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Correlated pair conversion in heavy-ion collisions at the Coulomb barrier
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As a model for understanding the appearance of narrow lines in positron singles and electron-positron sum

energy spectra found in heavy-ion collisions close to the Coulomb barrier, we propose the following scenario:
After the Coulomb scattering both heavy nuclei are very likely in low 1~2 MeV) excited states, which

subsequently decay by correlated monoenergetic (e+,e ) pair conversion (MPC) and internal conversion (IC)
processes thereby producing an asymptotic (e+,e ) pair with the sum energy of the two nuclear transitions.

We only consider processes where the two nuclear transitions are correlated by an intermediate bound electron
state (the 1 rr orbital) of the nuclear scattering system. Since this orbital is only weakly time dependent and

persists for —10 ' s, we obtain rather narrow, I', +, ——20 keV, sum energy lines for the (e+e ) pair from this

process. We, however, find that correlated EO-EO-transitions have cross sections at least 8 orders of magnitude

too small and can safely be excluded as the cause of the narrow sum energy spectra observed experimentally.
A rough estimate of the cross section indicates that correlated E1-E1 transitions occur with a substantially

larger cross section and should thus be investigated in detail.

PACS number(s): 25.70.Bc, 25.70.Ef, 12.20.Ds

I. INTRODUCTION

The detection of narrow peaks in the spectrum of emitted
positrons ("positron single spectrum") and of still narrower
peaks in the sum energy spectrum of emitted coincident
(e,e ) pairs in heavy-ion collisions at the Coulomb-barrier
has received great interest in the past years [1—5]. Despite
numerous theoretical attempts [6—18], no explanation has
been found which could account for the complete body of
experimental observations. The most carefully studied theo-
ries were the spontaneous creation of positrons [19,20] in the
"supercritical" Coulomb field of long-living quasiatomic in-
termediate systems [10,21], on the one hand, and the decay
of a hypotetical neutral particle into an (e,e )-pair [10—
14,18] on the other.

When the two colliding nuclei are sufficiently highly
charged and come sufficiently close to each other, the lowest
eigenvalue of the two-center Dirac equation may dive into
the Dirac-sea [22]. If this level happens to be empty due to
prior excitation processes, the electron of an (e+,e ) pair of
the vacuum can occupy this empty bound state and the pos-
itron can be emitted. This first attempt to explain the positron
single spectrum failed because, among other things, the
"diving into the Dirac sea" in the combined Coulomb poten-
tial of the two nuclei would only happen for total charges
(Z, + Z2) )172 whereas resonances are also observed in
"subcritical" systems as for instance in the systems

Xe+ ' Au and Th+ ' ' Ta. Furthermore the experi-
mental energies of the positron single lines do not follow the
predicted pattern and no explanation could be given for the

narrow peak structures observed in the summed

(e,e ) -spectrum. '

The attempts to explain the peaks as the signature of a
decaying particle (i.e., nondiscovered neutral particle [10—
12], axion [6,11], micropositronium [13], strongly bound
states of "quadronium" [18], polypositron states (e+,e )"
based on nonlinear couplings [14], etc.) which is formed
during the collision or to understand the observed spectrum
as a result of a transition in a temporary potential pocket (see
also [7—9,13,15—17]) are either excluded by failing to pro-
duce the observed magnitude of the cross section or have not
been carried out in sufficient detail to be confronted with
experiment. Thus the general feeling is that we still lack a
convincing and simple explanation of the observed phenom-
enon. A summary of the experimental results until 1993
(see [1—5]) leads to the following essential properties of the
line phenomenon.

(a) The observed FWHM of the sum energy lines in the
spectra of coincident (e",e )-pairs ranges from 10keV to
40 keV.

(b) The sum energy lines correspond to positron single
peaks having a FWHM in the range of 80—100 keV.

(c) For all the observed "sum energy lines, " the sum E~
of the kinetic energies of the emitted electron and positron is
less than 1 MeV.

(d) The line intensities are very sensitive to the scattering
kinematics of the nuclei.

(e) The observed (e+,e ) pairs contributing to a certain
peak show angle correlation.

(f) The peaks have also been observed in subcritical
(ZI +Z2~ 172) systems.

(g) No resonance was observed in Bhabha scattering in
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the relevant energy range (see Refs. [24—30]), which ex-
cludes an explanation of the line phenomena by positronium
formation.

(h) In the y spectra above 1 MeV, no lines corresponding
to the sum peaks have been observed.

We do not claim that the preceding list as an experimen-
tally committed pattern is complete but it excludes already
simple explications of the line phenomenon to a great extent.
We use this list as a provisional definition of the line phe-
nomenon and propose the fourth order process of the corre-
lated pair conversion as a possible explanation in the next
section.

In Sec. II, we describe and analyze the scenario of the
correlated pair conversion qualitatively. In Sec. III, we con-
sider the cross section for the correlated pair conversion with
regard to the typical experimental situation. In particular, we
introduce the variables which can be measured in a complete
experiment and discuss the quantities which are actually
measured. In Sec. IV, the calculation of the transition ampli-
tude for the correlated pair conversion is presented.

Because of the enormous numerical effort for the calcula-
tion of correlated MPC-IC processes of multipole orders
other than EO, we are forced to restrict our numerical calcu-
lations to the simplest case of the correlated EO-EO conver-
sion. The special monopole-monopole amplitude is calcu-
lated in Sec. V. In Sec. VI, we show numerical results for the
correlated EO-EO conversion in the example of the collision
system U+ U, when the uranium nuclei are both ini-
tially in the excited 925-keV-0 state. Although this ex-
ample is not very realistic from different reasons (see Sec.
VI), it yields important information on the properties of the
e+-single lines, the sum peaks and the difference energy dis-
tributions which we expect to hold in a similar way also for
correlated MPC-IC processes of higher multipole orders like
the E1-El conversion and the E1-EO conversion.

In Sec. VII, we compare theoretical and experimental re-
sults and give a summary and conclusion. In the appendix we
show how the special form of the transition amplitude dis-
cussed in Secs. IV and V can be obained in the framework of
a consistent semiclassical theory of reactions.

II. THE MODEL OF THE CORRELATED PAIR
CONVERSION

In this section we present the process of the correlated
pair formation as a possible explanation of the line phenom-
enon defined by the features (a) —(h) of Sec. I. This process
can only occur under the condition that the two nuclei are in
excited states when the bound electron shells of the heavy
ions form common quasimolecular orbits. Thus an excitation
process of both the nuclei has to precede. Furthermore, the
most important contribution to the correlated pair emission
arises when at least one of the two lowest molecular elec-
tronic orbitals is vacant at the beginning of the process. This
implies that a hole-creating process is effective in the ap-
proach phase of the two ions. In heavy-ion collisions below
and at the Coulomb-barrier, nuclear excitation processes oc-
cur predominatly through electromagnetic interaction. In
fact, most of the experiments where narrow lines in the sum
energy and the positron single spectra were observed were
performed at beam energies close to the Coulomb-barrier.

(Xi)
1) ACO, , I, , m,
I

2)
l

(2)
p

FIG. 1. The complete process consisting of the initial electro-
magnetic excitation by the exchange of at least two virtual photons
(with corresponding four-vectors ICt and Kz) and the following
correlated pair conversion. The symbols 4, &

in the figure denote
the initial (i) and final (f) nuclear states of the correlated pair
conversion, whereas 40' denotes the nuclear ground states at the

beginning of the nuclear scattering motion. 'Pz
~

and II'z

represent the positronic and electronic two-center continuum states
and V&„& the (n)th bound quasimolecular intermediate state of the
electron. The symbols A(„~~ denote the multipole fields of the in-

termediate photons where k=L, F.,M. co, I, and m signify the en-

ergy, the angular momentum, and its projection.

The complete scenario, i.e., the electromagnetic excitation
together with the correlated pair conversion, can be de-
scribed in Fig. 1. It represents a whole class of similar dia-
grams with different time orderings of the vertices. The tran-
sition amplitude of the correlated pair conversion in heavy-
ion collisions at the Coulomb barrier is given by a coherent
sum of the transition amplitudes of all these diagrams. In
principle one has to add to our calculation in the mean field
approximation corrections from quantum field theory, espe-
cially the vacuum polarization in the two-center Coulomb
field. It is questionable whether it would be quantitatively
meaningful to compute these QED corrections, since correc-
tions due to the partial occupation of higher electronic orbit-
als (screening, Pauli-principle) are expected to be larger, but
cannot be precisely calculated at all.

In the case that the internal conversion (IC) for nucleus 2
precedes the monoenergetic pair conversion (MPC) for
nucleus 1, the hole in the 1o.-molecular orbital is created by
the process itself and need not exist prior to it.

The complete diagram of Fig. 1 has the following inter-
pretation. During the approach phase of the nuclear scatter-
ing, both nuclei undergo a Coulomb excitation from the

ground states 40' into the excited states 4~ by the ex-
change of at least two virtual photons. For the time ordering
shown in Fig. 1, one of the nuclei (nucleus 1 in Fig. 1) starts
with an MPC (monoenergetic pair conversion) provided that
there exists at least one hole in the 1o. orbit or in an higher
bound electron level.
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Due to the strong and time-dependent electromagnetic
fields for internuclear separations below 1000 fm, the prob-
ability for the production of at least one hole in the 1o. orbit
during the approach phase of the two nuclei is close to 1. In
the diagram formalism, the MPC can be subdivided into two
steps. The first step represents the nuclear transition
(4I')~4»t')) which generates a longitudinal (X.=L) or a
transversal (X.=E,M) intermediate photon, denoted by

A„~ in the Fig. 1. In a second step, the photon decays into
an electron-positron pair with the positron being emitted into
the two-center continuum state IJ'E and the electron oc-

cupying the vacant two-center (n) orbit 'P&„), where (n)
denotes the quantum numbers of this state. We stress that an
IPC (internal pair conversion) competes with the MPC if the
nuclear transition energy exceeds the limit of 2m, (i.e.,
1022 keV). For higher transition energies, the electron is no
longer strictly forced to go into a bound state but can be
emitted into the continuum through an ordinary IPC process.
This is a very important criterion that restricts drastically the
number of nuclear transitions involved in the correlated pair
conversion. Indeed, no narrow lines in the sum energy of
(e+, e ) pairs were found at energies larger than 1 MeV.
Another important aspect is that only low-lying nuclear lev-
els can be populated by Coulomb excitation at the given low
energies of the beam.

