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The nucleon self-energy obtained from the Dirac Brueckner-Hartree-Fock calculation is

parametrized by introducing density-dependent coupling constants of isoscalar mesons in the rel-
ativistic Hartree-Fock (RHF) approach. The RHF calculations with density-dependent coupling
constants not only reproduce the nuclear matter saturation properties, but also provide a good
starting point to study finite nuclei properties. The relativistic density-dependent Hartree-Fock
(RDHF) approach contains the features of the relativistic G matrix and in the meantime simplifies
the calculation. The ground state properties of spherical nuclei calculated in the RDHF are in good
agreement with the experimental data. The contribution of isovector mesons vr and p, especially the
contribution of the tensor coupling of p mesons, are discussed in this paper.

PACS number(s): 21.60.Jz, 21.10.Dr, 21.65.+f, 24.10.3v

I. INTR.ODUCTION

In recent years, many investigations have been devoted
to a relativistic description of nuclear properties. The
relativistic mean field (RMF) theory with nonlinear self-
interactions has turned out to be a very powerful tool
in the description of the ground state properties of both
spherical and deformed nuclei over the entire range of the
periodic table [1,2]. Recently, it has also been demon-
strated that the RMF is able to describe the properties
of nuclei far from the stability line [3,4]. The relativis-
tic Hartree-Fock (RHF) approach is an extension of the
RMF. The contribution of the exchange terms in the
RHF has been investigated, and the importance of the
isovector mesons in the description of the ground state
properties of nuclei has been emphasized [5—7]. In spite
of the success of the RMF and RHF, however, too large
a compressibility of nuclear matter is produced in these
approaches. It might indicate an incorrect density be-
havior of the effective interaction described in the RMF
and RHF approaches. It is known that the calculations
in the RMF or RHF yield correct binding energies but
too small a charge radius or vice versa. Such calcula-
tions reveal a new "Coester" band in the dependence of
1/r, h on E~, which is similar to that observed in the non-
relativistic Brueckner-Hartree-Fock (BHF) approach [8].
The deficiency of the RMF and RHF approaches might
be attributed to the fact that the nucleon-nucleon short
range correlations have not been taken into account in
these approaches.

In taking account of the nucleon-nucleon short range
correlation one starts &om a bare nucleon-nucleon inter-
action of the one-boson-exchange potential, and solves
the relativistic Brueckner-Goldstone equation in the nu-
clear medium [9—12]. The Dirac-Brueckner-Hartree-Fock

(DBHF) approach quantitatively reproduces the empir-
ical saturation properties of nuclear matter, such as the
binding energy per nucleon and saturation density as well

as the compressibility [11,13]. This implies that the nu-

cleon self-energy in the nuclear medium obtained in the
DBHF has a proper behavior in the density dependence.
However, the DBHF due to its complexity is mainly re-
stricted to nuclear matter and only very few finite nuclei
calculations have been performed so far [14]. To extend
the DBHF to finite nuclei, relativistic effective interac-
tions are adopted to incorporate the DBHF results in the
RMF or RHF, which is desired to remedy the deficiencies
of the RMF or the RHF without losing the features of
the relativistic t matrix and at the same time to retain
the simplicity of the calculations.

Recently, there is a growing effort to develop the rel-
ativistic effective interactions. Attempts have also been
made to improve both binding energy and rms radii of
finite nuclei simultaneously in the RMF or RHF with
various effective interactions. These approaches intro-
duce a density dependence into the hadronic Lagrangian
by allowing the meson-nucleon coupling constants to
be functionals of the baryon density. Gmuca [15] has
parametrized the results of the DBHF in nuclear matter
in terms of the RMF with scalar and vector nonlinear self-
interactions. Though the coupling constants obtained in
such a way are density independent, these mesonic self-
interactions implicitly represent the density dependence.
Brockmann and Toki [16] developed a relativistic density-
dependent Hartree (RDH) approach for finite nuclei. The
coupling constants of the isoscalar cr and u mesons in
the RMF are adjusted at each density by reproducing
the nucleon self-energies resulting &om the DBHF in-
stead of fitting to the empirical nuclear matter satura-
tion properties. The binding energies and rms radii of

0 and Ca calculated with the density-dependent in-
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teraction are in good agreement with experiments. How-
ever, Fritz, Miither, and Machleidt [17] pointed out that
the Fock terms are not negligible and relativistic density-
dependent Hartree-Fock (RDHF) calculations have been
investigated. At very low densities the DBHF results
are unknown and an extrapolation procedure has to be
adopted for the calculations of finite nuclei. Due to the
fact that there is no direct restriction on the coupling
constants at very low density, in Ref. [18] the scalar and
vector potentials of the DBHF results were extrapolated
at low densities 6rst by respecting their properties in nu-
clear matter. Then, the extrapolation of the coupling
constants in the RDH or RDHF approaches is restricted
by reproducing those scalar and vector potentials at the
low densities. Therefore the coupling constants at the low
densities in different approaches, the RDH or RDHF, are
obtained on an equal level.

