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F-spin mixing and M1 properties of the low-lying states
in the neutron-proton interacting boson model
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The F-spin mixing and M1 properties of the low-lying bands in the neutron-proton interacting boson model

(IBM-2) are studied. Application of the intrinsic state formalism in the leading order in 1/N and of the

perturbative approach makes it possible to obtain analytical expressions in which a dependence on F-spin
breaking terms is clearly exhibited. A simple explanation of many features observed in numerical studies is
given. Comparison between the IBM-2 results and the treatment of M1 properties with the extended M1
operator in the IBM-1 approach is discussed.

PACS number(s): 21.10.Ky, 21.60.Ev, 21.60.Fw, 23.20.Js

I. INTRODUCTION

An explicit recognition of neutron and proton degrees of
freedom is deemed to be influential in an explanation of
magnetic properties of even-even nuclei within the context
of collective nuclear models [1].Pertaining to the interacting
boson model (IBM) [2], the neutron-proton IBM-2 version is
thus employed in describing M1 data. In the IBM-2, the
concept of F spin indicates a degree of neutron-proton sym-
metry. The low-lying states have a predominant component

with the maximal value of F spin, F,„=,'(N, +N )—, where

N, and N are the neutron and proton boson numbers, re-
spectively. For obtaining nonzero M1 transitions rates be-
tween these states, F-spin breaking should be invoked with
the M1 operator connecting components differing by the
F-spin label. Therefore, the M1 transition rates represent
important quantities to examine the F-spin mixing [3—6).
Recently, it has been argued that information on F-spin ad-
mixtures can also be extracted from analysis of magnetic
moments [7—9].

In most investigations, the F-spin mixing is studied nu-

merically by diagonalizing the IBM-2 Hamiltonian
[4—6,8, 10]. Such studies, being exact, might not always be
quite transparent and systematic. Analytical expressions can
be obtained utilizing the mean field (intrinsic state) formal-
ism [11].This has been applied to explore particular features
of the F-spin mixing and M1 matrix elements in several
studies [3,7,9,12). In some of them, the F-spin mixing is
treated nonperturbatively [7,12].Because of the smallness of
F-spin admixtures in the low-lying states, one can use the
perturbative approach as well [3,9]. None of the mentioned

analytical studies can, however, be viewed to be complete as
concerns the F-spin mixing and M1 properties within and
between the lowest-lying ground-state (g.s.), p, and y bands.

In this paper, we shall also use the mean field formalism.
The leading order terms in the 1/N expansion (N=N„+N
is the total boson number) are only considered and the
F-spin mixing is treated perturbatively. These simplifications
enable us to obtain expressions in which an explicit depen-
dence of the F-spin admixtures and M1 matrix elements on
model parameters may easily be inspected. All the M1 ma-
trix elements concerning the set of the g.s., p, and y bands
are discussed.

II. INTRINSIC STATES

We start from the F-spin symmetric (F=F,„), axially
symmetric ground-state band that is written in the intrinsic
frame as

~g.s.,F „,It=0+)=(N !N„!) "(I ) (I,) "~0)

where

1

1+P

with p= m and v for protons and neutrons, respectively, and

p denoting the deformation parameter. On this ground state,
one builds two Tamm-Dancoff excitations with K=0+.
These are combined to get the F-spin symmetric p band and
F-spin mixed-symmetry (F=F 1) K=0+ band—

ip, F,„,@=0+)=[N(I+p )) "[(p —d )I' +(p,—d„)1 „]ig.s. ,It=0+) (2)

~F I,K=0+)=[N(1+P )]— N,"(p.'.—dt, )r.— (Pst-dt, )r, ~g.s.,J~.
.=O ) .