The IC (internal conversion) in the upper right section of
Fig. 1 can also be treated as a two-step process where the
second nucleus creates an intermediate longitudinal or trans-
versal photon in a nuclear transition (tIyI )—+tIyft )) followed

by an ejection of the electron from the bound state 'I&„& into
a continuum state 9'z J . At the end of the whole process

we find two outgoing nuclei in the final states 4f' and an
(e",e )-pair with a sum energy essentially given by the sum
of the transition energies of the two nuclei.

The numerical calculations in Sec. VI show that the dy-
namical effects on the sum energy lines (i.e., the effects on
their positions and their widths) due to the time dependence
of the intermediate electronic level and the associated energy
gain of the electron remain small. We have thus a very help-
fu1 criterion to find out which combinations of nuclear tran-
sitions may contribute to a certain sum peak by correlated
pair conversion. One has just to go through all combinations
between all possible transitions of the lowest multipole or-
ders (EO,E1,M1 should yield the essential contributions) in
each one of the two colliding nuclei and to check whether the
sum of two transition energies is close to the position of an
experimentally observed line.

Of course, there exist combinations leading to sum peaks
which have not been observed experimentally. This could be
explained by the following two reasons. The experiments are
complicated due to the very small cross section (=0.1
—1 p,barn/sr) on the one hand, and the fact that the lines
have to be observed on top of a large background of dynami-
cally created (e+,e ) pairs and of pairs originating from
nuclear IPC processes, on the other. Thus more weakly popu-
lated lines may easily escape observation. A second reason is
the experimentally established fact that the appearance of the
lines is very sensitive to the nuclear scattering kinematics
(see for instance Ref. [5]).This indicates that the Coulomb
excitation of the various levels of the two nuclei depends
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strongly on the kinetic energy Fk;„of the projectile and the
relative heavy-ion scattering angle 0. It seems that for given
kinematical conditions only a few particular levels are domi-
nantly excited and this could drastically reduce the number
of observed peaks in any small window in the parameter
subspace of Ek,„and 0.

In Tables I, II, and III we demonstrate the combination
pattern for sum energy lines of (e+,e )-pairs in the collision
systems U+ U, U+ Th, and Th+ Th, respec-
tively. Similar tables can be made for all collision systems of
heavy nuclei. In principle one has to check the energy spec-
trum of either nucleus as far as it can be reached by electro-
magnetic excitation in collisions at the Coulomb-barrier. As
we are only interested in EO, E1, and M1 transitions, i.e., in
transitions which yield the strongest contributions,

We selected almost all possible transitions of these multi-
pole orders between low-lying levels [31,32]. Finally, we
have to combine the transitions of nucleus 1 with the transi-
tions of nucleus 2 and subtract 2m, c from the sum of the
two transition energies. In each table (i.e., in every one of the
collision systems U+U, U+Th, and Th+Th) we found at

TABLE I. The table shows experimental transition energies
AE '~ between low-lying levels of g U (nucleus v= 1 and
nucleus v=2). In the case of the correlated pair emission, the
sum peak corresponding to a given combination of transitions
should be observed at the energy AE ' + DE —2m, c = DE '

+DE —1022 keV. It is seen that for each of the 3 experimen-
tally observed sum energies (555 keV, 630 keV, 815 keV) there
exists at least one combination of transitions leading to a sum

energy which is less than 5 keV apart from the experimental value

(see numbers in the fully drawn boxes). The sum energies of the
combinations within a tolerance of 10 keV are given in the
dashed boxes.

23 238
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TABLE II. Experimental transition energies AEt'i between low-lying levels of 92 U (nucleus
v= 1) and &„Th (nucleus v= 2). In the case of the correlated pair emission, the sum peak corre-232

sponding to a given combination of transitions should be observed at the energy
AE ' +DE —2m, c =DE +DE —1022 keV. It is seen that for each of the 3 experimen-
tally observed sum energies (608 keV, 760 keV, 809 keV) in the collision system U+ Th,
there exists at least one combination of transitions leading to a sum energy which is less than
5 keV apart from the experimental value (see numbers in the fully drawn boxes). The sum ener-

gies of the combinations within a tolerance of 10 keV (this is still in the frame of experimental
precision) are given in the dashed boxes.
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least one combination for each one of the experimentally
observed sum peaks with a sum energy which is less then 5
keV apart from the experimental value. In the majority of the
cases there are several different combinations leading to the
same peak. Nevertheless, we do not claim that the list of the
nuclear transitions in the Tables I, II, and III is complete.

In Tables IV, V and VI, we present the estimated values
for the mean difference energies (Ea):=(E —~E~~) an

(e,e ) pair emitted in the correlated pair conversion.
These values have been determined with the following
method. In the MPC process, nucleus 1 makes a transition of
the energy AE ' whereas a positron of the total energy
iE+

~

and a bound electron of the total energy Ei is created.
Thus if we neglect the motion of the nuclei we have the
energy balance

The IC process at the nucleus 2 ejects the electron from the
bound I rr state (of energy E, ) into a continuum state of the
energy E . The energy balance of this process is

0&E =aE~'~+E, .

In the nonrealistic case of the stationary scenario of the
correlated pair conversion, where the two nuclei do not
move, the energy EI of the bound level is not time depen-
dent and the difference energy E&——E +E+ (as defined
above in this paper) is exactly given by

E +E =DE —AE~ +2EI

We count the positron energy E+ negative (i.e., E+ (0) through-

out this paper because of technical advantages in the calculations.
Consequently, the difference energy reads E~ =E +E+

—~E+ ~. One has to consider that Ez'~ —Ea for the experi-=
mental difference energy E~' .

In reality, EI is time dependent.
We can estimate the mean difference energy by

where we estimate (Ei~) by
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TABLE III. Same as in Table I but for 90 Th and the experi-

mentally observed sum energy peaks at 608 keV and 809 keV in

the collision system Th+Th.
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The exact result of (R) is given by (R)
=f," dtR(t)X„~„~at„ I (R(t))~, where the at I are the expan-

sion coefficients of the two-center wave function 'Ij'& in the di-

atomic basis as defined in [34j.

In Eq. (5), E(i,) denotes the binding energy of the electron in

the bound single atomic Is state and Zzn/(R) is the mean
lowering of the energy of this electron resulting from the
influence of the potential of the second nucleus with the
charge number Z2~Z&.

Beyond the combinations demonstrated in Tables I—VI
the concept could predict further peaks which have not been
observed experimentally until now. From the viewpoint of
the difference energy spectrum, our scenario would in prin-
ciple allow for sum peaks with a corresponding E~ distribu-
tion centered almost around E~=O keV. In order to fulfill
this experimentally established feature of the line phenom-
enon, we have to restrict the combinations to transitions with

very asymmetric transition energies AE ' so that the right-
hand side (RHS) of Eq. (4) leads to values close to Et, =O
keV. Under the condition that we take E~ windows whose
widths are only a few 100 keV around E~=O keV, we find
that combinations with a E~ peak in this E~ range lead to
strongly dominant sum peaks. On the other hand, sum peaks
are suppressed for combinations where the corresponding

E~ distribution is not in this E~ window. We demonstrate
this behavior in the numerical calculations of Fig. 8 in Sec.
VI by shifting a 200 keV wide E~ window towards the maxi-
mum region of the E~ distribution in the example of a cor-
related EO-EO conversion in the U+U collision system.
From the viewpoint of the correlated pair conversion, this
effect can be interpreted as a selection of sum peaks by put-

ting an E~ window. If one would accept the proposed sce-
nario as an explanation of the experimentally observed E~
lines for E~ windows around E~ = 0 keV, one should also see
narrow lines in the E~ spectra for some E~ windows not
taken around E~ = 0 keV. Such lines should mainly occur for
E& windows in the region E~)0 keV.