As mentioned above, the contributions of isovector
mesons are neglected in Refs. [16,17]. It is known that a
realistic description of the nucleon-nucleon interaction in
terms of meson exchange Inust include vr and p. There-
fore it is necessary to develop a relativistic theory for
6nite nuclei in the RHF including the isovector m and p
mesons. Fritz and Miither [19] discussed the contribu-
tion of the pion to the bulk properties of 6nite nuclei in
the RDHF approach. They found that the inclusion of
the m-exchange terms in the RDHF slightly improves the
agreement with the experiments. Boersma and MalfIiet
[20] achieved a density-dependent parametrization of the
Dirac-Brueckner G matrix in nuclear matter, which was
called an effective DBHF. They used the effective DBHF
to systematically analyze a series of spherical nuclei, and
the results are in good agreement with the experiments.
In our previous Brief Report [21], the effects of the isovec-
tor p meson with a vector coupling in the RDHF on the
bulk properties for finite nuclei were discussed. It was
found that the exchange terms in the cr-cu model reduce
the charge radii, but have less influence on the binding
energies. A large repulsion of the m contribution at the
interior of nuclei is observed. As a result the energy levels
of single particles become shallow in the presence of a m

meson. Therefore the total binding energy is reduced and
the charge radius is expanded. This effect is partly can-
celed when the p meson is included. But the contribution
of tensor coupling of the p meson has not been taken into
account in these works. In this paper, the contribution
of the isovector-vector p meson, especially the effect of
the tensor coupling of the p meson on the ground state
properties, is investigated in the RDHF approach. The
RDHF results are compared with those obtained &om
other models and the experiments. A systematic study
of 6nite nuclei in terms of the RDHF approach is carried
out.

The arrangement of this paper is as follows. The gen-
eral formalism in this work is presented in Sec. II. The
numerical results and main conclusions are included in
Secs. III and IV.

II. THE FORMALISM

effective Lagrangian density which couples a nucleon (vP)
to two isoscalar mesons (o, a) and two isovector ones (z',
p) with the following quantum number (J,T): o (0+, 0),
w(1, 0), z(0, 1), and p(l, 1). The electromagnetic
field (A") is also included.

The effective Lagrangian density can be written as the
sum of free and interaction parts:

8 = Zp + 81.

The &ee Lagrangian density is given by

Cp ——@(ip„B"—M)@+ (B„oO—"o —m 0. )

+—m u„cu2 p
p

pv——E E + —m p p ——C G
1 „1 2 1

p p pv

+ (B„vr . 0"z—. —m vr ) — H„„H—"",1 2 2 1
(2)

Ep~ = t9~cdp —Ops)~)

G'pv = vpp, p, pv)

H„=B„A„—g„A,

where the meson fields are denoted by 0., u~, p&, and vr,

and m, m, m~, and m are their masses, respectively.
The nucleon field is denoted by g, which has a rest mass
M. A„ is the electromagnetic Geld. The interaction La-
grangian density is given by

&I = g.4~@—g 4v, ~"0 —g&4v p".~4

~ @o „0"p". ~Q —e@p —(1+~s)A"Q2M p 2

gp5p 0 z. . 7.@,
f p

A. Equations of motion

The equations of motion for meson fields are easily
obtained &om the Euler-Lagrange equation

where 7 and v3 are the isospin Pauli matrices. The ef-
fective strengths of couplings between the mesons and
nucleons are denoted by the coupling constants g, or f,
(i = tT, ur, p, vr), respectively. Note that the pseudovec-
tor (PV) coupling for md% interaction is used. It is
known that the baryon self-energies become extremely
large (about 40 times larger than their PV counterpart)
at normal nuclear density if a pseudoscalar coupling is
used, which has a drastic effect on the single-particle
spectrum [23]. The present of tensor couplings makes
the model Lagrangian density no longer renormalizable
and all physical observables should be calculated at the
tree level.

As in the one-boson-exchange (OBE) description of the
nucleon-nucleon interaction [22], our starting point is an

=0, (4)
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with a meson field P. For instance, the o' and ur fields are
the solutions of

(CI+ m )0. = g @@,

(0+m )ur = g @p„g,

with the baryon current conservation 0+(gp~g) = 0.
Solving these equations for meson fields, one then ob-
tains

~(*) = a- J &'u&-(* —u)M(v)0(u)

~"{*)= a- J &'u&." (*—u)4(v)~-&'(v)

where D (x —y) and D""(x —y) are the o and u me-
son propagators, respectively. Similar expressions can be
deduced for isovector mesons.

Following standard techniques [24], at the Hartree-
Fock level, the expectation value of the Hamiltonian in
the ground state can be written as

(4o~H~OO) = ) (JUt(T)[ —io. . W+ pomfU (T)dx

+ Ut xppZH xU xdx

&.'(*)~.f & (*,u)&.(w)~a~*), (9)

where U (x) is the nucleon wave function and satisfies
the orthogonality relation

dyUt(y)U~(y) = ~-~

Only positive-energy states have been taken into account
in the preceding derivation.

H. Nuclear rnatter

Because of the translational and rotational invariance
in the rest kame of infinite nuclear matter and the as-
sumed invariance under parity and time reversal, the nu-
cleon self-energy produced by the meson exchanges in
nuclear matter can, in general, be written as

Z(k ) = Z, (k„) —poZp(k )+p kZ„(k„), (10)

where Z„Ep, and Z denote the scalar and time and
space components of vector potentials, respectively. In
general, they are functions of the four-momentum k„of
a nucleon and the Fermi momentum k~. Based on the
Feynman diagram rules one could derive the nucleon self-
energy in nuclear matter. In the RHF approach, the
isoscalar mesons in our Lagrangian density give rise to
the following contributions to the self-energy [23,25]:

fg i' 1
Z, (k„) = —

~ ~ p, + dqqM(qo)
gm ) 16vr2k

x [g 0 (k, q) —4g 0 (k, q) ],
( ) 2

1 Alp'

Zp(k„) = —
( [ pgy

— dqq[g 0 (k, q)(m ) 167r2k o

+2g'0 (k, q)],
kF

Z„(k„) =—, dqqQ(q„) [g'4 (k, q)

+2g'C (k, q)],

(12)

where

M(q„)

8;(k, q)

C;(k, q)

kp

q*(q-)Q(q)= .
( )

M'(q„)
qo(q-)

'

(k+ q)2+ m,'
(k —q)'+ m2

k2+ q2+ m2
'8;(k, q) —1, i=a, u, p, m,4k'

k[1+ Z„(k„)], k* = ik*i,
M+ Z. (k.),
ko + Zo(k„) = (k* + M* )'~ .

