb excitation is included may alter the angular distri-
bution drastically, especially for the heavy targets (large
Z„). The effect on the Ni excitation is rather small and
consists mainly in making the minima more shallow at small
angles. On the other hand, the Coulomb excitation dominates
the cross section for Pb t3,7]. Figure 5 shows the cross
sections for hadronic or Coulomb excitation alone and their
combined effect. However, the hadronic interaction is not
negligible; even here as Fig. 5 shows, it changes the angular
distribution radically. The result in this case is not extremely
sensitive to the hadronic component; in one sense, this is
fortunate because it allows us to extract a B(E2) value that
is almost model independent. In another sense, it is unfortu-
nate because it requires very precise data in order to deter-
mine any detailed characteristics of the hadronic interaction
other than its overall strength. [Nonetheless, the sensitivity is
sufficient to rule out definitively the B(E2) and B(IS,2) val-
ues deduced from (vr, ~') measurements on the GQR excita-
tion in Pb [12].]

Another feature of Coulomb excitation to which attention
should be drawn is its sensitivity to the excitation energy.
This is relevant because giant resonances may have widths of
several MeV. The Coulomb excitation probability may vary
significantly over this energy range, and the cross section
should be integrated across the resonance. For example, in
the present case a decrease of 2 MeV in E for the GQR in

Pb increases the Coulomb cross section by 30%. This ef-
fect is important for excitation of the broad giant dipole reso-
nance [4] (I -4 MeV), but much less so for the narrower
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TABLE III. Ratios of integrated cross sections o., for ' 0 at EIA =84 MeV for a given fraction of the
sum-rule limit. DP refers to the deformed potential, BM to Bohr-Mottelson, and T to Tassie.

Target ONi 907 118S 120Sn 124S 208Pb

GQR
Hadronic only

a,( T) / o', (BM)
a, (DP)/o. ,(BM)
Hadronic + Coul. ex.
o t(T)/o, (BM)
o,(DP)/o, (BM)
GMR

o,(DP)/a, (T)

1.13
1.42

1.11
1.37

1.26

1.18
1.81

1.11
1.52

1.55

1.15
1.72

1.06
1.32

1.68

1.17
1.71

1.08
1,31

1.69

1.17
1.41

1.08
1.20

1.40

1.18
1.50 (1.18) '

1.03
1.09 (1.02) '

1.51 (1.21) '
'Values in parentheses result from using in the DP calculations the Woods-Saxon potential from Ref. [3],
instead of that from Ref. [7].

GQR (I -2 MeV). We simply used the peak E, values given
in Table I.

The integrated cross sections

I' do. ( 0)
Crt

—„tIQJ (4.1)

give a measure of the relative magnitudes of the cross sec-
tions obtained using the various models, though it should be
remembered that the differential cross sections at a given
angle, such as at a forward peak where theoretical curves are
frequently normalized to measured cross sections, may ex-
hibit somewhat different ratios because of differences in the
angular distributions.

Ratios of the various integrated cross sections for the
same fraction of the sum rule limit are collected in Table III.
Values both with and without the inclusion of Coulomb ex-
citation are considered. Without Coulomb excitation, use of
the Tassie (T) transition density results in cross sections that
are 13%%uo to 18% larger than when the BM transition density
is used. The deformed potential (DP) procedure gives even
larger cross sections than the BM model, just as was found
for the excitation of low states [11].These differences are
ameliorated somewhat when Coulomb excitation is included,
but still remain very significant except for Pb where the
Coulomb excitation dominates.

ever, our main purpose here is to compare the relative results
of using folding versus the DP model.

No attempt was made to optimize the fits by adjusting the
value (2.14) assumed for the ratio B(E2)1'/B(IS,2), which
could alter the Coulomb-hadronic interference pattern. That
is, all the calculations presented are for pure "isoscalar"
(M„/M~ =N/Z) transitions. It will be seen that this assump-
tion gives an adequate description of the data. It has been
demonstrated elsewhere [4—6, 12] that departures from this
ratio as large as those inferred from (m;~') measurements are
incompatible with the heavy-ion data.

Comparisons with the measured cross sections are pre-
sented in Figs. 6—11 and the corresponding percentages of
the sum-rule limits used for the theoretical curves are given
in Table IV. Uncertainties of at least ~10 should be ascribed
to these percentages. Only the folding model results using

10

170+ 60Nj GQR

10

010
U0

B. Comparison with measured cross sections

Now we compare the calculated (including Coulomb ex-
citation) and measured cross sections and attempt to deduce
what fraction of the sum-rule limit has been observed. Two
points have to be kept in mind here. First, no account has
been taken of the variation of the Coulomb excitation as the
excitation energy varies over the resonance; calculations
were only made for the peak value of F as given in Table I.
Secondly, the theoretical curves were not averaged to ac-
count for the finite angular resolution of the measurements;
this will tend to make the observed minima less sharp than
the theoretical ones and to slightly flatten the maxima. Fur-
thermore, there are subjective uncertainties in the way we
choose to normalize the theoretical curves to the data. How-