V

(3)

Similarly, the F-spin symmetric y band and mixed-symmetry K=2 band are given by
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17 F - K=2+) =(N) '"[d'.21.+d'.21'.]Ig s. ,K=o'), (4)

iF „1,—K=2+)=(N) dt21'„ ig.s.,K= 0+)
V

(5)

From the K= 1+ Tamm-Dancoff excitations, the mixed-symmetry one only is physically relevant:

iF,„I,K—=1+)=(N)-'" dt„i, ig.s. ,K=0+)
V

(6)

The symmetric E= 1.
+ combination is spurious, corresponding to the rotation of the ground state. Note that the set of intrinsic

states (1)—(6) is orthonormal.
Intrinsic matrix elements are obtained by calculating the operator value between the angular momentum unprojected

intrinsic states (1)—(6). From the intrinsic elements, one gets the matrix elements in the laboratory system after the angular
momentum projection. In the lowest order, the Alaga rule then results [13].That rule, however, might not be applicable for the
M 1 operator as it gives a zero result for many matrix elements (for example, between states of two K=0+ bands or between
states of K=0+ and K=2 bands). We shall also need Hamiltonian elements between states of bands with different K. One
should therefore consider higher order terms coming from the angular momentum projection.

Generally, the reduced matrix element of a tensor operator of rank X in the laboratory frame is related to the intrinsic matrix
elements by the standard textbook expression [13]

(JlKlllO. II J2K2) =[~(J1.K1)~(J2 K2)] 2 J1J2X (J2K1 1 ~1 I J1K1) d cos ~dx. —~k. (~)

x (K, l
0 1,~exp( —i@J~)i K2), (7)

with the normalization factor III. F-SPIN MIXING MATRIX ELEMENTS

n(J, K) =—J d cos Adzes(6)(Klexp( —1@J )iK) . (8)

For the IBM intrinsic states, we shall evaluate these elements
using techniques discussed in Refs. [14,15].Namely, the fact
that the integrals in Eqs. (7) and (8) are of the type

The general IBM-2 Hamiltonian does not conserve F
spin. In the low-lying states, however, the symmteric
F=F „component prevails. The admixtures of the
F= F „—1 states into symmetric states can be estimated
perturbatively. We consider the IBM-2 Hamiltonian in the
frequently used form

H= e d" „d+e„d„d++Q Q, +M,

i 1+P'd,',(6) i "
1+d6g(tl)

JO

f m/2 i 1+P'd', ,(~)~'
d&(g(~)+ g(~ —~))

1 21+ )

with the quadrupole operator

Q =(sd+ds) +y(dd)

and with the Majorana force

(10)

is utilized. Here, N' is close to the total boson number N
assumed to be sufficiently large. The expression

[1+p doo(6)] is peaking at 6=0 and one approximates
k= 1,3

g (dtdt )(k) (d d )(k)

M=$2(dtst —dtst)( ) (s d, —s„d )~2)

( 1 + p2d2~( y) i 1v

1+p 1
=exp, ——

2
N''2

2 1+P

After expanding g(8)+g(7r —6) in powers of 8, the calcu-
lated matrix element is obtained as a series in the expansion
parameter IW [or more strictly (1+P )IP N]. We retain
only the first nonzero term from this expansion in the follow-
ing calculations. Note that such an approach may not be
correct for p~O.

(g.s. ,F „,JK=0+iHiF,„I,JK=0 )=—N~N

N
(1la)

After slightly laborious but straightforward calculations in
which rotations and angular momentum algebra in the F-spin
space can be of help, one gets the following matrix elements
of H between the F=F,„states (1), (2), and (4) and
F=F,„1states (3), (5), an—d (6):
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gN N,
(p,F,„,jrc= o+IHIF,„1—,jr&= 0+)= 'H«,

(11b)

(p F-"j&=0+IHIF .. 1—.J&=1+)

gN N„j(J+1) $1+p2

p'
gN N,

('Y Fmax j+=2+ IHIFmax 1 j+=2+) = Hy2

(g.s.,F,JIt = 0+ I H IF „1,JK—= 1+)

gN N„J(j+1)$1+P'
N3I2 3 p2 Hg l

(11c)

(11d)

(y,F,„,M =2'I
HI F,„1,j—lt = 1+)

gN N„g(j—1)(j+2) 1+P
N p2 pl

Here,

~AN
Hgp

——
1 2 Ae+PNAX+ 2 2 —2p +
1 + 1+ 14 (x +x.)P(P' 3)+4—x.p' (12a)

1
2

vAN
Hpp= 2 p Ae PNAX+ 2 1 +Sp p + ,4 (x.+x.)P(1 7P')+—4.x,p'(p' 1)- (12b)

1 ~AN
H~2 12 ———Ae+2PNAX+ 2 3p —1—

1+ 1+ (x-+x.)P(1+2P')+ 'x.x.P'- (12c)

vAN
Hgl=1 2 Ae+PNAX+

1 2 1 —3p +1+ 1+ (x-+x.)«p' 1)+ 'x x.P—'(3 p—')—(12d)

+AN
Hp, ——5m+ 2 2 1+2p —3p +.