The scalar and vector densities are

A:p

p, = —, q'M(q)dq,
7C p

(14)

C. Finite nuclei

In the case of spherical, closed-subshell nuclei, a single-
particle baryon state with energy E'~ is specified by the
set of quantum numbers

o. = (q, n, l, j,m )—:(o., m ),

where q = +1(—1) for a proton (neutron) state. The
nucleon wave function can be written as

U-(*) = -„ l ~ „.; l &-(&)»g2(q-)
i&.(r)

where pi~2(q ) is an isospinor, and the angular and spin

The contributions of the isovector m and p mesons to the
self-energy are given in Appendix A. The first terms of
Z, and Zo in Eqs. (11) and (12) are the Hartree terms,
which are momentum independent. The rest terms are
the Fock terms, which are almost 1/k dependent. The
coupled nonlinear integral equations of the self-energies,
Eqs. (11)—(13) have to be solved self-consistently .

Requiring that the nucleon self-energies produced in
the RMF or RHF are the same as those obtained in the
DBHF at each baryon density, one can adjust the cou-
pling constants g and g as functions of the baryon
density. The detailed procedure will be discussed in
Sec. III A.
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parts of the nucleon spinor can be written as

7 (r) = ) ) —p s j m ) Yj (r)gr/p(r ).
@~~8m

is stationary with respect to variations of the spinors U
(i.e. , of G and I ) such that the normalization relation
is preserved,

The spinors U (r) are normalized according to

fd"U.'(*)U.( ) = [G.'( )++.'( )]d = ~
0

The Hartree-Fock solution is obtained by requiring
that the total binding energy

E = (yp~a](tp) —~M

6 E —) E f Ut(r)U (r)d r = 0.
cx (GGG}

After a lengthy derivation, one can obtain the Hartree-
Fock equations for the self-consistent wave functions
(G, I" ) and energies E . The radial Dirac equations
take the following form:

d ( G (r) ) (' —"—Zg (r) M+ E + ZsD (r) —&pD & f G (r) )
~( A(r) —)

d„&Z.() ~ &M-E. +Z, .()+&,. -"„+&,.() P g+-() y q Y-() P

where Z&, Z0, and ZT are the contributions of the
direct terms to the self-energy and can be expressed as
follows:

gVT(1)( )
fp pV( )P 2M~ g& P (24)

~,.( ) = [~, ( )+~, "( )]g-

~s,.(r) = ~-(r)

~, "()=—'' [p, (') —p,-(')]

x, Ip(mar&)Kp(mar&) r' dr', (25)

~o,.( ) = ~-( ) + [~, ( ) + ~, '"( )]g-
1

+2(~+ g-)~.(r) (2O)

and A and Y come f(om the exchange (Fock) contri-
bution. The quantity r is (2j + l)(l —j ).

In this work we consider nuclei with a closed pro-
ton and neutron shell only; therefore the isovector pseu-
doscalar meson yields no contribution in the Hartree ap-
proximation. The Hartree contributions, which come
&om u, ~, and p mesons and the Coulomb force, are
given as

( )
2 js)P( ) /2d )

0
(27)

with the definitions

OO

~, (r) = —
I M I m,' [pT,p(r') —pT, (r')]

xI, (mar&)K) (mar&)r' dr'

Ipr, (") &r, ("))I (26)

~-(r) = —g-[p~(r)]m- g-[ ~(r')]ps(r')
0

xI()(m r&)K()(m r&)r' dr', (2i)

). &s [Gs(r) —+s'(r)]
6( o }

~ (") =g [p&(r)]m 9 [»(r )]p~(r )
0

xIp(m r&)Kp(m r&)r' dr',

Z (r) = g mp [p~„(r') —
pgy „(r')]

0

xIp(mar&)Kp(mar&)r' dr',

(22)
and r& (r&) is the smaller (larger) of r' and r.

The functions Il, (x) and Kg(x), which arise &om the
multiple expansion of the meson propagator in the coor-
dinate space, are defined by using the modified spherical
Bessel functions of the first and third kind I and K:
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II + ~ (z)
II, (z) = KL+ ~ (z)

fCI.(z) =— 400

The explicit expressions of exchange contributions X
and Y are given in Appendix B.

III. RESULTS AND DISCUSSION

A. Paraxnetrization of DBHF

200

0
4~

0 -200
Q

0~ -400

The self-energy obtained in the RHF shows a weak de-
pendence on the momentum of the nucleon and a strong
dependence on the density of the system. It is known
that the resulting saturation curve is too strongly den-
sity dependent, which might be due to the fact that the
short range correlation has not been considered in the
RMF or RHF approaches. Attempts have been made to
incorporate the efFects of the short range correlation de-
scribed in the DBHF approach by introducing density-
and momentum-dependent efFective coupling constants
of isoscalar mesons in the RHF approach [17,20,21,26].

