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Regional regularities for the even-even nuclei: Medium to heavy systems
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By the concept of effective boson numbers, systematics of the E2+, E4+, E6+, R =E4+ /E2+,
1 1 1 1 1

B(E2,0,+ ~2,+), and Qo for the even-even nuclei with A ~70 are presented. Some features for the excitation
energies in the ground state band are observed and an intuitive explanation is given. Assuming correlation
between the E2 and I1 transition strengths, the general trend of B(/v/1) for the even-even actinide nuclei is
predicted. The results in this paper are also compared with the previous results in the N N, scheme and other
parametrizations.

PACS number(s): 21.10.Re, 21.60.Ev, 23.20.Js, 27.60.+j

I. INTRODUCTION

With the development of experimental techniques, more
and more nuclear data are accumulated and compiled [1,2].
Based on these data, systematics of various properties for
even-even nuclei, e.g., the energy spectra, electromagnetic
transition strengths, deformation, etc. , appeared in the past
few years [3—9]. Casten et al. showed [3] that the N N„
[product of boson number in the interacting boson model
(IBM-2)] scheme provides a very useful aid in understanding
the nuclear structure over extended regions by providing a
more economical classification, since a reasonable estimate
of the n-p interaction is directly related to this value. How-
ever, the counting scheme of valence nucleons for the even-
even nuclei near the subshells is oversimplified in previous
studies [3—13]. Therefore, it is of interest to study the sys-
tematics by the application of effective boson numbers with
which one can simulate the effects of the partial shell clo-
sures. This paper tackles the systematics of the A~70 even-
even nuclei, and the results are analyzed by the concept of
effective boson numbers.

The assessment of a systematic is mainly based on
whether the chosen parameters (variables) are reasonable and
whether any new regularities are found. So we explain how
we obtain the values of effective boson numbers and argue
its validity first. The next two sections present a series of
figures which plot the systematics of the E2+, E4+, E6+,

1 1 1

R=E4+/E2+, B(E2), and Qo. A simple physical mecha-
1 1

nism for the general properties of low-lying states is given,
predictions on the systematics of B(M1) for the actinide
nuclei are also included, and we summarize and discuss the
results in Sec. V.

II. EFFECTIVE BOSON NUMBERS IN IBM-2

as hole pairs beyond the middle of a major shell. So one
usually resorts to the concept of effective boson numbers.

The ambiguities of the counting scheme for valence
nucleons near the subshells attracted much attention in the
past few years. For example, it was shown that the effects of
Z= 64 subshell may be important for nuclei with N» 88 but
disappear as N~90 [3].Microscopic calculations of N for
the 50—82 major shell by Scholten [14] did yield (N );„at
Z=64 but (N );„=2.4 instead of 0. Therefore, Z=64
should be treated as a subshell closure instead of a full shell
closure. It was also suggested that the eradication of the sub-
shell gap resulted from the strong n-p interaction between
particles in spin-orbit partner orbits [10]. So many authors
took an abrupt change in N at N=88 —90. However, the
shell-model single-particle level spacings are model space
dependent. As a consequence, the disappearance of the
Z=64 subshell could depend on N in a smooth manner. In
order to simulate the partially closure effects and the smooth
neutron number dependence, Chuu, Han, and Hsieh per-
formed the IBM-1 calculations for the Sm, Gd, Er, and Dy
isotopes as testing examples [13]. In their calculations N,
was counted as usual and N was regarded as an adjustable
parameter. They found that the agreement between the theo-
retical results and the experimental data is satisfactory when
partial closure effect is taken into account by a smooth varia-
tion of effective proton boson number. However, the ¹ 84
isotones and the Nd isotopes where the Z=64 subshell clo-
sure play an important role were not calculated therein (be-
cause there exists low-lying mixed-symmetry states which
the IBM-1 model cannot deal with, e.g. , the 23 state), and an
extensive calculation to simulate other subshells is not avail-
able.

By these discussions, we follow the idea of Ref. [10] and
run the NpBOS code for all the nuclei with A~70. The
Hamiltonian is taken as

Casten and Frank's work [3,4] showed that although the
simple N N, scheme gives simplification to some extent if
the normal major shells are considered, a substantial im-
provement can be achieved after the subshell closures are
taken into account. Because of the existence of the subshell
closures [7—14] and the Pauli effect, which we will come to
later, it is not appropriate to take N and N, simply as the
numbers of valence proton (neutron) pairs which are counted

H= g epn~+ trQ Q„+M
P

where n~=d~d~, p= m, v,

Qp=dtsp+stdp+g(d"d )t l,
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M „=( (dtst —s"„dt)t l(s„d„—d,s )t 1

—2 g (d„d ) "(d„d )t
k= i,3

TABLE II. The RMSD of the ' Dy by the Hamiltonian

Eq. (1). When the N )6, the fit depends on the effective
boson numbers weakly.