III. A DISCUSSION OF THE CROSS SECTION

El in= Et +E2+ E —E+, (6)

where Ek;„ is the kinetic energy of the beam particles, E& 2

Before we derive a practically useful approximation for
the differential cross section of the process illustrated in Fig.
1, let us look at the typical experimental situation. Initially,
the target nucleus is at rest in the origin of the laboratory
frame. The z axis is chosen in the direction of the incident
beam. After the reaction, the scattered projectile nucleus and
the target nucleus move away from the origin in the direction
given by the scattering angles 0& and 02 relative to the
z-axis. The velocity vectors of the two heavy ions define a
plane containing the z axis which is chosen to be the (x,z)
plane. An (e,e ) pair is emitted with the angles (0+, @ )
and (0,$ ), where 0+ and 8 denote the polar angles of
the positron and the electron, respectively, and where P+
and

hatt
are the azimuthal angles referring to the x axis. In

the laboratory frame we would naturally use the 12 param-
eters Ht, @, , 0~, @2,8+,$~,8,@,E, ,E2,E+,E for the
formulation of the differential cross section of the scattering
reaction, where Pt and Pz denote the azimuthal angles of
the heavy ions in relation to the (x,z) plane. The parameters

E& and E2 denote the total energies of the scattered heavy
ions and E+,E denote the total energies of the positron and
the electron. The remaining parameters have already been
explained above. The number of these parameters is reduced
to 8 by energy and momentum conservation. Since the mass
and momentum carried away by the two leptons is much
smaller than the mass and momentum of the two nuclei, we
describe the motion of the two nuclei by the classical trajec-
tories obtained for elastic scattering in the reciprocal Cou-
lomb field. This implies the relation @t—p2= 4 1r for the
azimuthal angles of the two outgoing nuclei. There is of
course an azimuthal symmetry of the total cross section with
respect to rotations of the coordinate system around the z
axis. The leptons are measured in coincidence with the heavy
ions, whose planar motion defines the (x,z) plane (see
above). As a consequence, the cross section does not depend
on @t 2 at all. The polar angles 0, 2 of the two outgoing
nuclei are related by the conservation of the nuclear mo-
menta which holds in reasonably good approximation due to
the smallness of the lepton momenta. Thus, the cross section
depends only on the difference 0= 0&

—02 of the scattering
angles. The conservation of the total energy implies the re-
lation
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4+ 907.0
4' 979.0)
2 1179.$"
6 960.0)

E~"~ (keV)
555 2 630,' 815

q) (keV) ', (g0 (keV)' , (Eq$ (keV)

463.6 ',

444.4'. ,
'

I I

I I

I I

470.5l ,

'

442.4". -- -.......... ';"
1644.ol

I

e

. 1397.51 l 1603.81
~ ~ I

~ ~

:371.2.'.. ' 650.6
~ ~ I I

403.5,:.I. ':.369.2:;l .1635 31

408.6l, l' " ..
/ I 653.7I I

596.4
1149.31

l 851.81
I

~ ~ ' I' ~ ~
I

I

654.9
666.7

:669.8

TABLE IV. The process of the correlated pair conversion
leads for each combination of converted nuclear transitions listed
in Table I to a sum energy peak and a corresponding difference
energy distribution. This table shows for each sum energy in the
boxes of Table I the corresponding mean value (Eq) of the differ-
ence energy. In Sec. II we show how one can estimate these val-
ues to a good approximation.

23 238

in Fig. 1) competes with simple y emission. Consequently,
the cross section for the positron single peaks contains also a
summation over all the y deexcitation processes competing
with the IC.

In what follows, we mainly discuss the more complicated
case of the correlated (e+,e )-emission. As already men-
tioned, we use the following approximations

(i) We assume that the two heavy nuclei scatter elastically
because a loss of kinetic energy of the nuclei due to electro-
magnetic excitation never exceeds about 10 MeV, an energy
which is much smaller than the kinetic energy of the incident
projectile nucleus of about 1500 MeV.

(ii) We describe the motion of the nuclei by classical Cou-
lomb trajectories. This is justified because the de Broglie
wavelength of the relative motion is small compared to the
nuclear radii and the distance of closest approach is larger
than 15 fm, to that the nuclear strong interaction can be ne-
glected.

(iii) We describe the mean probability PCE for the Cou-
lomb excitation of both nuclei by a factor in front of the
cross section for the correlated pair production. Thereby we
neglect off-shell effects and quantum correlations between
the Coulomb excitation process and the correlated pair emis-
sion. We expect that these effects are small. The mean value

PCE is taken over the window [8;„,8,„]of observation for
a fixed beam energy Ek;„. From [37] we know that

PCE(8, E k;„) is a rather smooth function of these parameters
and that we can take PCE=0.5 as a reliable estimate.

With these approximations the cross section (8) takes the
form

d Ad 0 d A dEgdEg

are the kinetic energies of the final outgoing nuclei, and
E are the total energies of the leptons e —.For the nuclear
kinetic energies we may use the nonrelativistic forms,
whereas for the lepton energies we have to use the relativistic
ones (c= 1)

E =+ gmo+p

(mo= lepton mass, p~ = final momentum of e-). We draw
attention to our convention of defining the positron energies
to be negative numbers. The differential cross section for the
observed scattering reaction thus has the form

d o(8, 8+, @+,8,$,Ek;„,E+,E )
d AdQ d A dE+dE

where d II& )=sin8(~)d8( &dp& &. In order to compare a2

theoretical model for the reaction with the experiment we
have to derive a useful approximation for the cross section
(8). The cross section for the positron single spectra
d rr(8, 8+,P+,Ek;„,E+,)Id Ad A+dE+ depends only on
the variables 8, 8+, @+, Ek;„, E+ . If the correlated pair
emission were the only process leading to the line spectrum,
this cross section could be obtained from (8) by integration
over the variables E, 8, @ of the electron. In fact, for
all multipolarities other than EO, the internal conversion (IC

The first factor on the RHS denotes the classical differen-
tial cross section for the elastic heavy-ion scattering. The
sum on the RHS is taken over the lowest bound states of the
electron in the Coulomb-held of the two nuclei and the fac-
tors P&„& are the occupation numbers for the nth electronic
orbit to be vacant where O~P&„&~2 due to the spin degen-
eracies.

Similar to the case of PcE, we shall take the numbers
from experimental observations of the so-called 6 electrons
emitted in the course of a heavy-ion reaction. Quantum cor-
relations of the emitted 6' electrons and the pair production
we are interested in are neglected. The last factors in Eq. (9)
are probability densities. They can be determined from the
coherent sum of the transition amplitudes corresponding to
the diagrams of Fig. 1.

The RHS of Eq. (9) represents the cross section of an
optimal experiment concerning the line phenomenon. How-
ever, in the experiments hitherto performed, not all the 8
parameters appearing in (8) have been scanned. For the ma-

jority of the parameters, very wide windows have been taken
and thus we can only compare the integrated distributions
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TABLE V. This table shows for each sum energy in the boxes of Table II the corresponding
mean value (Ez) of the difference energy. How one can estimate these values to a good approxi-

mation is shown in Sec. II.

assU ass Th

Transitions in U
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E1,~.~

9 E1,...

9 E1yss ~

p+ EO

2+ EO,M1

6+

8
= 2'
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6
4
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bE (keV).'Transitions in Th

over these windows. We denote the sum and the difference of
the energies of the final leptons by E~ and E~. As we use
the convention E+(0, they are given by

Ig(Eg) =PcEX P(n)
(n)

I' d P(„)(e+,e )

J a(i+ J gati g ae&d 0+d 0 dEydEa

/E~) f 1 —1) (E

) (E+)
(10)

xdO+dA dE~, (12)

In the experiments, the beam energy Ek;„has been fixed to
a few values in each of the collision systems. The parameters
—E+ and E~ have been scanned over a narrow mesh rang-

ing from 0 to 1500 keV with intervals of 10keV and the

energy differences E~ ranged between ~500 keV. Thus we
can only compare the following distribution functions with
the presently existing experimental data:

4(Ea) =Pc@2 P( )
(n)

d P(„)(e+,e )

ggF d A+d A dEgdEg

x dQ+dQ dEg. (13)

I+(E+)= PcEX P(„)
(n)

d P(„)(e+,e )

j QQ g QQ g QE d A+d 0 dE+dE

XdA+dA dE

The functions (11), (12), and (13) define probability distribu-
tions per collision depending on the parameters E+,E~, and

E~. The windows of integration AA+, AA, and AE or
AE~ or AE~ have to be taken as in the experiments. Since
the distributions of the (e,e ) pairs (or the e singles,
respectively) are measured for fixed scattering angles of the
heavy ions, the value of the classical cross section
fetid o.,&„,ld A in formula (9) is fixed.
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TABLE VI. The table shows the theoretical mean difference
energies (Eq) (see solid and dashed boxes) corresponding to the
combinations in Table III.

Th Th

E1,M2, E3,- 8+
E1,M2, ... 6+
E1j ~ ~ ~

E1,.~.
E1,~ ~.
E1

E1,...
E1,...

3 E1ja ~ ~

3 E1j~a ~

E1,~..

3 E1 \ ~ a ~

4+

= 2+

6+

p+

4+

= 2'
4+

4+

2+

= 2+
E1 0+
E1jaa ~ ~ 2+

4+ EO,M1,E2, 4+

2+ EO,M1,... 2+

6 EO'" = 6+

8' "-. —8'
4+ EO,... 4+

4+ EO ja a ~ 4+

p+ EO +

2+ EO,... 2+

hE (keV)

485.9
550.
612.
665.
710.
714.
722.
724.
945.

1022.
1028.
1057.
1077.
1133.
524.
612.
690.
702.
710.4
728.0
730.0
735.5

Eg"~ (keV)
608 ', 809

: (g$ &kev& ,'(g$ (kev)

:241.1
1252.9I

IV. THE TRANSITION AMPLITUDE

H= Hp+ HI&t . (14)

The Hamiltonian H;„, consists of the nuclear interaction

H, 2 between the nuclei 1 and 2, the Coulomb interaction
Ht, z

~ between the charged particles (protons, electrons) lo-
cated in ion 1 with the charged particles in ion 2 and the

coupling H ' of the charged currents with the radiation
field.

The integrands in Eqs. (11)—(13) are given by the abso-
lute squares of amplitudes or 5 matrices for the transition
from the different initial states to final states defined by the
variables A, E~, and E&. The details of the derivation of
the form of this amplitude in the framework of a semiclassi-
cal theory of reactions are given in Appendix A. In particular,
we explain in this appendix how the quasimolecular orbitals
of the most strongly bound electrons are introduced in the
framework of the semiclassical theory of reactions. They
play an important role in the correlated pair conversion. In
this section we formulate explicitly the transition amplitude
for correlated pair conversion.