In order to make comparison with the DBHF results,
the scalar and vector potentials in the RHF approach can
be obtained by

U, (k, k~) = ' ", Uo(k, kz) =
V V

(28)

where EI, = gk' + M' —Zo. The momentum de-
pendence of the potentials is usually relatively weak and
neglected in the description of ground state properties of
finite nuclei. Therefore the momentum average within
the Fermi sea is performed,

-600
0.0 O. i 0.2 0.3

Density(fm )
0.4

~14(

CI5

0

.~ 10
C4

0

(a)
RDH—RDHFl
RDHF2——RDHF3A

FIG. 1. Scalar and vector potentials U, and Uo as functions
of the density in nuclear matter. The circles are the DBHF
results using Bonn A potential [1]. The curves are obtained
in terms of interpolations and extrapolations.

f k2U, (o)(k, ky) dk
U, (o) k~

J' k2 dk
(29)

0.0 0.1 0.2 0.3
Density(fm )

0.4

At very low density of nuclear matter the DBHF results
are not reliable and remain unknown. Therefore the ex-
trapolation of the coupling constants outside the density
points in the DBHF has to be done when they are applied
to the calculation of finite nuclei. In order to remove the
sensitivity, the extrapolation of scalar and vector poten-
tials U, and Uo of the DBHF results at low densities is
done by setting U, = 0, Uo ——0 at p~ ——0. It is known
that the scalar and vector potentials in the RMF or RHF
are almost linearly dependent on the density. Due to the
short range NN correlation the scalar and vector poten-
tials approach zero smoothly as the density goes to zero.
A polynomial fit of the scalar and vector potentials with
respect to the density is performed. The extrapolation
and interpolation of U, and Uo are shown in Fig. 1, where
the circles are the DBHF results in nuclear matter using
the Bonn A potential [13]. The density dependence of
the coupling constants is then adjusted in the cases of the
RMF or RHF with or without isovector mesons to repro-
duce the nucleon self-energies at each density resulting
from the DBHF. The masses of the nucleon and o and u

~16-

M

0
~12

~ao
0

RDH—RDHF1
. --. -- RDHFB--—RDHF3A——RDHF3C

0.0 0.1 0.2 0.3
Density( fm )

0.4

FIG. 2. Density-dependent coupling constants of o and ~,
g (a) and g (b). They are deduced by reproducing the scalar
and vector potentials of the DBHF results at each density
from RMF and RHF analyses. The solid, dotted, dashed, and
long-dashed curves correspond to the cases of o+u (RDHF1),
o.+cu+m (RDHF2), and o + ur + s + p (RDHFSA, RDHF3C),
respectively. The dash-dotted curve is for the RDH.
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meson are chosen to be the same as in the DBHF calcula-
tion, where M = 938.9 MeV, m = 550 MeV, and m
782.6 MeV. The pseudovector coupling for vrNN, vector,
and tensor coupling for pNN is adopted. The masses
and coupling constants of isovector mesons are fixed to

f 9be m = 138 MeV, m~ = 770 MeV, ~4
——0.08, ~4 ——0.55,

and ~~ = 3.7 [5]. The density dependence of the coupling
Qp

constants in various cases is shown in Fig. 2. The pres-
ence of the pion introduces a large repulsive force, so the
scalar coupling constant becomes larger and the vector
coupling constant gets smaller to balance the repulsive
force, especially at normal and high densities. However,
the pion contribution is partly canceled by the presence
of p mesons in symmetric nuclear matter. The tensor
coupling of p mesons has a large efFect at high density.
As a result, the coupling constant of o. mesons becomes
larger than that of ~ mesons at high densities. It might
be observed that the results obtained in this paper are
somewhat different &om those in Ref. [19]. The reason
for this discrepancy is that the zero-range components of
the pion exchange were removed there. The cases with
and without the contact interactions have been discussed
in more detail in Ref. [6]. It is found in our calculations
that the efFects of the contact interactions mainly cause
a renormalization in g and g coupling constants. The
removal of the zero-range components of the pion and p
exchange would increase the binding energy and reduce
the charge rms radius. No qualitative. improvement has
been found. Therefore only the cases with the zero-range
components of the m and p exchange are presented in this
paper.

B. The ground state properties of Bnite nuclei

The ground state properties of five stable doubly
lj nuclei 16Q 4oCa 4sCa 9oZr and 2osPb

calculated in the RDH and RDHF approaches with these
density-dependent coupling constants. The set of cou-
pled difFerential equations (17) is solved in the coordinate
space following the method of Ref. [5]. Self-consistence
is achieved by an iterative procedure. It is difFer-
ent &om the matrix diagonalization method adopted in
Refs. [16,17], where a truncation of a complete set of
bases has been performed for both baryon and meson
wave functions. Our computer code has been carefully
checked with the results of Refs. [5,28].