10

10
1

c.m. angle (deg)

FIG. 6. Predictions from the folding model with the BM transi-
tion density (solid curve) and the DP model (dashed curve) com-

pared with the measured cross sections for ' 0 ions with
E/A=84 MeV exciting the GQR in Ni. The percentages of the
sum-rule limit used are indicated. Coulomb excitation was included,
assuming a purely isoscalar transition. The data are from Ref. [7].
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1000

0+ Zr GQR 70+ x20Sn GQR

10

&10

0I

ao100

BM 60%

10 1 BM 65%

——DP 50%

DP 50%

100

c.m. angle (deg)

/

/,
6

10 1

c.m. angle (deg)

FIG. 7. As Fig. 6, except for Zr. FIG. 9. As Fig. 6, except for ' Sn.

the BM transition densities (4) are shown in the figures be-
cause the Tassie form (7) gives almost identical angular dis-
tributions but, except for Pb, requires about 10% less of
the sum-rule limit. The DP curve for Pb was obtained
using the optical potential from Ref. [7];use of the potential
from Ref. [3j gives results even closer to those from folding.

Overall, the use of folding with the BM transition densi-
ties leads one to infer (except for Pb) some 10—20% more
depletion of the EWSR limit than when analyzing the data
using the DP model. The Pb excitation is so dominated by
Coulomb excitation that it is less sensitive to the precise
strength of the hadronic component and equally good fits to
the data (Fig. 11) can be obtained with either model exhaust-

ing 55% of the sum-rule limit. The results for the other tar-

gets are of the same order as (although somewhat less than)
what one would expect from the ratios of integrated cross
sections given in Table III. They are not the same because
differences in the angular distributions affect how one
chooses to fit to the data.

The BM model for the transition densities, although
somewhat arbitrary, is a natural choice for comparison with
the DP model because the same kind of physical assumptions
are made in both models. Use of the T model densities pro-
vides some measure of the sensitivity of the folding proce-
dure to the form of the transition density. They provide an-
gular distributions that are very similar to the BM ones but
with cross sections (again, except for Pb) that are about
10% larger.

10 10

170+ 118Sn GQR 0+ Sn GQR

0
~+
U0
Cl

R8

40

0I

010

BM 75%

g10
0

BM 70%

DP 60% DP 60%

10
0

c.m. angle (deg)

10
0

c.m. angle (deg)

FIG. 8. As Fig. 6, except for "Sn. Here the data are from Ref. FIG. 10. As Fig. 6, except for ' Sn. Here the data are from Ref.
[6j.
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1000

+100
OI

BM 55%

DP 55%

~7p+ 20 py GgR

saturation of the sum-rule limit. The oscillatory angular dis-
t 'b tions are rather similar except for a tendency of the fold-ri u ion
ing approac o g'h t give less deep minima. Overall, the
model yields peak cross sections that are from 25% to 70%
larger than those from folding. Another measure of the if-
ferences in magnitude is given by the ratios of the integrated
cross sections (4.1) for the two models. These are included in
Table III and closely follow the ratios of peak cross sections.

Some uncertainties were explored for + 20~Pb. For ex-
ample, if the Woods-Saxon potential from [3] is used in the
DP model instead of that from [7], the predicted cross sec-
tions (shown by the short-dashed curve in Fig. I8) are re-
duced by 20%%uo, bringing them closer to the folding mode
results.

160

10
1

I t

3 4

c.m. angle (deg)

140

120

FIG. 11. As Fig. 6, except for Pb. The circles are data from
Ref. [4]; the squares are data from Ref. [7].

V. EXCITATION OF THE GMR BY 0 AT E/A =84 MeV

A. Comparison of models

It has been emphasized many times (see [ll] for a recent
example) that the transition potentials generated by the fold-

ing model differ considerably in shape from those of the DP
model. The differences are particularly marked in the case of
the monopole breathing mode excitation. Figure 12 com-
pares them for the Ni target. The folding was done using
the Tassie transition density (2.5), while the DP transition
potentia is given y

'
I

' '
n b (2.16) with the scaling relation (2.18 .

Both are normalized to correspond to 100% of the EW R
1' ~3 5&~Th transition potentials for other targets are

DPsimilar; all have a node in the surface, with that for the
fm than that formo ed 1 occurring at a radius larger by 1.5 to m t an a

folding. The values in the interior are very different u
come rather similar at the large radii which are encountered
in peripheral collisions. (For example, the strong absorption
radius orf ' 0+ Ni is about 8 fm, while that for ' 0+

Pb is approximately 10.5 fm. )
Figures o c13 t 18 compare the differential cross sections

predicted by the two models, each corresponding to o
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TABLE IV. Percentages of sum-rule limits used in constructing
the theoretica ts o el fi t th data shown in Figs. 6—11 for excitation of
the GQR.
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'Except for, t e vPb, h DP alues used were taken from the corre-

sponding experimental papers [5—7).
Curves not shown in Figs. 6—11 because they are very close to the

BM ones.