N 3 4 5 6 7 8

RMSD —I 0.1242 0.1050 0.0942 0.0724 0.0747 0.0756

N for the nuclei near the Z= 40 and 64 subshells (or N, for
nuclei near N = 38, 56, 96, 114 neutron subshells) is regarded
as an adjustable integer parameter and N„(or N ) is fixed as
usual, and a unified electromagnetic transition operator is
used for each isotope series. These effective boson numbers
N„(or N ) are determined by a careful calculation with the
Hamiltonian equation (1) to get a best fit with the experimen-
tal data of energy spectra (and electromagnetic transition
probabilities if the data are available). In other words, we
chose the N (or N„) as the effective boson number when
the N (or N„) yields the least overall root-mean-square de-
viation. The effective boson number N (N„) is obtained by
these procedures.

We have also checked the sensitivity of the model Hamil-
tonian dependence of these effective boson numbers. Taking
the Z= 64 subshell as an example, in our calculation both the
Hamiltonian equation (1) and the following Hamiltonian
with more terms

are used to check whether the N depends on the particular
form of Hamiltonian for Nd and Sm isotopes, and it is found
that the effective boson number N obtained from the best fit
procedures is the same. Table I presents the overall root-
mean-square deviations (RMSD) of the energy spectra for
some of the Nd isotopes. The RMSD-I and RMSD-II are the
root-mean-square deviations by the Hamiltonian of Eqs. (1)
and (2), respectively. By the RMSD in Table I, one can see
that the fit is dependent on the boson number if the deforma-
tion of the nucleus is not large.

The saturation phenomenon of effective boson numbers

N„(N„), which was stated in our previous studies [6], is
introduced phenomenologically in this paper which means
the effective boson number dependence turns out to be
weaker after a large critical value, i.e., the further increase of
the N wouM not improve the fit between the experimental
data and the calculated results significantly. As an example,

H= g e~n~+ IrQ Q+M
p= '7T, P

TABLE III. The effective boson numbers of nuclei near the
Z= 64 subshell.

+ X X C'"(d'd')'"(d, d, )"'
p=m, v I=0,2,4

(2)
Nuclei

N (this work)

N (Ref. [4])

142( e 144( e 146( 148C 150(

Nuclei

1

144Nd

4

TABLE I. The RMSD of the Nd isotopes by the different
Hamiltonian and effective boson numbers. Nuclei

N (this work)
N (Ref. [4])

144Nd

2
2

Nd

2
2

'4'Nd

3
2

150Nd

4
?

152Nd

5
5

RMSD —I
RMSD —II

N~
RMSD —I
RMSD —II

N

RMSD —I
RMSD —II

N
RMSD —I
RMSD —II

N
RMSD —I
RMSD —II

0.1025
0.0906

Nuclei

1

0.0941
0.0895

Nuclei

1

0.1305
0.1104

Nuclei

1

0.1747
0.1132

Nuclei

1

0.1508
0.1219

0.0937
0.0782

2
0.0849
0.0721

2
0.1069
0.0930

2
0.1358
0.1045

2
0.1372
0.1160

0.1039
0.0891

3
0.0963
0.0876

3
0.0971
0.0749

3
0.1095
0.0711

3
0.1086
0.0834

0.1116
0.0989

146Nd

4
0.1111
0.0957

148Nd

4
0.1088
0.0828

'"Nd
4

0.0848
0.0520

152Nd

4
0.0947
0.0751

0.1335
0.1083

5

0.1272
0.1208

5
0.1307
0.1033

5
0.0981
0.0656

5
0.0820
0.0678

Nuclei

N (this work)

N (Ref. [4])
N (Ref. [13])

Nuclei

N (this work)
N (Ref. [13])

Nuclei

N (this work)

N (Ref. [4])
N (Ref. [13])

Nuclei
N (this work)
N (Ref. [4])
N (Ref. [13])

Nuclei
N (this work)

N„(Ref. [4])