In order to investigate the efFect of the density depen-
dence, the results for 0 and Ca obtained in the RMF
and RHF with o + ~ (RHF1), o + u + vr (RHF2), and
o + co+ vr + p (RHF3) are listed in Table I. The coupling
constants are determined to reproduce the DBHF results
in nuclear matter (OBE potential A) at the saturation
density k~ ——1.40 fm . It should be mentioned that
the results are difFerent from those of the usual RMF
and RHF calculations, where the coupling constants and
scalar meson mass are adjusted to reproduce the empir-
ical saturation properties of nuclear matter as well as
the rms charge radius of Ca. Because of a relatively
large saturation density obtained in the DBHF and the

16~
Es/A (MeV)

r,I„(fm)
lairs (MeV)
1psg2 (MeV)
1pi~z (MeV)

"Ca
Es/A (MeV)

r.l, (fm)
1dsy2 (MeV)
2siyg (MeV)
1ds)2 (MeV)

—5.62
2.48

44.34
18.96
9.62

—6.36
3.14
16.54
7.07
6.92

—6.02
2.39

45.08
21.15
7.85

—6.69
3.04
18.61
5.60
5.70

—4.86
2.53

40.78
17.50
9.49

—5.84
3.16
15.72
7.98
6.50

—5.67
2.57

43.21
18.51
10.98

—6.38
3.22
16.35
8.81
7.79

scalar meson mass m = 550 MeV adopted in this calcu-
lation, the binding energies and rms charge radii calcu-
lated here are both much smaller than the experimental
data. However, the main purpose of Table I is to show
the difFerence in various cases mentioned above and com-
pare with Table II to illustrate the efFect of the density
dependence. The saturation curves of nuclear matter cal-
culated in the cases of the RMF (dotted curve), RHF1
(dashed one), RHF2 (dash-dotted one), and RHF3 (solid
one) are plotted in Fig. 3 and compared with the DBHF
results (circles). The finite nuclei calculations are mostly
afFected by the behavior of the self-energies at normal and
low densities. Due to the hard behavior of the equation
of state in those density-independent models, too small
binding energies are observed at low densities. There-
fore too weak potentials at the surface of finite nuclei
are produced in those models. Calculations with density-
dependent efFective interactions are performed, where the
coupling constants at each baryon density come from the

20

15. ——RHFi

10.
05.

-10

-15

-20
0.0 0.4 O.S 1.2

k,(fm ')
2.0

FIG. 3. Binding energy of nuclear matter as a function of
the density. The curves are calculated in the relativistic den-
sity-independent models RMF (dotted curve), RHFl (dashed
curve), RHF2 (dash-dotted curve), and RHF3 (solid curve).
The circles are the DBHF results.

TABLE I. Ground state properties of 0 and Ca calcu-
lated in the RMF and RHF. The binding energy per nucleon
Es/A, the charge rms radius r I„and single-particle energies
of proton states.

RMF RHF1 RHF2 RHF3
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TABLE II. Ground state properties of 0, Ca, and Ca calculated in the RDH and RDHF.
The binding energy per nucleon E&/A, the charge rms radius r,r„and single-particle energies of
proton states.

RDH RDHF1 RDHF2 RDHF3A RDHF3B RDHF3C Expt.
16O

Ejs/A (MeV)
r.h (fm)

].s~gs (MeV)
lps(2 (MeV)
lpga)2 (MeV)

4'Ca
Egg/A (MeV)

r,g (fm)
1dsg2 (MeV)
2sz~q (MeV)
1dsgs (MeV)

48Ca

E~/A (MeV)
r.g (fm)

1dsyq (MeV)
2s&~& (MeV)
1ds(2 (MeV)

—7.44
2.59
43.97
21.77
16.16

—7.88
3.26
19.27
13.69
13.29

—8.02
3.27
24.35
17.25
18.68

—7.48
2.50

43.87
23.60
16.08

—7.91
3.17
21.17
14.08
13.48

—7.96
3.17
29.17
19.77
21.79

—6.96
2.64
41.11
21.11
15.60

—7.49
3.29
19.08
14.20
12.?7

—7.45
3.30
24.34
19.79
23.05

—7.29
2.61

42.76
21.85
16.07

—7.74
3.27
19.52
14.19
13.09

—7.59
3.28
26.37
20.90
24.92

—7.57
2.59

44.13
22.47
16.47

—7.94
3.26
19.89
14.14
13.35

—7.70
3.27
27.96
21.77
26.38

—7.41
2.68

42.98
21.31
15.72

—7.81
3.35
18.95
13.78
12.67

—7.60
3.37
26.72
20.61
23.53

—7.98
2.73

40 + 8
18.4
12.1

—8.55
3.48
15.5
10.9
8.3

—8.67
3.47
20.0
15.8
15.3

parametrization of the DBHF result in nuclear matter as
discussed in Sec. IIIA. Various cases, RDH, RDHF with
o +u (RDHF1), cr+ ~+ sr (RDHF2), and o + sr + sr+ p
(RDHF3), are investigated and the results for the nu-
clei 0, Ca, Ca, Zr, and ~ Pb are displayed in
Tables II and III. In order to investigate the sensitiv-
ity of the p meson coupling constant, two values of p

2

coupling constants are adopted in the calculations: ~4

= 0.55 (RDHFBA) and 0.99 (RDHF38) without tensor

coupling. The results with pNN tensor coupling (~z

0.55, s = 3.7) are given as RDHFBC.) g
The importance of the density-dependent approaches

is clearly demonstrated in Tables I and II. The calcu-
lations in either RMF or RHF with constant coupling
constants produce much smaller binding energies of nu-
cleons and rms radii in comparison with the experiments.
In contrast, the approaches with density-dependent inter-
actions increase both binding energy and charge radius,

which implies removal &om the so-called Coester band
[8]. The results in the relativistic density-dependent ap-
proaches are greatly improved and close to the experi-
mental values. The Fock exchange term in the o-u model
reduces the charge radii, but has less infiuence on the
binding energies. A large repulsion of the pion contribu-
tion at the interior of the nucleus is found. As a result,
the energy levels of deeper states become shallow in the
presence of the pion. Therefore the total binding energy
is reduced and the charge radius is expanded. This effect
is partly canceled by the p meson exchange contribution.
In a comparison of the RDHFSA with RDHF38, the re-
sults are not sensitive to the strength of the p meson
coupling. The binding energies for the strong coupling

constant of the p meson ~4
——0.99 are about 2% bigger

than those for ~4
——0.55 and the rms radii are reduced

by less than I'%%up. However, the p tensor coupling term
has a relatively large effect. It can be found that the re-

TABLE III. Same as Table II, except for Zr and Pb.