1+ 14 (x +x.)P(P' 4P' 1)+4—„x„p'— (12e)

3
2

' 3»x+ &» (X.+x.) l'.x.x.P—1+ 14
(12f)

We have introduced the notation in Eqs. (12)

v

~x = Pl'4~(x —x.),
dN=N —N,

where g and g, are the proton and neutron boson gyromag-
netic factors, respectively, and L„and L are the angular
momentum operators:

Lp= ~10(dtdp)"), p= 7r, v.

One transcribes the T(M1) operator as a sum of the F-spin
scalar and vector operators

We will refer to the F-spin mixing induced by the terms
proportional to 5 e and Ag as 6 e and Ag breakings, respec-
tively. The terms proportional to AN are usually attributed as
due to A~ breaking because these reflect breaking of the
F-spin symmetry by departures from the F-spin conserving
interaction v(Q +Q„) (Q +Q„) (for X =X„).

T,(M1) = 3 1

2 (g.+g.)(L.+L.) ~

T„(M1)=
3 1

22 (g —g.)(L —L.) .

T(M1) = T,(M1) + T, (M 1) (14)

(14a)

(14b)

T(M1) = 3
(g L +g,L,)

IV. M1 MATRIX ELEMENTS

The M1 operator in the IBM-2 form is written as

(13)

Using this decomposition and the F-spin SU(2) Wigner-
Eckart theorem, one easily deduces that the reduced M1 ma-
trix element between two F-spin symmetric states is related
to the reduced matrix element of the total angular momentum
operator L=L +L, by
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&« ..IIT(M1)llbF .,)= 3 iN N„
g +

4m iN N "j

x&aF „IILllbF „) . (15)

N N,
N N

(16)

For the F-spin symmetric states in the angular momentum
diagonal representation, there are therefore no M1 transi-
tions and the gyromagnetic factors are constant:

Any departure of the gyromagnetic factor from the gFmax

value and/or the nonzero M1 transition develops within the
IBM-2 context by components with F(F „.Of course, in
the matrix element connecting the F=F,„and
F=F,„1—states, the F-spin vector part of the T(M 1) op-
erator only is effective.

Straightforward calculations give the matrix elements of
the T(M1) operator between the F=F,„states (1), (2), and

(4) and F=F,„1st—ates (3), (5), and (6). One gets in the
leading order

1 1
&g.s.,F „,JSC=O+IIT(M1) IIF,„-i,m =0') = G —JQJ(J+1)—, (17a)

1+P 1
&P.F - JR=0'IIT(M1)IIF ..—1.J&=0')=G z J4J(J+1) spy, (17b)

1

& y, F,„,J,IC= 2'll T(M1)IIF,„—i,J,IC= 2') = —G 2J,(J,210lJ,2)
N

(17c)

&g.s. ,F ...Ji&=0'IIT(M1)IIF ..—1,J2&=1+&=—Gv~, J2(J2» —llJiO),
1+P

(17d)

&P,F „,J&IF=0 IIT(M1)IIFma 1,J2E=1+)=0+G'0~ (17e)

1
& y,F,„,J,IC=2'll T(M1)IIF,„—1,J,I@=1+)= G QZJ, (J,1 1 1

I J,2)
N

(17f)

&g '.F-. JiI~=O IIT(M1)IIF ..—1.J2&=2+)= G—$1+P' . 1
J2(J211—1IJiO) ~(J2+2)(J2—1) —, (17g)

&P.F ...Ji&=0+IIT(M1)IIF ..—1.Jr&=2+&= —G
pl+P2 1

J2(J211—1IJ)0)4(J2+2)(J2—1) 3/2, (17h)

I'