'4'Sm

2
1

1480d

2

150D

2
8
4

Er
3

7

154Yb

5
6

148S

2
1

4

1506d

3

2

152D

3

8

5

154E

4
7
4

156Yb
5
6

150S

3
1

5

1526d

4
5

154D

5
8
7

156E

5
7
5

158Yb

5
6

'"Sm
5
?
6

1546d

5
7

156D

6
8
8

158E

5
7
7

160Yb

6
6

154S

6
6
6

1560

6
7

158D

6
8
8

160F

6
7
7

162Yb
6
6
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FIG. 2. Ez+, E4+, and E6+ are fitted by A[1+Be " ] (in MeV). R=E4+/E2+ is fitted by A/(1+Be ") B(E2) is fitte.d with
1 1 1

a+bN N, (in e b, curve I) and A/(1+Be ) (in e b, curve II). Qo is fitted by [a+bN N,]' (in b, curve I) and
A/(1+Be ~") (in b, curve II). In this figure, 28(N, Z(50, A=0.21, B=4.98, C=3.34, for E +; A=0.62, B=3.19, C=3.60 for

E4+; A = 1.30, B= 1.94, C = 3.15 for E6+; A = 3.37, B= 0 61, C =0.12 for R; a = 0 02, b = 1.22; A = 1.15, B= 12 2, C= 0 58 for B(E2);
I I

a=0.27, b = 1.16; A = 3.66, B= 2.87, C=0.38 for Qo.

should be taken as the nucleon-pair number contributed to
collectivity, and therefore it should be taken as the valence
nucleon-pair number occupying the normal parity states in-
stead of pair number of all valence nucleons I 16], while the
abnormal parity levels for both proton and neutron play the
role of "siphoning" off the valence nucleons. So we get a
saturation value for the effective boson numbers. According
to the FDSM, there exists a maximum of fermion-pair num-
bers in a major shell, which can be easily determined as (we
made an assumption that the abnormal parity level of well
deformed even-even nuclei lies in the middle of the major
shell for sake of simplicity, and there is a little difference of
the maximum if we consider it more carefully) 5 (6) in the
50—82 major shell, 7—8 (7) in the 82—126 major shell, and
10—11 (8) in the 126—184 major shell (the value in the pa-
renthesis is what we can easily see from Fig. 1).Apparently,
these two values are consistent. We also noticed the work by
Nakata and Arima on microscopic foundation of IBM [17],
in which the effective boson numbers (for neutron the 50—82
shell only) are quite similar to ours, and the results also show
a saturation due to the Pauli blocking effect, with saturation
value 5 for "hole" boson number and 7 for "particle" boson

number, consistent with ours (6).

III. SYSTEMATICS AF LOW-LYING ENERGY SPECTRA

It is well known that although simple systematics have
been obtained by a simple N N, scheme [3], improvements
have been achieved by introducing effective boson numbers
[4].However, the counting scheme for N and N„was over-
simplified in the previous systematics, so it is highly desir-
able to have a unified treatment of systematics for the
A~70 even-even nuclei if it is possible.

Figures 2 6 present the E2+, E4+, E6+, and R
1 1

=(Ed,+/Ez+) systematics in the new N N„scheme. They

are plotted against the 1V„N obtained above. Note that all
the A~70 even-even nuclei, except those with proton (neu-
tron, or both) full shell closures, are included in Figs. 2—6.
Compared with the work of Casten and Frank, Figs. 2—6 are
much simpler. Two properties are noticed here.

(a) The Ez+ etc. saturate before N N, saturates in the
1

rare-earth and actinide region, i.e., they saturate much faster
than B(E2) and B(M1). [B(E2) or B(M1) saturation is
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FIG. 3. The formulas are the same as Fig. 2. In this figure, 28&Z&50, 50&N&82, A =0.11, B=7.83, C=6.68 for F2+, A =0.08,
1

8=22.0, C=11.3 for F4+; A=0.53, 8=4.31, C=11.5 for E6+; A=4.09, B=1.09, C=0.06 for R; a=0.02, b=0.07; A=1.48,
1 1

B=5.37, C=0.18 for B(E2); a=1.46, b=0.64; A=3.68, B=1.74, C=0.18 for Qo.

due to the N„and N, saturation or the Pauli effect stated in
the FDSM. Apparently, the physics of F2+ saturation is dif-

1

ferent from B(E2) saturation. ]
(b) The E2+, E4+, E6+, and R in Figs. 2—6 begin to

1 1 1

saturate at almost the same N N, value (about 10—20).
Before we go on, one may ask why these two properties

are not noticed before.
Let us first look at the F2+ systematics by Casten and

1

Frank [3,4] for the even-even rare-earth nuclei. The system-
atics in their papers was separated into two cases: the(¹88,Z~64) region and the other region. The Ez+ etc.