RDH RDHF1 RDHF2 RDHF3A RDHF38 RDHF3C Expt.
"Zr

E~/A (MeV)
r, p, (fm)

2psg2 (MeV)
1fs/& (MeV)
2pg)2 (MeV)

2osPb

E~/A (MeV)
r, I, (fm)

2dsg~ (MeV)
2dsgq (MeV)
Bsqy2 (MeV)

1hgg)2 (MeV)

—7.94
4.00
11.01
13.14
9.42

—7.38
5.17
9.94
8.23
7.06
8.09

—7.92
3.89
13.09
15.61
11.16

—7.09
5.02
14.40
12.44
11.36
13.82

—7.55
4.02
12.86
16.67
11.77

—6.75
5.18
13.63
13.01
11.30
8.97

—7.67
4.00
13.61
18.12
12.49

—6.70
5.17
15.73
15.09
13.26
11.28

—7.78
3.99
14.19
19.24
13.05

—6.61
5.17
17.32
16.64
14.78
13.03

—7.68
4.10
13.52
16.93
11.91

—6.69
5.30
15.68
13.54
12.72
11.43

—8.71
4.27
11.0
12.3
9.5

—7.87
5.50
9.7
8.4
8.0
9.4
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suits of both binding energy and rms charge radius in the
RDHFBC are improved. The binding energies of nuclei
are increased slightly, but the charge radii of nuclei are
improved greatly in comparison with experiments.

Figure 4 shows the density distribution of nuclei. The
dense dotted curves are the results of the RHFS, corre-
sponding to the case in the fourth column of Table I. The
dashed, dash-dotted, dotted, and solid curves correspond
to those of the RDH and RDHF (RDHFl, RDHFBA,
RDHF3C) without and with isovector mesons, respec-
tively. It is found that the charge densities are reduced
at the nuclear interior and have a long tail due to the rel-
atively strong coupling constants at the nuclear surface
in the density-dependent calculations. The Fock contri-
butions of 0. and ~ in the RDHF produce a squeezing
effect and give a large central density. The repulsive con-
tribution of vr reduces the interior density and the re-
sults of the RDHF3A are very close to those of the RDH.
Though the densities at the center are still higher than
the experimental data, which implies small rms radii, it is
a parameter-free calculation in the sense that no param-
eters are adjusted for the calculations of the many-body
problem. However, the results with density-dependent
coupling constants are in reasonably good agreement
with the experiments.

As is well known, nonrelativistic BHF calculations with

various two-body nucleon-nucleon potentials, such as
Reid soft-core and Hamada-Johnston potentials, reveal
a "Coester" band in the dependence of I/r, on E~/A.
In the RMF or RHF calculations, the dependence of I/r
on E~/A, with variation of the scalar meson mass, and
therefore the variation of the coupling constants, formed
a new "Coester" band. A better estimate of the mer-
its of the present work can be expected upon comparison
with the BHF "Coester" band and RHF "Coester" band.
Those "Coester" bands are plotted in Fig. 5 for 0 and

Ca; the dash-dotted line indicates the BHF "Coester"
band, which is taken Rom so-called generalized BHF cal-
culations by Kiimmel et al. [9]. The dotted and dashed
lines represent the RHF results, which are obtained in
the RHF3 by varying the scalar meson mass as well as
the coupling constants to reproduce the nuclear matter
saturation properties at A:~ = 1.40 fm ~ (1) and k~ =
1.30 fm ~ (2) resulting &om the DBHF approach. The
results in the case of the RDHF3C are displayed by a
solid line in the 6gure. The density-d. ependent approach
forms a new line away kom the "Coester" band of the
conventional BHF and seems to be much closer to the ex-
perimental values than the BHF and RHF calculations.

The spin-orbit splittings of nuclei are given in Table
IV. It can be seen that the spin-orbit splitting in the
RMF and RHF approaches is larger than the experimen-
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FIG. 4. Charge density distribution of various nuclei. The curves are the results of RDH (dashed), RDHF with o + &u only
(dash-dotted), RDHF with o + u + m + p (solid for 3C and dotted for 3A), and RHF with cr + u + s + p (dense-dotted).
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TABLE IV. Spin-orbit splittings of protons for the 1p shell in 0 and the 1d shell in Ca and
48C

Nuclei
16O

40C
48C

RMF
9.34
9.62
9.32

RHF1
13.30
12.82
12.52

RHF3
7.53
8.56
5.32

RDH
5.61
5.78
5.67

RDHF1
7.52
7.69
7.37

RDHF3A
5.78
6.43
1.45

RDHF3C
5.60
6.28
3.19

Expt.
6.3
7.2
4.3

tal data, which indicates the larger spin-orbit force. It is
known that the spin-orbit force is related to the deriva-
tive of the potentials with respect to the space and is
a surface effect. The density-dependent approaches re-
duce the sharp surface and, therefore, reduce the spin-
orbit splitting. The Fock terms of the o and u exchange
increase the spin-orbit splitting, while the vr and p ex-
changes give the opposite contribution. A large reduc-
tion of the spin-orbit splitting due to pion-exchange is
found, especially for heavy nuclei with a large neutron
excess. A fIip of the spin-orbit splitting of neutron states
in aosPb is observed in the calculation of RDHF with
all mesons included, which is certainly not physical. It
might indicate that the &ee coupling constants of the
isovector mesons adopted in the RDHF are too strong

for the nuclear structure calculation. A similar obser-
vation was obtained in the calculation of the relativistic
optical potential in the RHF approach [26]. The density-
dependent coupling constants for isovector mesons may
also be required.