In the framework of the semiclassical description of reac-
tions, the total Harniltonian of the system is split into an
"unperturbed" Hamiltonian Hp which describes the two nu-
clei moving on classical trajectories together with the elec-
trons in bound orbitals of the separate nuclei and the inter-

action H;„,

H(n) +H(Cb) +H (™)
int 12 12

We note that, as a result of the semiclassical description, we
have to omit from H;„, that part of the average interaction
between nucleus 1 and 2 which serves to define the classical
trajectories. Since we use simple "Coulomb trajectories, "we
have to omit from H;„, the Coulomb interaction

+

Z&Z2e /~R, —
R2~ between two point charges Z&e and Z2e at

the positions R, (t) and Rz(t) of the nuclear centers. The
"unperturbed Hamiltonian" Hp consists of the sum of the
nuclear Hamiltonians H," and H2" of the two nuclei mov-

ing on classical trajectories, the sum of the Coulomb inter-

actions H1 and H2 between all charged particles lo-

cated in the same ion, and the Hamiltonian H " of the free
radiation field

H(n) +H(n) +H(Cb) +H (Cb) +H(rad)
P 1 2 1 2

We note that the Coulomb interaction acts of course also on
the positrons produced by pair conversion. The eigenstates of
Hp serve to define basis states which contain a time depen-
dence due to the motion of the ions along the classical tra-
jectories. This is explained in the Appendix A. For the pe-
ripheral reactions we want to discuss, the Coulomb potential
of nucleus 1 acting on the electrons of ion 2 (a.v.v.) is the
largest part of the interaction Hamiltonian (15). It is the only

part of H;„, which cannot be treated in perturbation theory.
Therefore, it is advantageous to replace the basis of one-
center electron states by a basis of two-center electron states.
This is possible in a sort of Born-Oppenheimer approxima-
tion, using the fact that the motion of electrons is much more
rapid than the one of the nuclei. This is explained in Appen-
dix A. If we use the quasimolecular basis states for the elec-
trons, the interaction H12, disappears from the interaction

H;„, , since it is already taken into account through the elec-
tronic two-center states. Furthermore, the nuclear interaction

H, 2 can be completely neglected, since it does not contrib-
ute to the correlated pair conversion. Thus only the coupling
H(' ) of the charged currents to the free radiation field re-

mains as interaction H;„, and has the form (X=ct,x',
x,x )

H;„,(X)=H~' l: = ej~(X)A "(X), p, = 0, . . . ,3 (17)

where

~(n) ~(~)
P P

is the sum of the current operators of the nucleons (j~"~) and

of the electrons (j~'~) and e)0 is the elementary charge.
A~(X) is the free radiation field contrary to the electromag-
netic potential A,"„produced by the current density of the

charged particles. Only its time component A„, is important
and is taken into account through the Coulomb-potentials.

The interaction (17) can be treated in perturbation theory.
Our aim is to calculate the transition amplitude of the corre-
lated pair conversion. In order to separate the processes
which lead to the nuclear excitations and the formation of
whole states in the lowest electronic molecular orbitals from
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the process of correlated pair conversion we make the fol-
lowing simplifying assumptions.

(i) We assume that the correlated pair conversion happens
essentially at times toto, where to is the time at which the
two nuclei are at their closest distance R;„.

(ii) From numerical calculations we know that for inter-
nuclear distances R;„~R&100fm the correlated pair con-
version does not contribute to narrow lines due to the strong
time variation of the electron and positron wave functions.
Since we are only interested in the explanation of the line
phenomenon and not the background, we take correlated pair
conversion into account only for R~ 100 fm.

(iii) We assume that the excitation of the nuclei and the

creation of electronic holes by Coulomb excitation occurs
at sufficiently early times before t (R=100 fm) so that
we may approximately split the total S matrix into a
first factor S. . . describing the Coulomb excitation at times

t& t(R = 100 fm) (io =quantum numbers of the two incident
ions at t = —ix)) and a second factor S& which represents the(4)

lowest order graphs describing the correlated pair production
(see Fig. 1). By extending the upper time limits of S, , to

+i)e and the lower time limits t(R=100 fm) of S&t
) to

—~, these factors become S-matrix elements.
Since we shall anyhow take the probability PcE from ex-

periment, we only formulate the factor

4 f

Sfi —, f,fnfA d x& d x4T[j, (X&)A')(X~) .j, (X4)A "4(X4)] i,i„iA (19)

Replacing the time limit t(R= 100 fm) by +ix) in S, , and by —ix in S&~
) is equivalent to putting the Coulomb excitation in

the entrance channel approximately "on the energy shell. "The RHS of Eq. (19) includes a sum of transition amplitudes of
fourth order diagrams. We assume that the nucleons stay in two separated clusters (i.e., the nuclei) and thus the nuclear wave
functions can be denoted in a good approximation as products of the separate states of the two isolated nuclei in relation to the
center of mass system (CMS) of the two scattering nuclei, i.e., i„=i„i„and f„=f„f„.The current density operator

1 2 n n)

decomposes then into

j—j(n ~)+ "(n2) ".(e) (20)

We insert the RHS of (20) and the product states into (19) and look for all (z) combinations between operators jt" )

( v = 1,2;) and jt'). Additionally we have to include a factor 2 due to the two possible spin orientations of the emitted positron,
whereas the spin of the electron is fixed by the one of the positron as a consequence of the angular momentum conservation.
The factor 1/4! in (19) has thus to be replaced by a factor 1/2. Together with the assumptions from above we find for the
transition amplitude of the correlated pair conversion in the leading fourth order

e' f oo

fefn )fn zfA dt& dt2 dt3
f f

dt4 d x) d x4j
"' (t, ,x~)A "(t~,xt)j„' (tz, xz)A"'(tz, xz)

A(n )
w A w A( )

w A

Xj (t , )At"x'(ttt, xt)j „' (t x )At" (ttt, xx) t, i„ i„ it I. (21)

If we carry out the integration over the photon coordinates and use the definition

(fA = 0~ T[A "(xt)A "(xz)]~iA = 0) = iD"' "z(x) —xz) (22)

for the photon propagator, we have

f oo f oo

S~ =e
oo f oo f

dtz dt3 dt4 d x& . . d x4g ' (t),x, )D"'"(x&—xz)J,' (tz, xz)/ (t3 x3)3 3 ~ (n l ) 7J
~ 7/2

".(e) ".(n2)

tt D""'(xt xx)j „'(t„xx) i, i„ i„)— (23)

for the transition amplitude. This amplitude represents the upper part of the diagram in Fig. 1. The operators j 1 and j "2 in
n

(23) represent the upper vertices at nucleus 1 and 2 and jt')(tz, xz) and jt')(t4, x4) represent the (e+,e ) vertex on the left and
the 'P&„&~qj'z vertex on the right of the bound electron propagator. Due to the gauge freedom of QED, the representation

of the photon propagator (22) is not unique. We use this gauge freedom in order to separate the monopole terms in (23) from
higher order multipole terms. Using the Coulomb gauge, the Fourier transforms of D~ "(x,—xz) read
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D~'(K) =
&

4~ (
$p p

IC +is
~

0,

0,

fol p, , v= 1,2,3;

for p, =0,
fol p, = 1,2,3,

v= 1,2,3;

v=O; (24)

for p, =O, v=O;.

Performing the Fourier integral

d4k
D y v( ) D jx v( Ix )

i k ~(x
& x& )—

J (27')' (25)

we insert the RHS of (25) into Eq. (23) for p= p, =O. The component D describes the propagation of the virtual longitudinal
photons of the Coulomb potential. From (24) we see that D~'(x) is diagonal in Coulomb gauge. For the other components in

p and p, we go back to Eq. (21) and insert the field operator

A(t, r) = g g liats(„"l) A(„"i*(t,r R„)+—a~&"~l A(„l) (t, r R„))t, —
v=1,2 k, co, l, m

(26)

where A„"z„are the multipole fields in the Coulomb gauge in relation to the center of either nucleus v. Together with the 00
components of (23) we obtain the following decomposition of the transition amplitude:

t
coSp=e, „„dt)

J to

foo foo

dt2
J t2

dt3 dt4 d x, d x4p "' (t, ,x, )D (x, —x2)3 3 "(ni) 00

3t3

zt p i(32 z) xp (23 xz)tj (23 4) p2(24 x4)

foo f oo

dt1
fo J ti

dt2 dt3 dt4 d xi d x4p "' (ti,x, )D (xi —x2)oo

J t, J t,

zto'(tz, xz)(i '" (t , 3) xzx (3, 33))x(z'j(t4, 24)A'3' (tz, xz)) t, t„ 2„)

+ X (fJ., f.z'foo foo fco foo

dt, dt2 dt3
tp Jti t2 Jt3

dt4 d xi d x4(j "' (ti,x, )A„l *(t, ,x, ))

x(j * (t x )zA 23 (tz,xz))p" (t , )D3x(xzz —xz)p ' (t4, xt) t,i„ 2„ I

f
oo foo

dt2
t' co

+ X X f,f.,f.,
X) to i I)m) )32toplgm2 tp J

dt3 dt4 d x&. . d x4
J

X (J '"'(ti.xi)A' l'*(ti xi))(J"(t2.x2)A' i' (t2 x2))(Z'""(t3 x3)A' l'*(t3 3))

x (j ' ( x3)tAt4(t 4 ttx ))zi4i i„I,„ (27)