1

decrease quite fast with the N N and then saturate a func-
tion of N N, in the first case; and they saturate very
"slowly" in the second case, almost as slow as the B(E2)
does. The existence of these two curves with different satu-
ration "rates" of the rare-earth nuclei makes it impossible to
compare with systematics in the actinide region. The differ-
ence of the systematics in the rare-earth region between ours
and Casten and Frank's papers [3,4] comes mainly from the
N counting scheme for Z~66 nuclei In this paper . the ef-
fects of the Z=64 subshell are also important for the
Z~66 nuclei while Casten and Frank neglected it (Ref. [13]
also suggested that the nuclei of Z~66 are affected by the
Z=64 subshell substantially; see Table III). So the Z~66

line [3,4] of E2+, E4+, and E6+ in Casten and Frank's paper
1 1 1

would be shifted to the left, and one would get the results
similar to Figs. 2—6 in this paper. Besides, the systematics of
Frank's paper does not include the N= 90 isotones. We also
notice misprint of data for the Nd isotopes in their figures.

Let J be the rotational inertia, p be the deformation pa-
rameter, and 8 be the inertia parameter. For well-deformed
nuclei, we have J=uBP and E2+=6h /J=a'/(BP ),

1

where n and a' are constants. We know B(E2)~p while
E2+ depends on both p and B, and B is not constant [21],
so it is not surprising that F2+ does not saturate at the same

1

N N„value as B(E2) does The same arg. ument holds for
E2+, E4+, E6+, and R=(Eg+/E2+).

1 1

The F2+ etc. for the even-even rare-earth and actinide
I

nuclei saturate at almost the same value of (N N, ). This
phenomenon can be understood intuitively if we assume that
the F2+ etc. saturate when the n-p quadrupole force gradu-

1

ally dominates in the residual interaction.
Let Vz p and Vz& be the total strength of the n-p inter-

action and identical nucleon pairing, respectively, and V„„
and V„„be the average strength of the n-p and identical
nucleon pairing, respectively. Using the concept of effective
boson number, we get
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FIG. 4. The formulas are the same as Fig. 2. In this figure, 50&Z, N&82, A =0.17, B=4.36, C=7.14 for E2+; A =0.50, B=3.08,1'
C=7.53 for E4+', A=0.05, B=52.1, C=24.4 for E6+; A=4.05, 8=1.10, C=0.06 for R; a=0.07, b=0.10, A=2.52, B=8.64,

1 1

C=0.19 for B(E2); a =0.86, b= 1.02; A =5.15, B= 2 43, C=0.15 for Qo.

VN —P

VNN

2N N„r V„pb

(N +N„) i V„„i

IV. SYSTEMATICS
OF ELECTROMAGNETIC TRANSITION

Raman et al. reviewed and compiled the B(E2) data for
the even-even nuclei and predicted many B(E2) values by
various systematics. By the techniques of NRF, (p,p'), and

(e,e') techniques, more and more B(M1) data are also
available now. Whether these accumulated data can be clas-
sified by simple empirical formulas is currently an interest-

By work of Jensen et al. , Wapstra et al. , and Brenner
er al. [18],we can conclude that the V„~/V„„value is almost
the same constant for the above even-even nuclei [19].As an

example, one can take V„„=1 MeV, V„„=0.25 MeV which
are typical values in the rare-earth region. It is easy to get
that the - VN p begins to dominate in the residual interaction
when the (N N„)=16 (taking N =N„ for simplicity), and
then stable deformation sets on, the lowest excitation states
are rotational spectra. According to the simple assumption
above, the E2+, E4+, E6+, and R begin to saturate conse-

1 1 1

quently.

ing topic in the systematic studies t5,6,8,9,20]. It is of inter-
est to present the systematics of B(E2) and B(Ml) vs the
product of the effective boson numbers (N„N„).

Figures labeled with B(E2) and Qo in Figs. 2—6 show
that the B(E2) and Qo (intrinsic electroquadrupole moment)
change smoothly with the (N N„). We see that B(E2) is
nearly proportional to the (N N, ) for the five regions, and

Qo is approximately proportional to (N„N,)", which is
consistent with the recent systematics [3] [Casten et al.
(1993)].It seems that there does not exist the saturation phe-
nomenon for B(E2) or Qo in the figures. In fact, the satura-
tion data in Raman's paper are converged together at the

(N N,),„in our Figs. 2—6. With the concept of boson num-
bers above, the strong saturation and correlation of B(E2)
and B(M1) strength t8] for the even-even rare-earth and
actinide nuclei is quite simple, because both the B(E2) and
B(M1) increase with the (N N„), and they saturate when
the (N N, ) saturates.