&y,F,„,J,K=2+IIT(M1)IIF,„—1,J2K=O+) =0+ G 0 (17i)

where we have introduced

G=(g.—g )
N N

N

V. ORTHOGONALIZATION OF THE ANGULAR MOMENTUM PROJECTED INTRINSIC STATES

The intrinsic states (1)—(6) form a set of orthonormalized states. This may not, however, be true when the angular
momentum projected states are considered. Of course, in the leading order the overlap of different angular momentum
projected states is zero, but the higher order terms can give a contribution that must be accounted for in the present study.
Particularly, the following overlaps are relevant:

1 1
&g.s.,F,„,JR=0"IP,F,„,m= 0') =-

N
(18a)

(J+1) 1

3 N

$1+P
&F „—1,JR=0+IF,„1,Jar=1+) =—— (18b)
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1+P 1(F,„1—,JK= 2 IF,„1—,JK= 1+)= 2 g(J 2)(J—1)— (18c)

The matrix elements of H and T(M1) operators displayed in Secs. III and IV are not elements between an orthogonal set of
states. To keep a relation to the true physical states, one has to orthogonalize the angular momentum projected state. For
example, for the symmetric ground state band and P band states, we consider (again in the leading relevant order)

1 1
i g. s.,„h, F,„,JK= 0+)=ig.s.,F,„,JK=O+) —g p

— tP, F „,JK=O+)
N

(19a)

1 1
~P,„hF,„,JK=O+) = ~P,F,JK=O+) —

rIgp ~g.s. ,F,„,JK=O+)
N

(19b)

The condition of orthogonality gives

'4P+ 4P

and the actual values of the mixing parameters gg& and egg p are determined by the Hamiltonian H. Here, one can, however,
argue that the deformation parameter p is chosen so that the projected ground-state wave functions do not contain any mixed
components and we have (go=0 and egg&=1.

Similarly, we write the orthogonalized mixed-symmetry states as

pl+ P J(J+ 1) 1
~
orth, F,„—1,JK=0+ ) =

~
F,„1,JK=0—+ ) + go1 2

—
~
Fm,„—1,JK= 1 ) (20a)

1+P 1
~orth, F~,„—1,JK=2+) = ~F~„—1,JK=2+) —$2, 2 g(J+2)(J—1)—~F,„1,JK= 1+—) (20b)

pl + P2
~orth, F~,„—1,JK= 1+)= ~F~,„—1,JK= 1+)+ r1o1

(J+1) 1—
I F,„1,JK=0+)—

1+P 1—
rI21 3 2 g(J+2)(J—1)—IFma, —1,JK=2+), (20c)

with

Fo1+ Vo1= 1

621+ I21

Again, the values of mixing parameters ( and rg follow from the actual Hamiltonian.

VI. M1 MATRIX ELEMENTS BETWEEN LOW-LYING BANDS

As has already been discussed above, the M1 transitions between the predominantly F „symmetric states and the
departure

(21)

of g factors in these states from the F,„value should be accounted for by the presence of the mixed-symmetry F,„—1

components in the wave functions. We may formally introduce the operator

Tp(MI) = T,(M1) —PF T,(M1)PF —PF 1T, (M 1 )PF (22)

where P denotes the projection operator on the respective space. The matrix elements of the T„(M1) operator are then directly
related to the strengths of M1 transitions and to the Ag factors.

We estimate admixtures perturbatively. The amplitudes o;; in the wave function
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are given by

1
(F.„IHI(F..„—1),&,

where E denotes energies of the respective states. Then the matrix element of the T„(M1) operator between the states labeled
bya andb is

(~IITp(M»lb)=X ~,'(~F ..IT(M1) I(F ..—1);)+2 ~;((F ..—1);IT(M1)llbF ..) . (23)

In calculation of amplitudes of the F „—1 components in the predominantly F, state and the subsequent estimate of the
M1 matrix elements, the orthogonalized states (19) and (20) have to be, of course, used. By combining the expressions (11),
(12), (17), (19), and (20), the results are easily obtained:

1. 2 1
(g.s ,JIG= 0+I T. „(M1)llg. s. ,JR= 0+)= G1 —Jv J(J+ 1)—

g s. Eg p+
270]Hgp

~ac= i+
(Hg1 2lotHgo), (24a)