It is known that the single-particle densities are not
directly provided by experiments. The only way to
gain some insights in the single-particle distribution is
to study the difference between density distributions of
nearby nuclei. In Fig. 6(a), we give the charge distribu-
tion difference between Ca and Ca, multiplied by r .
The difFerence of the neutron densities between Ca and
4 Ca are plotted in Fig. 6(b). The shaded area presents
the experimental data, the dashed curve is the results of
the RDH, the dotted one the results of RDHF1, and the
solid one is obtained in the case of RDHF3C. It can be

~ -5.

~ -6

'
~

'
~

RDHF3C
RHF3(i)

—RHF3(2}
BHF
EXP

0.03

0.02

0.01

0.0

-0.01

—0.02

0.34

~-5 .

(U

~-6-

40C

0.36 0.38 0.4
1/r, h(fm ')

—RDHF3C
.----. RHF3(1)——RHF3(2)
- —- BHF

EXP

0.42 -0.03
0

0.03

0.02

r(fm)

„( Ca)

0.0

-9
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FIG. 5. Binding energy versus 1/r z for 0 and Ca. The

dash-dotted line is taken from the work of Kiimmel et aL [OI.
The dotted and dashed lines are obtained in the RHF3 with
changing o meson mass for kp = 1.4 fm (1) and k~
1.3 fm (2), respectively. The solid lines are the results of
RDHF3C. The experimental data are displayed by a star.

-0.01
0

r(fm)

FIG. 6. Differences between charge densities (a) and neu-
tron density (b) of Ca and Ca. The dashed curve cor-
responds to the RDH and the dotted curve to the RDHF1.
The solid line corresponds to the RDHF3C. The shaded area
indicates the experimental data.
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TABLE V. Neutron skin thickness A~p = p„pp for 0&
Ca, Ca, Zr, and Pb. The DBHF results are taken

from [20].

Nuclei
16g

40C
4sC
90Z

zosPb

RHF3
—0.03
—0.05
0.23
0.11
0.27

DBHF
—0.03
—0.06
0.13
0.04
0.08

RDHF1
—0.03
—0.05
0.15
0.07
0.17

RDHF3C
—0.02
—0.04
0.22
0.11
0.22

Expt.
—0.02

—0.07—0.10
0.16-0.23

0.07
0.04—0.16

seen that the results obtained in the RDHF3C are su-
perior to those of the RDH and RDHFl in comparison
with experiments. This implies that the isospin depen-
dence cannot be correctly described by the RDH as well
as RDHF1 without including isovector mesons.

Neutron skin thicknesses is an important quantity to
study isotope shifts. It is deGned as the difference be-
tween neutron and proton rms radii: 4 „=r —r„. The
neutron skin thicknesses of 0, Ca, Ca, Zr and

Pb are given in Table V, and the Q~„versus the asym-
metry parameter (N —Z)/A for those nuclei is shown in
Fig. 7. The results of the RDHF3C seem to be similar
to those of the RMF at small asymmetry parameters.
But it goes down as the asymmetry parameter increases
in the region of lead, which has similar behavior to that
obtained in Ref. [20]. More information of the isospin
dependence of the ground state properties is required.

their contribution to the binding energy may be partly
compensated by the variation of the coupling constants.
The important contributions from the isovector m meson
and, to some extent, the p meson are not included in
the mean Geld approach. It is found that the isovector
vr and p mesons play an important role in the spin-orbit
splitting as well as the isospin-dependent quantities. The
tensor coupling of the p meson gives a constructive contri-
bution to the binding energy, especially the rms charge
radius, and therefore improves the agreement with the
experimental data. More information of the isospin de-
pendence of nuclear properties is required to provide con-
straints on the coupling constants of isovector m and p
mesons in the nuclear medium.
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APPENDIX A: SELF-ENERGY IN NUCLEAR
MATTER

In the Hartree-Fock approach, the nucleon self-energy
in nuclear matter coming &om the exchange of the isovec-
tor pseudoscalar meson m can be written as follows:

IV. CONCLUSION

In summary, the RDH and RDHF approaches with
the density-dependent effective coupling constants of
isoscalar mesons can incorporate the DBHF results and
contain the nucleon-nucleon correlation effects. Inclusion
of the NN correlation causes a substantial improvement
in the microscopic description of bulk properties of nuclei.
The Fock exchange terms are not negligible, though the
exchange contributions are relatively weaker than those
of the Hartree direct term in the relativistic approach and

Z, (k) =

Zp(k) =— I'f l
dqq~

"
~

——m 8 +2kq
p Em. )

(A2)

3 (f
8vr2k2 p (m )

x qQkO —Q(k + q )4'

Z„(k) =—

(A3)

3 " ff i'-(
dq q / I

M
/

2kq ——m 0
8vr k p (m~) ( 2 )

(Al. )

0.3
The contribution to the self-energy of a nucleon from
isovector vector meson p can be written as
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FIG. 7. A „versus the asymmetry parameter for various
cases and the results of the DBHF approach are taken from
Ref. [20].
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A:y

E~(g) = — gg gigg QO~8' 2k2

+2
I I kqQOp —Q(k + q ——m2)4~

APPENDIX 8: POCK TERM EXPRESSIONS

The quantities X' and Y' in Eq. (17) can be written as
the sum of contributions coming &om various mesons. In
the following, we often need the reduced matrix elements
of the tensorial operators YL (r) and

3gp —
I I

(kMO —2qM4 )
If')

~ q2M)

T~~ = ) (Llmkl JM)YL (r)cr".