Only the operators

p(")(t,x„)D (x„x„)p(')(t„,x„)— (28)

contain monopole terms. Of the four terms on the RHS of
(27) the first one describes the correlated EO EO conversion. -

The second term corresponds to the correlated EO-X.I con-
version in the leading order, where X=E,M and I)0 de-
notes the multipole order. The third term contains the corre-
lated XI-EO conversion and the last one the correlated ) I-
XI conversion. We would expect the strongest contribution
from the El El term in the last sum on the-RHS of Eq. (27).
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)INPC

&3=t4

t3=t4

wave functions inside the volume of the nucleus suffices for
calculating the transition rates. This is not so for conversions
of higher multipolarity, where transverse photons appear also
outside the nucleus, implying that one has to evaluate the
leptonic wave functions inside and outside the nuclear vol-
ume. In the case of the correlated pair conversion, this means
that the wave functions of the emitted (e+,e ) pair and the
wave function of the bound intermediate electron must be
calculated as a solution of the two-center Dirac equation. For
the special case of the correlated EO-EO conversion, this
difficult numerical task can be simplified by an approxima-
tion which is (only) justified in the interior of the nuclear
volumes (see [34]).We, therefore, limit ourselves to a study
of the correlated EO-EO conversion in this paper. We expect
that the qualitative features of the E~, E~, and E+ spectra
do not depend very much on the multipolarities of the under-

lying converted transitions, because the dominant role of the
two Coulomb potentials at close internuclear distances enters
in the same way for all multipolarities. On the other hand,
the intensity of the correlated double monopole conversion is
sure to be much smaller than the one of correlated E1 con-
versions, as we shall demonstrate by a well-founded esti-
mate.

FIG. 2. (a) The process of the correlated EO EO conversio-n in
the case where the MPC occurs before the IC. As distinguished
from Fig. 1, the photon lines are contracted into one vertex of
second order on either side. The symbols have the same meaning as
in Fig. 1(b). Same as in Fig. 2(a) but the IC occurs before the MPC.

We intend to study this term in a later work. In the present
paper, we only regard the first term of Eq. (27), which is
much easier to calculate.

V. THE CORRELATED EO-EO CONVERSION

As we know from the EO conversion in a single atom, the
knowledge of the amplitudes of the electronic and positronic

The diagram for the correlated EO-EO conversion is
shown in Fig. 2(a). It shows the case that the MPC occurs
before the IC. This requires the preceding creation of n-shell
vacancies in the bound electron spectrum. The amplitudes of
the electronic two-center 1 o. wave function inside the
nuclear volumes are much larger than the one of energeti-
cally higher molecular states. Consequently, at least for cor-
related EO-EO conversion, we may neglect contributions
from bound electrons in states with higher quantum numbers.
The other case, where the IC occurs before the MPC is
shown in Fig. 2(b). It is especially important when no
1 o.-shell vacancies were created in the entrance channel. The
IC-MPC process is superposed to the MPC-IC process and it
depends on the strength P, of the preceding creation of the
1o-shell vacancies which one is dominant. We assume that
1 &P1 &2 and restrict our calculation to the diagram of
Fig. 1. In this case, the transition amplitude for the correlated
EO-EO conversion is given by the first term on the RHS of
Eq. (26),

(&o&o) 4 ~ 3 3 (n ) ""(e)
S~

' =e f,f„f„dt, dt2 dt3 dt4 d x, d x4p "' (t, ,x, ) p
' (tz, x2)

tQ ~ ~) ~ t2 t3 x1 x2

-(. )
- '('3 '4) -(.)XP" ( s,xs) IP *

( 4,xcI) rP„r„
/x3 —x,

/

(29)

where the D components of the photon propagator have been inserted in the Coulomb gauge. Another advantage of the
Coulomb gauge in this work is the appearance of the delta functions 8(t, —tz) and B(t3 —t4) in the space representation of the
D components. As a consequence, we can trivially carry out the integration over t2 and t4. For the nucleonic and electronic
density operators we use the representations
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ep" (x t)=e ' ~ 'g e ——t3' 8(x —y, )e' v= 1,2,

and

p(' (t,x) =%"t(t,x)%'(t,x). (31)

The symbol tz" in (30) denotes the third component of the isospin of the j„th nucleon in the nucleus v. qt(t, x) is the field

operator of the (e,e ) field. Using the representation (30) and (31) for the density operators p("~) and p
' in (29), and

1 —1replacing the factors lx&
—x2l and lx3 —x4l by the corresponding monopole parts, we obtain the expression

2) 2 oo t oo

S~
' = rk rk p~ p~ g dt's dt2qtf ~ (R2(t2))'It( )(R~(t2))

) (n) Jtp Jtt
tt ft2

XW(„)(R&(t&))%";z (R&(t&))exp i (AE ' E+)t, +— E(„)(t')dt'+(AE +E )tz E(„)(—t')dt'
Jtp Jtp

(32)

for the transition amplitude of the correlated EO EO conve-rsion. More details on the evaluation of the RHS of Eq. (29) are
given in Appendix B. The various factors on the RHS of Eq. (32) have the following meaning. The first factor indicates that
we deal with a diagram of fourth order in the electromagnetic coupling constant. The variables r& denote the radii of the nuclei

V

1 and 2 and the factors p&' represent the nuclear transition charge densities

() ()-
Pft @f (yi .yA) X 2

ru
C'; (yi ~ yA) v=1,2. (33)

The sum in (32) is to be extended over the quantum numbers

(n) of the intermediate electron states. From the reasons out-
lined above, it can be restricted to the 1o. level. We note that
the amplitudes of the electronic and positronic two-center
wave functions 0"z ~,%'(„), and Wz have to be

taken in the center R of either nucleus, respectively. The

vectors R,(t„), (v= 1,2) denote the trajectories of the
nuclear mass centers. The phase factor on the RHS of Eq.
(32) contains the nuclear transition energies AE("),
(v= 1,2), the total energies of the electron E and the pos-
itron E+ (E+(0), and the total energy E(„)(t) of the bound
two-center (n) levels of the intermediate electron. The time
dependence of E& (t) has a great influence on the shape of
the resulting e+ singles and the (e+,e ) sum energy lines.
Our calculation method of the amplitudes of the wave func-
tions and energies E(„)(t) used in the numerical evaluation
of (32) has been described in [34]. With the approximation
(32) we are able to estimate the intensities of the e+ singles
and the (e+,e ) sum energy peaks resulting from the pro-
posed scenario. The probability distribution of an (e+,e )
pair per collision as a function of the variables (E+,E ) and

(E~,Et, ), respectively, is given by

=lSf(, ' )(E+,E )l or
+

(34)

The two representations are connected by the transformation
(10).

VI. NUMERICAL RESULTS

In this section, we present numerical results for the corre-
lated EO-EO conversion for a collision to two U nuclei.
We assume that, as a result of Coulomb excitation in the
entrance channel, both the uranium nuclei are in the excited
925 keV 0+-state. As the ground state of U is a 0+ state
only an EO transition is possible in either nucleus.

In Fig. 3 we show the result of a calculation of the prob-
ability density (34) as a function of the total energies E+ and
E of the positron and the electron. Figure 3(a) displays a
section of the distribution in Fig. 3(b) in greater detail. In
Fig. 3(a) we discover already the existence of a narrow pos-
itron line if we look orthogonally onto the axis of the posi-
tron energy. Figure 3(c) shows the distribution of Fig. 3(b)
from this perspective. It gives clear information on the exist-
ence and position of a positron single peak resulting from an
integration of the distribution over the electron energies.
From an integration of the distribution over the (E+,E )
plane, the probability for the production of one (e+,e ) pair
per collision was obtained to be 10 ' compared to
10 —10 from experiment. In order to calculate the sum

energy or the difference energy distribution one has to inte-
grate the distribution illustrated by Fig. 3 diagonally across
the (E+,E ) -plane.

The results of a sum peak calculation in the CMS are
shown in Fig. 4, where we have chosen a different transition
energy AE( ) in the second nucleus (i.e., for the IC) and used
a mesh of 20 keV. In this calculation of the correlated
EO-EO conversion we have treated AE as a parameter,
and only the peak on the right at 829 keV in Fig. 4 corre-
sponds to a really existing 925 keV EO transition in the

U+ U collision system. The other peaks in Fig. 4 dem-
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FIG. 4. The figure shows probability distributions of coincident
(e+,e ) pairs (normalized to one pair per collision in units of
I/keV) as a function of the sum E~ of the kinetic energies. They
have been calculated in the CMS for a window in the difference
energy E~ ranging from —100 keV to 100 keV. The figure demon-
strates how the sum energy line depends on the nuclear transition

energy AE . The values of AE~ are given by the numbers on top
of the peaks.
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onstrate the general behavior of the E~ peak as a function of
the nuclear transition energies. The width of the lines results
from the dynamics of the electron and positron two-center
wave functions.

In Fig. 5 we show the maxima of these peaks as a func-
tion of AE~ ). The behavior with respect to a variation of
AE ' is quite similar. In further calculations we have inves-
tigated the behavior of the sum energy peak with respect to a
variation of the width of the difference energy window taken
symmetrically around E&= 0.

Figure 6 shows the results for the correlated 925 keV
EO-EO conversion in the collision system U+ U refer-
ring to the center of mass system. We see that, as the width
of the E~ window increases, the sum energy peak grows,
whereas the width and the position of the peak do not
change. The position of the sum peaks for the selected 925
keV transitions are concentrated around 829 keV.