2 . 1 1 t' 1 i 1
(p, JR=0+I T„(M1) Ip, JIG=0 )=G1—2J/j(j+1) 2 (1+p —

2lpt) Hp() —H 11
—+

N Ep Eir 0+ —
I

g
l Ep Eg, +—

1
X —Hp1+ —Hg1+ zl01 Hpp

——
Hgp (24b)

1 1
(y J1&=2'IIT„(M1)ll y. j2&=2+) = —4G1J2(J221o1J12)

N H,2,
K=2+

(24c)

1 1
(g.s. ,JR= 0'll T„(M1)I P.j&=o') = G1 2jgj(j+» 3/2

1
2

1
X (1+p 2lpt)Hgp+ ( Hg1+ rlp1Hgp)Eg. —Ex=0+

1 1
P lol Pp ~ go

p go+ i I

1 1 ( 1
+ P Hpi ——Hg1 —

2lpt Hp()
—

pHgp)Ep —Ex=1+ P
(24d)

41+P'-
(g.s. , j1K=0+IIT~(M1)l y, j2K=2+) = G1 2 Jt v'J1(J1+ 1)(—) ' 2(J1111IJ22)

1

N3/2

1
(1 —2l01)Hg0+ ( —Hg1+ 'g01Hgp)

Eg s. EX=0+ g s. K=1+

1 1
+ pr12, H~2+ E E P(H~, —

rg21H~2)
E~—Em=2+ Ey —Em=i+

(24e)

1+
(p, j,g=O+IIT„(M1)lly, j2K=2+)=G1 2 J, /J1(j, +1)(—) 1 2(J, 111IJ22)

1 I'

X (1 —
r101) Hpo Hgo ~

Ep Ex=0+ I,
— P

1 ( 1
+ rl01Hpp —Hp1+ —Hg1 —

rlp1
—Hgo

Ep —Ez= &+ I

1

N

1 1
+ (1 —r)21)H~2+ ( —H11+ 2l21H12)

E~—Ez- 2+ Ey —Ex=i+
(24f)
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where we have defined

Gi=G
N N

N

VII. DISCUSSION

Both the F-spin conserving and F-spin mixing parts of
the IBM-2 Hamiltonian control the magnitude of the
T„(M1) matrix elements. The F-spin mixing part renders
matrix elements connecting the F „and F,„—1 spaces. On
the other hand, the F-spin conserving part manages energy
differences of the unperturbed states appearing in the mixing
amplitudes. The F-spin conserving part determines also the
mixing amplitudes yo& and rg2& arising from the nonorthogo-
nality of the angular momentum projected F „—1 states.

Particularly the dependence on the amplitudes yo& and

r/2i makes Eqs. (24) slightly complicated and not too trans-
parent. The expressions are simplified when the equality of
the energies of the F „—1 states is assumed,
Ez=o+ =Em=&+ =Em 2+ =EF &. Then the dependence

max

on go& and rg» disappears. In practice, this approximation
means that the energy differences between the %=0+, 1+,

and 2+ mixed-symmetry states are smaller as compared to
their difference from the g.s. , P, and/or y bands. Such a
situation occurs quite frequently. We will call this simplifi-
cation an approximation of equal F,„—1 energies and will
use it in the expressions below.

Another simplification employed in the following consists
in neglecting the Asc-breaking terms. These terms are pro-
portional to the strength ~ of the quadrupole-quadrupole in-
teraction, that is, usually up to a few tens keV, and to the
AN. On the other hand, microscopic estimates provide a
value of Ae of about hundreds keV and the value of Ay is
generally in the range of tens keV. The Ag term, however,
appears in combination with the total boson number N in the
mixing matrix elements. As a result, A~ breaking is usually
less important than Ae and Ag breakings. Actual calcula-
tions indeed confirm this conjecture [5,6].

A. g.s. band g factors

The g.s.~g.s. T„(M1) matrix element is proportional to
the element of the angular momentum operator. The Ag fac-
tor is therefore independent of the spin J in the ground-state
band. Neglecting A~ breaking, one gets

2N, N 1 1 1
g(g ) =(g.—g.) 2 z vai+ ( —vai) , ~( +p x)

g.s. K= 0+ g.s. IC = 1+ + (25)

Two mechanisms contribute to Ag(g. s.), namely, b, K=O
and 5K=1 mixings of the respective K=0+ and %=1+
mixed-symmetry states into the g.s. band. The mixing ampli-
tude for the DE=1 mixing is by factor of the order 1/N
smaller than that for the AK= 0 mixing. On the other hand,
the T„(M1) matrix element connecting the F= F „1and—
F=F „states is by factor of the order N larger for the
%=1+—+g.s. transition than that for the the K=O+~g. s.
transition.