The concept of effective boson numbers cannot only im-
prove the systematics but also is useful to predict the un-
known data. For example, the experimental data of B(M1)
for the even-even actinide nuclei are still scarce. We can use
our systematics to estimate the saturation value and the satu-
ration critical point of B(M1). Under the SU(3) limit of
IBM,
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FIG. 5. The formulas are the same as Fig. 2. In this figure, 50&Z&82, 82&N&126, A =0.11, 8=7.83, C=6.68 for E2+; A =0.26,
I

B=5.26, C=9.24 for E4+; A=0.48, 8=3.72, C=12.8 for E6+; A=3.36, 8=0.88, C=0.10, for R; a=0.35, b=0.13; A=6.14,
1 I

8 =7.93, C =0.10 for B(E2); a = 1.32, b = 1.40; A = 7.58; B=2.75, C = 0.11 for Q

3g N N,
( )

( N),
where g =g„—g, is g factor, and g =0.85 and 0.95 in the
IBM-2 SU(3) limit for the rare-earth and actinide nuclei,
respectively [13]. Substituting the saturation values in Fig. 1

for N and N, in Eq. (1), we get

8"'(M l,actinide) g (actinide) 7 X 8 6X7
8'"(M l,rare-earth) g (rare-earth) 7+8 6+7 '

taking 8"'(M l,rare-earth) =2.66p,~, we get that
8'"(M l,actinide) =3.44p~, the saturation transitional point
1S

P= = „, „, =2&56/15=7.47,

'Some authors, e.g. , Ref. [12], use g (actinide)/g (rare-earth) a
little larger than the value here; in Ref. [4], this ratio is even larger.

So the predicted value of B(M1) would be a little larger. On the

other hand, there are also references where g is simply taken as 1,
then the predicted B(M1) would be a little smaller.

all consistent with the recent prediction [9].

V. DISCUSSION AND CONCLUSION

Systematics are obtained by introducing effective boson
numbers; some difference of the general behavior with the
previous systematics is noticed. A test of these results can be
performed by other parametrizations. Recently, the
parametrization V~p, which is defined as Vzp(N, Z)
= BV„„(N,Z)N„N~ and 8V„~(Z+I,N+I)=;(tB(Z+2,N+2)
—8(Z+2,N)] —[8(Z,N+2) —8(Z,N)]), was used in the sys-
tematic study of energy spectra and B(E2) for the even-even
medium to heavy nuclei. Note that Vzz is regarded as an
approximation of the total np interaction for the nucleus, and
was extracted empirically without any ambiguities, and the
subshell closures are unnecessary to be in particular consid-
eration because the subshe11 effect is already included in the

BV„„Iluctuation [22].As we know, the effective boson num-
bers are introduced to improve the proportionality of
(N N„) with the general behavior of the np interaction, so
the systematics of nuclear properties vs V~p can be a quali-
tative test of the effective (N N„) scheme, and the results
are quite consistent with the systematics in this paper. In the

V&z scheme, the energy spectra can be well described by one
curve, and the correlation phenomenon of the excitation en-
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FIG. 6. The formulas are the same as Fig. 2. In this figure, Z~82, %~126, A =0.04, 8=22.7, C=6.30 for E2+, A =0.13, 8 = 11.2,
1

C=7.30 for E4+; A=0.24, 8=6.76, C=12.6 for E6+; A=3.35, 8=1.08, C=0.12 for R; a=0.18, b=0.27; A=17.6, 8=9.68,
1 I

C=0.07 for B(E2); a= —2.02, b=2.88, A=13.0, B=3.03, C=0.07 for Qo.

ergy decreasing with the (N N„) in different major shells is
verified therein [22], so it is consistent with the regularities
found in the above (N N„) scheme.

To summarize, in this paper we present effective boson
numbers of even-even nuclei near the subshells and mid-
shells for the A~70 even-even nuclei. By these effective
boson numbers we tackle the systematics of E2+, E4+,1'
E6+, R, B(E2), and Qo in the (N„N„) scheme. It is found

that F2+, E4+, F6+ saturate almost at the same point of
1 1 1

(N N„) in these regions, and we provide a plausible expla-
nation by the competition between the pairing and the n-p
quadrupole interaction. A simple systematics of B(E2) is

suggested in this scheme, and we predict the behavior of
B(MI) systematics for the even-even actinide nuclei. The
systematics in this paper is also supported by the results in
the V~p scheme.
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