Figure 7 shows the peak maximum as a funcion of the
width AE~ of the E~ window. It is seen that the maximum
depends almost linearly on AE& . Another interesting behav-
ior of the sum peak is the fact that different E~ windows

(keV )dQ

-20
2.0 x 10

FIG. 3. (a) The figure shows the probability distribution of an
(e+,e ) pair emitted by the correlated EO EO conversion of two-
colliding U nuclei. It is assumed that both the nuclei are in the
925 keV 0+ state when arriving at the distance of closest approach.
The distribution is plotted over the (E+,E ) plane where E+ and
E are the total positron and electron energies, respectively. This
figure shows the details of the distribution in the CMS at lower total
electron energies in the range of 521—721 keV. The distribution is
normalized to one pair per collision in units of I/keV . (b) The
same as in Fig. 3(a), but for a wider range of electron energies. (c)
The distribution of Fig. 3(b), but from a perspective orthogonal to
the E+ axis.
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FIG. 5. This figure shows the behavior of the sum peak maxima
of Fig. 4 as a function of AE
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CMS, resulting from the correlated pair conversion we found
a FWHM of 20 keV. In the lab frame narrow E~ lines are
found if the angular windows for the observed e+ and e are
more restricted.

The height I&" of the peaks in the sum line spectra be-
haves approximately as

2x10
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FIG. 10. The positron single peak (e probability distribution

per collision in units of I/keV) of the 925 keV EO-MPC in the
collision system U+ U. The peaks have been calculated in

relation to the CMS and for increasing upper limits in the time-
integration which correspond to the internuclear distances indicated

by the numbers at the LHS of the peaks.

effects which result from the time dependence of the two-
center wave functions.

The typical FWHM of the single peak in the CMS is thus
around 20 keV as shown in Fig. 10.A transformation into the
laboratory frame where UCMs=0. 05c leads to a peak with a
width of 90 keV. The e+-single peaks have been calculated
for different upper limits in the time integration correspond-
ing to the internuclear separations denoted by the numbers
left from the peaks.

Figure 10 demonstrates how the peak intensity grows for
increasing integration-time. The upper limit corresponds to
an internuclear distance between R = 5000 fm and
R=10 000 fm. In the region the two-center lo. wave func-
tion pinches off. For smaller internuclear separations, the two
heavy ions have still a common quasimolecular 1 o. orbit the
positron is essentially emitted from the CM system although
it is actually produced inside of one of the nuclei. The same
holds for the electron which is ejected by an IC in the second
vertex. Thus the e+ and the e move both away from the
center of mass or more precisely from the center of charge.

VII. SUMMARY AND CONCLUSION

In Table VII we give an overview on the most important
characteristics of the line phenomenon and compare the ex-
perimentally established pattern with the theoretical results
which we obtained in the numerical calculations for the ex-
ample of the correlated EO-EO conversion in the

U+ U system. From the top of Table VII we can see
that the FWHM of the e+ single lines calculated for the
correlated EO-EO conversion are in good agreement with the
FWHM of the measured e+ lines. If we integrate the posi-
tron emission of the EO MPC in the EO-EO conversion over
the whole 47r hemisphere for fl (i.e. , [0,„;0,„]
=[0',180']) in the lab frame assuming vcM=0. 05c, we ob-
tain a 90 keV wide e+ line. We find a width of the e+ single
line of only 32keV in an angular window ranging from
0;„=40' to 0 „=70' which is close to the experimental
situation. As a lower limit for the (e,e ) F~ lines in the

where AO, are the angular intervals in which positrons and
electrons are observed and where the constant c& is much
smaller than c2. From this formula it is seen that as the
angular windows AA increase, a given line disappears
quite rapidly in the background of observed (e+,e ) pairs.
As an example we obtain a FWHM of about 40 keV in the
laboratory frame (vcM=0.05c) for a typical (e+, e ) coin-
cidence line if we choose angular windows 40'& I9 &70'
and 110'(0+(140'. This is to be compared with the ob-
served line widths ranging from 10 to 40 keV. The width of
the experimental E~ distribution ranges from 100keV to
300keV for 1 MeV broad E~ windows. Our rather time-
consuming calculations for the correlated EO-EO conversion
show that the E~ distributions are broader than 70 keV for
E~ windows wider than 200 keV. The results in Fig. 9 indi-
cate that an extension for the E~ window to 1 MeV would
lead to a E~ distribution which is broader than 100 keV. The
925 keV EO-MPC in the collision system U+ U leads
to a positron single peak at around 430 keV. In the experi-
ments, an e+ single peak has been observed at 430 keV for
this collision system. As one can see from Tables I and II, it
exists for each of the experimentally established E~ lines a
combination of nuclear transitions in the correlated pair con-
version that leads to a sum line at a closely lying energy. In
Table III we compare only the experimental E~ lines with
the closest theoretical E~ lines for the examples U+U and
U+Th. For correlated E1 -E1 transitions the same investiga-
tion leads to a similar qualitative agreement between the en-
ergies of possible converted transitions and the observed en-
ergies of the line spectrum. The opposite is not found to be
true, i.e., not each possible double transition corresponds to
an observed line. Since the probability of exciting given
nuclear levels depends sensitively on the level, this should
not be a surprise. Let us note furthermore, that our scenario
could at the same time qualitatively explain the appearance
of peaks in the positron single spectrum.

The probability per collision P(e",e ) to find a coinci-
dent (e+,e )-pair is 10 —10 in the experiment but only
of the order of 10 ' for the correlated EO-EO conversion in
the special case we considered in our calculation.

From the RHS of Eq. (32) we see that the transition am-

plitude S&
' of the correlated EO-EO conversion depends

essentially only on the amplitudes of the electronic and
positronic wave functions in the center of each nucleus. We
have assumed pointlike nuclear charge distributions in the
calculation of these wave functions. In the case of a pointlike
nuclear charge distribution the s wave functions of the elec-
tron and of the positron are singular at the position of the
charge center. Therefore, according to a proposal by Church
and Weneser ([35]), we replaced its value on the nuclear
surface. A careful numerical calculation of the wave func-



52 CORRELATED PAIR CONVERSION IN HEAVY-ION 1547

TABLE VII. A comparison of the experimental results with the results of the theoretically proposed
scenario of the correlated pair conversion in some of the most essential characteristics of the line phenom-
enon.

Characteristics

FWHM of the
e+ single lines

FWHM of the

E~ lines

FWHM of the

E~ distributions

Position of the

E+ lines

Position of the

E~ lines

Position of the

E~ distributions

for narrow windows

around (Es)
Appearance of
monoenergetic lines

in subcritical systems
P(e+, e ) per
collision
P(e+) per
collision

Experiment

I &
= 80—100keV+

I ~ = 10—40 keV

I E = 100—300keV

(E~)= 430 keV
existing in the

( U+ U) system

U+U: 555, 630, 815 keV

U+Th: 608, 760, 809 keV

~(Eg) ~

~ 100 keV

yes

—10 7 —106

—10 -10

Theory

I p = 90keV
for an integration over
the full 4m hemisphere

I z = 20 —40keV
for 0 e[40';70']
and 0+ e[110',140']
in the windows of observation

I ~ ~ 70keV
for E~ windows

broader than 200 keV around (E~)
(E+)= 430keV
for the calculated

( U+ U) system

U+U; 552, 625, 815 keV;
El -E 1, E 1 -EO, E 1 -EO;
U+Th: 610, 764, 810 keV;
E 1 -E 1, E 1 -EO, E1-E1;
~(Eq) ~

~ 100 keV possible
but only for nuclear transitions

obeying the relation

100 keV= ~DE —AE ' +2E&
yes

10 —10 ' in EO(MPC)-EO(IC)
10 ' —10 in El (MPC)-El (IC)
10 "—10 in EO(MPC)
10 —10 in E 1 (MPC)

tions for finite nuclear charge distributions as we are now
about to perform will show the quality of this approximation.
If we assume that we underestimated the amplitude of the
bound electronic wave function inside each of the two nuclei
by a factor of 10, we obtain an additional factor of 10 for
the amplitude (32) and of 10 for the intensity. Even in this
"optimistic" estimate we only obtain an intensity (i.e., prob-
ability per collision) of 10 ' compared to the experimental
one of 10 —10 . The correlated EO-EO conversion can
thus safely be excluded as an explanation of the observed
line phenomenon.

The crucial question is thus, whether we can hope that the
correlated E1-El conversion may yield intensities in the ob-
served order of magnitude. Let us therefore try to estimate
the expected intensities of correlated El-EO and E1-E1
conversion on the basis of the conversion rates which we
calculated in the monopole approximation for the stationary
two-center problem [36].