(A6)
They are given as follows:

f ~ ~

(allYLlll) =
&

~ (—)" ' '
I

0

if l + lq + L is even

if L + lg + L is odd,

(B1)

(6)~, -. -. -- -- Cl. r. l, &

(allT~Llll) =
I

—
I(4~) (0 0 0 )

2 2

where J = /2J+ 1.
The exchange term &om the scalar o meson is determined to be

(-x.(.) ~ 2

Y~( )
I

= g~[p&(r)]m~j ) 8q q, I G ( )
I ) (allYLllb)

6 L

x g [p~(r')][G Gb —F Fg], IL(m r&)KL(m r))dr',
0

(B2)

where the sum over 6 runs over all occupied states.
The expressions for the vector u meson are split into timelike and spacelike parts, with respect to the p0 and p

couplings. The time component is

I Y-(') I

= g-[p~(r)]m-&. ) .~q. q. I G ( )
I ) (allYLlll)

(-x;(.) ) ( Fs(r) 2

x g~ [p~(r')] [G~Gg + F~Fg],.IL(m~r &)KL (m~r) )dr'.
0

(B3)

The space component is

—X (r) )I ggg[P ( )] ) [1 + ( 1)l'+ls+L]g
~Y () 4 „-2 '"'

E F~())

(F.G, ) ( J(l.', L„l,) & (j. j, r. l'+I GF I 2I Jil L, l) I

—
I 1 10 I ~L(m "&)KL(mr&)"r- ~) 0 (-» sj) 0-2 --. 0) (B4)

where a' = (q, n, l',j ) with l' = 2j —l, and

The contribution &om the isovector pseudoscalar vr meson with a peudovector coupling is as follows
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() ) 2 2 . j jb (& Gb+ F Fb)„( —Fb(r) )

I( Y-(r) I

= f.~. . —.." 8~ m2r2
E ~b(r) )

—m-) L '
&allYlllb') ) ( Gb(r) [r b + n(Lg)] )I

x ((x r, +br(Ib))G Gb —(x r,
— (rLb))bF I'b] IIb, , b, (m r, m r')«')

0

where the notations

fI. =I
L+l,f I., =L+l',

BI.,I„(mr, mr') = II„(mr)KI„(mr')0(r' —r)
+KI„(mr)II., (mr') 0(r —r')

are introduced. The Lq and L2 can only take two values
L+1 or L —1.

The vector part of the pe% coupling in our Ia-
grangian gives X(r) and Y(r) which are formally identi-
cal to those of the cu meson, expect for the isospin factor
8q q, replaced by 2 —bq q, and m, and g [p~ (r)] re-
placed by m~ and g~ . The tensor term gives rise to two
types of contributions. They are proportional to f2 and

kg~, and are denoted, respectively, by (X&+l, Y~+l) and
(X~ Tl, Y&VTl). Similarly, they can be split into timelike
and spacelike components. The time component of X~
and Y& ~ is written as

Yo (r) )
f fi, l 2-. 2 )-

2 ~
a'ib (& Fb+ F t"b).

I&
—Gb(r) ~

( Fb(r)[FcGb+ n(Lg)] )L Lg, Lg

X ](K b + rb(L2))G Fl, (x b rr(L2))I Gb] ~'Rb, b (mbr, rllbT )dr
0

(B6)

where Fc b
——K —Kg. The space component of X and. Y is

Y(T') r I

= 6
I 2M I mLIirb ) (2 ~qqs) I ~ (r) I ) fez(Lz)fix(L2)] —X& l(r) ~ ( f ) -. ( F(r) )—

[(aIIT&I; ll~&G &b &a'IITzi, .Ilt)'&F Fb]
al Tzz„b )

(B7)

where we have introduced

The time component of the VT contribution is

(Lg L 1) Li L 1''o Ool

'(r) & &g~fp') .- .~- 2 ~ ~-, i, L & i
I

(' Go r &a'll ~. ll )
IY( )( )

—
I&2M) ' ~, '"„(0 O) (Fb(r)&all~" II&& )

1

[&allY~II~&G-&b+ &a'IIY~II~'&F-Fbl. ~«, (r r')«'+
I G (r) &all Y, lll, &

Fb(")(a IIYL Il~ &
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rr ](bl]ILb. I

1~')G I'b+ (b'l]Tbb,
I
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The space component of the VT contribution is

(Fb(r)(a'IIT~L, lit')Gb(r)(~IIT~L llh) ) [(+IIT&L lib)G +& (a IITJI llh)+ +bj '~&I, (r r )dr'
0

[(a]I&~r„]]h)& &b —&a'IITJr„]Ib'&+ I b] '~LL (r, r')«'

where

Sl~, (r, r') = II„(m~r)KI, (m~r')0(m~(r' —r)) —Il, (m~r')Kl„(m~r)0(m~(r —r')).
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