FIG. 12. Comparison of transition potentials for ' 0 ions excit-
in the giant monopole resonance (GMR) in Ni. Solid curve:
folding model using the Tassie transition density; dashed curve:
d f ed otential model, version 1. Both are normalized to ex-
haust 100% of the energy-weighted sum-rule limit. The s rong
sorption radius for this system at E/A = 84 MeV is approximately 8
fm.
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transition densities that are very similar to this form. At one
time, it was thought [9] that neglect of density dependence in
the effective interaction might be responsible for the GMR
discrepancies, but explicit calculations t23] indicated that it
was not. Perhaps a more plausible explanation is the pres-
ence of contributions in the spectra from other 8 values. A
popular candidate is a fragment of a giant hexadecapole
(/=4) resonance. It is known [7], for example, that a small
fraction of the sum-rule limit for 8 = 4 (15% for Pb, 10%
for Zr) will produce cross sections as large as those for
100% of the GMR.

VI. SUMMARY AND DISCUSSION

10
0 2 3

c.m. angle (deg)

FIG. 17. As Fig. 13, except for ' Sn. Here the data are from
Ref. [6].

1000

g 100

y

/

" 0+ 'Pb QMR

l

2
c.m. angle (deg)

FIG. 18. As Fig. 13, except for Pb. The long-dashed DP
curve is based upon the optical potential from Ref. [7], while the
short-dashed curve uses the potential from Ref. [3].The circles are
data from Ref. [3], the squares from Ref. [7].

the folding model, which we believe to be more "realistic. "
Strengths close to twice the sum-rule limit (even more for
the data of Ref. [4]) are needed to fit the data.

This is not without precedent. An analogous study of the
giant monopole resonance excitation by 152 MeV n particles
[22] gave similar results: folding gave appreciably smaller
cross sections than given by the DP model, and the data
implied strengths exceeding the sum rule limits.

It is possible that the simple Tassie form (2.5) is inad-

equate, although several RPA calculations have resulted in

We contend that the use of folded potentials to analyze
scattering measurements is more meaningful than employing
the deformed optical potential (DP) model because folding
provides a direct link to the underlying transition density of
the target nucleus, whereas the DP model has no such basis.
It is the properties of the transition density about which we
wish to learn. The two approaches can lead to significantly
different results. In this work, we have investigated these
differences for the analysis of excitations of giant monopole
(GMR) and quadrupole (GQR) resonances by heavy-ion
scattering, in particular as induced by ' 0 beams at
F/A=84 MeV.

Overall, the effects we find are certainly not negligible.
The measures we obtain for the percentages of the EWSR
limits for the GQR that are needed to fit the data are in-

creased by 10—20% (except for Pb, where Coulomb exci-
tation dominates) when folding is used. However, all the data
remain compatible with the assumption that the transitions
are purely isoscalar. The disagreements with the interpreta-
tion of inelastic pion scattering data remain.

Similar differences are found for excitation of the GMR.
Use of the DP model already shows a need for more than
100% of the EWSR limit (typically -125%, except possibly
for Pb where the cross sections at the smaller angles re-
ported in [4] imply nearly twice the sum-rule limit). This
situation is exacerbated when folding is used and strengths
close to, or even greater than, twice the sum-rule limit are
needed to fit the data. This may be due to deficiencies in the
simple Tassie model of the transition density that we have
used, although several nuclear structure calculations lend
support to this form. An alternative suggestion is that the
presence in the extracted cross sections of a "background"
of excitations with other multipolarities, especially 8=4, is
responsible for the discrepancies. An /=4 excitation with a
strength of only 10—15 % of the hexadecapole sum rule limit
has cross sections comparable to 100% of the monopole.

Our studies have concentrated on excitations by ' 0 ions
with E/A=84 MeV because the most complete data are
available for this beam. However, the same qualitative fea-
tures are expected for other heavy ions and other energies.
The differences between using folding and the DP model
tend to be reduced as the energy is lowered. On the other
hand, the effects on the hadronic amplitude become larger as
the mass (size) of the projectile is increased. In particular, the
differences between DP and folding models increase more
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rapidly with multipolarity. However, a larger mass usually
means also a larger charge and the importance of Coulomb
excitation is enhanced.

Finally, it must be stressed that the differences between
the results of applying the DP and folding approaches in-
crease strongly as the mu1tipolarity / increases. This situa-
tion will be discussed elsewhere.
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