Subsequently we give an estimation of P(e, e ) for the
scenario of the correlated E1-E1 conversion. We denote the
rates of the E1-MPC and the EO-MPC by WMpc and WMpc
respectively. The rates of the corresponding IC processes are
denoted by W&c

' and W&c . We calculated the ratios

WMPC(R)/WMPC(R) and WIC' (R)/W, c (R) neglecting the
motion of the nuclei on the trajectories ([36]).We found that

they range between 10 and 10 for heavy systems like U+U
or U+Th and for internuclear separations R)1000 fm. They
decrease monotonic ally to values smaller than 10 for
R(10 fm. The transition energy has been chosen at
1 MeV. We know that the rate of the EO conversion in each
vertex of the correlated pair conversion depends essentially
on the amplitude of the electronic and positronic wave func-
tions in either nucleus and that these amplitudes approach the
single atomic values for large R monotonically. Thus we can
be sure that the above-mentioned ratios increase as a func-
tion of the internuclear separation and reach asymptotically
the values they have for a single atom. These values are
known to range between 10 an 10 for heavy atoms. This
behavior of the MPC and the IC ratios W ' (R)/W (R)
shows that a positron single peak resulting from an E1-MPC
in a U+U collision should be about 3—4 orders of magnitude
stronger than the single peak in Fig. 10. If one argues as
above that the EO-transition strength was underestimated by
a factor of 100 one would find the probability P(e+) to be in
the interval [10;10 ], where P(e+) is the probability per
collision for finding a positron in the single peak which re-
sults from an E1-MPC in any correlated E1-XI conversion
in heavy-ion collisions at the Coulomb-barrier. If we apply
these estimates to the MPC and the IC vertex separately, we
find the probability P(e+, e ) for correlated El -El conver-
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APPENDIX A: DETAILS ON THE UNDERLYING
SEMICLASSICAL THEORY OF REACTIONS

We use the formulation of the semi-classical theory of
reactions given given by Dietrich and Hara [33].These au-
thors treated only nuclear reactions. We can, however, easily
generalize their approach to reactions which involve also the
electrons of the atomic shells, electron-positron creation, and

photons. For this, the unperturbed Hamiltonian Hp has to be
a sum of a nuclear part Hp a leptonic part Hp' describing
electrons and positrons, and a part Hp" describing the pho-
tons,

H(&) +H(e) + H(I'~d)
p p p p (Al)

The Hamiltonian Hp has to describe noninteracting ions
which move on the given classical trajectories of elastic scat-
tering. The detailed form of Hp" and Hp may depend on
the specific problem.

The theory is based on an expansion of the total scattering
state lWt+~) (n= quantum numbers of the initial state; (+)
implying asymptotically outgoing waves from the reaction
zone) in terms of a time-dependent set of basis states %'

sion to be located in the interval [10 ';10 ]. Correspond-
ingly, one would find the correlated E1-EO-conversion in the
interval [10 ';10 ' ] and the correlated El-Ml conver-
sion to the interval [10 ';10 ].

We note that an experimental test of the scenario we pro-
posed would be possible by looking at the y spectrum at
much lower energies than the sum energy E~+ 2m. Our sce-
nario has only a chance to explain the observations, if at least
one of the two uranium nuclei undergoes an E1 transition.
Such a transition, instead of leading to an MPC or IC pro-
cess, quite often should yield a y quantum with the energy of
the nuclear transition. In order to reduce the y background
and to have some chance of observing these photons one
should look for the simultanous emission of a positron and a
photon whose sum energy lies at the energy of the
(e+, e ) peaks. In this way we would for instance predict for
the e+ peak at 430 keV (corresponding to an EO transition of
one nucleus of roughly 1179.2 keV) and a y peak around
658 keV (corresponding to the nuclear El transition of the
other nucleus). One would thus be able to verify, whether the
kinematics which leads to a sum energy peak at 815 keV in
the U+U system really selectively excites the nuclei to the
states required by our model. Generally speaking, the pro-
posed mechanism is based on the existence of nuclear tran-
sitions with energy «1 MeV, which should at the same time
show up in the low energy y spectrum. To reduce the large
low energy gamma background, experiments measuring the

y spectrum in coincidence with the one of the positrons in
the peak are probably necessary.

(A3)

Contrary to the case of Ref. [33], where H~z"~ was defined to
be the mean-field part of the nuclear Hamiltonian, we imag-
ine that Hp contains also the residual interactions between
nucleons localized in the same nucleus. As a result, the states
'P are products of "exact" eigenstates of the nuclei 1 and 2

which move on their respective classical trajectories:

yn nl n2
(A4)

Analogously, the leptonic basis states 'Py are products of
ye

two state vectors

(A5)

where W are eigenstates of the Hamiltonian describing the
ye

electrons localized in ion v, again with the time-dependent
Galilean boost factors defined in Ref. [33]. In order to be
able to take into account the emission of electrons and pos-
itrons we have to incorporate basis states 9'y which contain

ye

electrons and (or) positrons in scattering states referring to
nucleus v.

As the heavy ions approach each other, a substantial num-
ber of electrons is emitted as a result of the strong Coulomb
field acting between the ions. It is impossible to describe
those processes in detail. Fortunately, this is not necessary
because the correlated pair conversion depends only on the
wave functions of the most strongly bound electrons. As the
Coulomb field is strong, the leptonic single particle wave
functions must be obtained as eigenfunctions of the (one-
center) Dirac-equation.

Finally, the state vector 'jj'zh is the product of ny free
photons. For ny 0 Wph is just the vacuum of the free ra-
diation field. In Ref. [33], the S matrix Sp of a given re-

Cl()

action is obtained as the limit at time ~~ of the time depen-
dent amplitudes fp(t)

The states 'P are eigenstates of Hp boosted by a time-
dependent Galilean transformation so as to describe nonin-
teracting heavy-ions moving on the classical trajectories of
elastic scattering [33].They thus refer to two body-fixed co-
ordinate systems M~„(v=1,2) which move with the nuclei on
the classical trajectories. The energies Ey are the sum of the
total eigenenergies of the two ions, each one consisting of a
nucleonic and a leptonic part, and eventually of photons, if
photons are produced in the course of the reaction.

We want to specifically describe peripheral collisions at
energies close to the Coulomb barrier which lead to the emis-
sion of an electron-positron pair. Consequently, and in accor-
dance with the unperturbed Hamiltonian (Al), the basis
states qt ) have to be product states of a nuclear part

, a state vector 'P depending on the leptonic degrees of
1't ye

freedom, and a state vector 'Py describing the state of the
yph

radiation field,

(A2) Sti =

fthm(t~+

~). (A6)
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The amplitudes f~(t) have to satisfy the set of coupled equa-
tions [see Eq. (4.9) in Ref. [33]]

i =g ('0 ~H;„,(t)~'Pq)e'~ ~l'fq(t). (A7)

with the initial condition

fi,(t~ —~) = Bi (A8)

where o;o are the quantum numbers of the true initial state
'P of the system at time t + —~.

The Hamiltonian H;„,(t) consists of 3 parts: the nuclear
interaction H, 2 between nucleons localized in different nu-

clei, the Coulomb-interaction H12 between the charged par-
ticles (protons, electrons) localized in ion 1 and the charged
particles localized in ion 2, and the electromagnetic interac-
tion H~' ~ of all the charged particles in both the nuclei with

the radiation field A

H =H" +H +H~' ~.int 12 12 (A9)

We note that, as a result of the semiclassical description of
the reaction, the average potential acting between the centers
of nucleus 1 and nucleus 2, which is used to define the clas-
sical trajectories of the two nuclei, must be omitted from the
interaction (HIz~+HIz ~) since it is already taken into ac-
count by the motion on classical trajectories.

In our case, this average potential is chosen to be the
Coulomb interaction between pointlike nuclear charges

ZiZze /~R, —Rz~, since the effect of the average nuclear at-
traction between the two nuclei has a negligible effect in the
very peripherical reactions we study. We thus work with pure
Coulomb-trajectories, as it is frequently done in the semi-
classical description of heavy-ion reactions.

The states I'~ appearing in (42) are the "dual" basis
states defined by the orthogonality condition

2 2" (Cb) Zi e . Z2e
H12 = P+ P, , (A12)

This approximation implies that quantum correlations be-
tween the processes creating the intermediate state W and
the correlated pair creation process are neglected and that
both parts are put "on the energy shell. "Of course, the com-
plicated dynamical processes which take place in the en-
trance channel in the time interval —~~t(to produce a
distribution of the system over many basis states If

~ which
is to be described by a probability distribution P~(to). To
assume that, nevertheless, the simplified initial condition
(AS) with specified initial states I" can be used to describe
the correlated pair conversion is a certainly nontrivial hy-
pothesis. It implies in other words that the correlated pair
conversion always passes through specific intermediate
states as a sort of doorway states and that those parts of the
complete dynamical process which reside in other states

at time to do not interface with nor contribute to
the correlated pair conversion at all.

Let us now turn to the solution of the coupled channel
equations (A7) with the initial condition (A8). We simplify
this problem by the following approximations.

(i) Since we only consider peripheral collisions with a
distance of closest approach which is appreciably larger than
the sum of the nuclear radii, we neglect the nuclear interac-
tion H12 between the two nuclei. An additional reason is that

H12 is not responsible for the correlated pair emission we
are interested in and could at most modify it in higher order.

(ii) We leave away all the electrons in bound states of the
two ions which are not directly involved in the process of the
correlated pair emission as shown in Fig. 1. This means that
we neglect effects of the electron-electron interaction and of
the exclusion principle. We presume that these effects are
small for the process of the correlated pair creation. As a
result, the interaction H12 consists of the Coulomb poten-
tial of nucleus 1 acting on an electron localized in ion 2 and
vice versa:

(+plq'. ) = ~.p (A1O)

As we already mentioned, we only treat the process of the
correlated pair production explicitly. The preceding excita-
tion of the two nuclei and the production of a K shell va-
cancy are assumed to take place in the entrance channel at
sufficiently long times before the process of the correlated
pair emission so that we may use the resulting excited state
of the system as initial state I' of our reaction calculation.
Thus, instead of (A8), we use the initial condition

fi,(to) = Bi (A»)

In the numerical calculations, we choose to take the time, at
which the two nuclei pass the closest distance of each other
or a time close to this moment.

In the initial state W, the two nuclei are in well-defined
excited states. Furthermore, if the MPC precedes the IC,
there must be at least one electronic vacancy in the lowest
bound K level of one of the ingoing nuclei. On the other
hand, if the IC precedes the MPC, at least one of the elec-
tronic E levels must be occupied.

where, P 1 &2&
is a projection operator which is 1 if it acts on

an eigenstate of the single particle Hamiltonian hi(2& of an
electron in the Coulomb potential of nucleus 1 (2) and zero if
it acts on an eigenstate of h2&1~ of an electron in the Coulomb
potential of nucleus 2 (1). Since we discuss low-lying elec-
tronic states in the strong Coulomb potential of a heavy
nucleus, we must use Dirac's form of h

& &2&

2
A Z1(2)e
h i (Pl

= cl' P + Pm (A13)

Of course, the same Hamiltonian with a Coulomb potential
of reversed sign acts on the positron which is created in the
process.

(iii) For internuclear distances which are smaller than the
diameter of the electronic density distributions, i.e., for inter-
nuclear distances below —1000 fm, the Coulomb potentials
produced by the two nuclei are of comparable strength. This
means that the interaction (A12) represents a strong coupling
which mixes many states in the time-dependent single
atomic basis we use. On the other hand, the velocity of the
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electron (or positron) is large compare to the velocity of
relative motion of the two nuclei.

This makes it possible to use a specific version of the
"Born-Oppenheimer approximation, " which was developed
to describe atomic collisions. For each given distance vector

R(t) =Ri(t) —Rz(t) of the two nuclear centers, we deter-
mine the "eigenstates" P(„) of the two-center Dirac-
Hamiltonian

h P(„)(r;R,~(t),R(t))

=E(„)(Ri q(t), R(t)) P(„)(r;R,~(t),R(t)), (A15)

where the minus sign holds for electrons and the plus sign
for positrons. We note that the time t in (A15) is just a
parameter in the Hamiltonian. The physical significance of

the term —iRV in (A14) is to produce eigenstates which
refer to the moving coordinate system. In fact it was shown
in [34] that the two center single-particle states

W(„)(r;Ri q(t), R(t))

: = P(„)(r;R,q(t), R(t))
( r

xexp —i dt'E(„)(R( z(t'), R((t'))
'0 )

(A16)

are superpositions of one-center single particle functions
with the correct Galilean boost factors required by the semi-
classical reaction theory of [33].Consequently, instead of the
states '0 'P we use antisymmetrized products of the

boosted two-center wave functions 0 („)(r;R,z(t),R(t)) as
basis states in the semiclassical coupled channel equations
(A7). The advantage of this new basis system for the elec-
tronic part of the basis vectors is clearly that the strong Cou-
lomb potential H(iz ) [see (A12)] is already "diagonalized. "
As a result, this Hamiltonian does no longer appear in the
interaction H;„, [see (A9)], which is now given by

(A17)

Of course, the determination of the boosted eigenstates of
the two-center Dirac-equation is by no means a simple task.
Only for large internuclear distances (500 fm) is an expan-
sion in terms of eigenstates of the one-center Dirac-equation
practicable [34]. The technical difficulties are thus mainly
contained in the determination of the basis functions.

On the other hand, the coupling Hamiltonian (A17) can
now be treated as a perturbation! We shall completely ne-

gleet the nuclear part H&2 because we only consider reac-
tions where the distance of closest approach exceeds
15 fm. The eigenstates W&„& of the two-center Dirac equation

h(r;R(t), R(t))

Z)e Z2e2 2

= nsi+ p~ ~ —iR(t) Vii, (A14)
I.—R,(t)l

are called "quasimolecular" wave functions because of the
obvious analogy with the electronic states establishing the
homeopolar binding in molecular physics. These molecular
states form an orthonormal system. Consequently, as far as
the electronic states are concerned, the dual states are iden-
tical to the ordinary ones. For the nuclear wave functions, the
dual states are different from the ordinary ones. The differ-
ences are however, negligibly small due to the peripheral
character of the collision. Therefore, we may identify the
dual states with the ordinary ones altogether

(A18)

This is consistent with the approximation to neglect H, z

altogether. The coupling H ' is treated in fourth order of
perturbation theory. This yields the form (A18) of the S ma-
trix as given in Sec. IV.

We remind the reader of the fact that we use an interme-
diate state n as initial state of our reaction calculation. Thus
the cross section for the correlated pair conversion is given
by

(A19)

where do.z„,z/dA is the Rutherford cross section describing
the classical Coulomb scattering of the two nuclei and P is
the probability that the initial state a is produced in the en-
trance channel. As explained in Sec. III, P can be written as
a product of the probability PpE that the two incident nuclei
are Coulomb excited into specific excited states and the
probability P&„& the a vacancy is produced in a quasimolecu-
lar electronic orbital (n) [see Eq. (9)].The sum in (54) is to
be extended over the electronic states (n) which may con-
tribute to a given final state through the correlated pair con-
version.

&PPExorx s: w Moxopom wpmoxmxnox

We insert the operators (30) and (31) into Eq. (29) and
carry out the integrations over the times t2 and t4 and the

space coordinates x&, . . . ,x4. At the energies of the experi-
ment, the two nuclei are well separated along the whole tra-
jectory. We therefore may omit the antisymmetrization of the
nuclear states with respect to nucleons in different nuclei,

@(yl yA +A .t) = @'"(yi . .y~, t)

xe ' (y, , . . . ,y, , t). (Bl)

The yi (j= 1,. . . ,A „) are the nucleonic coordinates in rela-
tion to the center of mass system (CMS) of the vth nucleus

and the yJ (j= I, . . . ,A, +Aq) denote the nucleon coordi-

nates in the CMS of both nuclei, i.e., y =y —( —1)'p, „R.
The parameters p, „(v = 1,2) are defined by
p, „=M„/(Mi+Mq). The wave functions iI~(") on the RHS
of (Bl) denote the stationary nuclear states of nucleus 1 and
2 in relation to the CMS. In the approximation (Bl), we find
for the transition amplitude (29) the expression
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P oo Qo
Z2

Sfi =e X I
dtt dt2 +f(x2 t2)@f X

(n) 3 tp X2 —
y& ~

4 I )%'(„)(xz, t 2)

Zi

x 9"(„)(x,, t, )Aft ) 4I')'It;(x, , t, ) (82)

where 4, f = 4, f (y, , . . . ,y„,t,) In o.rder to evaluate the two matrix elements in (82) we change the coordinate system and

choose the CMS of the nucleus p for the matrix element with the corresponding index v. The wave functions 4~f of the nuclei

have to be replaced by the functions &&If) due to the corresponding transformation yj =y, +R,(t) where R&(t) = p2R(t) and

R2(t) = —p, R(,t) Th.e further steps in the evaluation of the matrix elements shall only be demonstrated for the one with the
index p= 1. The sum over the index p, in (82) is finite and can thus be exchanged with the integration. For each index p, and

for each point y„, we use the substitutionP~'

+1 X1 g& R1

in the integration over the electron coordinates x1 and we have

Z]

(+( )(x1 tl)+f"
l 2 - - - l~","+;(xt.tl))

~i=) ~x, —y„—Rt(t, )~

Z]

( P~„)(x)+y +R~(tt), t, )C'f'
I —I

@.' +;(x~+y„+R,(t, ), t, )). (84)

We can restrict the integration over the proton coordinates y„ to the nuclear volume. As this region is very small in
Py

comparison to the extension of the electron wave functions, a Taylor expansion in the coordinates y~ around the center of theP]
nucleus converges fast in this region. Thus we use the expansion

Z]

(9 t„)(x&+y„+R&(t&),t&)4»'
~

~C',
' 0';(x&+y +R&(t&),t&))

1 (y„,V)'
=g (e~')~ g

~x~

'P(„)(xt+Rt(ti), ti)%', (x, +Ri(ti), ti)ic', ' ). (85)

Due to the orthogonality of the nuclear states 4~ to the states 4f' there is no contribution for I =0 to the sum on the RHS
of (85). The dipole term for l = 1 is zero if the states 4I') and Aft") have equal parities. The first monopole contribution to the
sum comes from the term with l = 2. The term for I = 3 yields no monopole contribution and is again zero as for all odd l, if

4I') and C&ft") have equal parity. The differential operator (y„V;) can be decomposed into

3
( I,)a a

3' »' — '~' '~' 3 " » 'ax ax '
i,j =1 / L j

(86)

where the second operator on the RHS is a quadrupole operator and yields thus no monopole contribution. The monopole
contributions from higher order terms with even l are easy to find by taking the (1/2) th power of the first term on the RHS of
Eq. (86). The monopole operators in terms of even order l have the form

1 1
1 l/2 (87)

From (87) one can see that the monopole term for l = 2 yields already a very good approximation for the monopole transition
amplitudes. This monopole contribution can be reduced to a rather simple expression as shown subsequently:
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Z
$ f

((Ii(1)
i

pi ——1

d x —iy„~ b[%"I„)(x+R,(t, ),t, ) If;(x+R)(t, ),t))]~iIi )

rk(@f~ 2 2 IC", ')+I.)(R1(tl) t))'p (R)«i»tt)
p) =1 ~k

In (B8) we have carried out a partial integration and used the relation

1
=4vrB(x).

/xi

(B8)

(B9)

The remaining nuclear matrix element in (B8) contains still the time-dependent phase-factors of the stationary nuclear states
and of the leptonic wave functions. Without these phase-factors the matrix element is identical with the nuclear mean transition
charge radius (33) in Sec. V. For the matrix element in Eq. (B2) corresponding to v= 2, we find an expression quite similar to
the last term in (B8) and thus the transition amplitude (B2) becomes finally

2 2 2 f oo 00

lSfi rt l k pfi pfi ~ dt, dt2(EO,EO) 2 2 ( i ) (2)M
(n) JiO Ji,

q'f'(R2(t2). t2)+(.)(R2(t2) t2)P(.)(R)(ti), t t)+;(Rt(ti), t t)e""
The meaning of the symbols on the RHS of Eq. (BIO) has already been explained at the end of Sec. V.
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