As a result, the actual interplay of AK=O and 5K=1
mixings in b, g(g. s.) is controlled by the energy differences
in denominators and by the amplitude rgo&. With yo&= 1 and
b,y=O, the above expression agrees with that of Ref. [9].

In Refs. [8,9], the influence of 6 e breaking on the g fac-
tor g(2 i ) has been discussed in detail. Equation (25), how-
ever, suggests that also Ay breaking may have an effect
especially in cases of deformed nuclei with p~ 1 and with
large boson numbers N.

NN 1 ( —2)
~g(P) =(g. g) N3 ~

—
~ (1+P2)P2

max

X[(1+P2 P4)b. ~+P(1+2P—)NA~] . (26)

Here, for P=l, Ag breaking is more important than Ae
breaking. Generally, however, Ag(P) is suppressed by factor
of the order 1/N as compared to Ag(g. s.). We do not expect
it to be very pronounced except perhaps for small deforma-
tions P. The g factors of the P band should thus be close to
the gF value. Accurate knowledge of these factors would

max

be useful in determining gF . Unfortunately, these data are
max

experimentally very difficult to obtain.

C. y band g factors and y~y transitions

B. P band g factors

The p~ p T„(M1) matrix element is proportional to the
element of the angular momentum operator. The Ag factor is
again independent of the spin J in the P band and both the
6K=0 and 1 mixings contribute to Ag. In the approxima-
tion of equal F „—1 energies and with A~ breaking ne-
glected, one gets

The y~y T (Ml) matrix elements are the only ones
among these discussed in the present section that obey the
Alaga rule [p, = IC2 —K, in Eq. (7)].Only the AIL= 0 mixing
of the K=2+, F=F „—1 state into the y band contributes
in the leading order. From the Alaga rule, one gets the J
dependence in the Ag factor. With A~ breaking neglected,
we have
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N~ 1 8
~g(y. J)=(g.—g ) Nz ~ @ I+ps

y E-2+

1
x (6 e—2PNhy).

gF and Ag contributions to the total gyromagnetic ratio g.max

In this task also the intraband y—+yM1 matrix elements
might be useful as

( y, m =2+
~

Z (M 1 ) ~~ y, I+ I Z = 2+)

The Ag(y) is of the same order in N as Ag(g. s.). Note that
the sign by Ag is reversed in Ag(y) in comparison with

hg(g. s.). This explains the differences in behavior of the g.s.
band and y band magnetic moments with the F-spin admix-
tures given by b, y breaking as discussed in Ref. [7]. As
concerns, however, the F-spin admixtures given by AE
breaking, Ag(y) and b, g(g.s.) should have a similar depen-
dence on Ae. Again, this feature is observed in numerical
analysis [10].

The Ag(y) factor decreases sharply with increasing J. If
accurate data on y band magnetic moments would be avail-
able, the dependence on J could be helpful in separating

3

16
Jv'(J —1)(1+1)(1+3)~g(y,J) (28)

D. P-+g.s. transitions

The interband P~g.s. Ml matrix elements are by the
order of 1/+N weaker than the intraband y~y ones. Their
dependence on J is identical to the angular momentum op-
erator matrix element in the state with spin J. F-spin mixing
with b K=O and 1 both into the g.s. and P bands contributes
to the M1 matrix element. In the approximation of equal
F „—1 energies and with AK breaking neglected, we have

(g.s.,Jr=0'~ T(M I)~~P, Jr@=0+)=
3 N,N 1

(g.—g.) Nggz JIJ(J+ I) I+
1

X
Eg, —EF

1
(PA e+ P NAy) + (Pb, F NAg)—

EP—EF
(29)

Here, for P= 1, we expect the contribution from 5 e breaking
to be more important than that from Ay breaking.

E. y—+g.s. transitions

The interband y~g. s. M1 matrix elements are by the
order of I/+N weaker than the intraband y—+ y ones. This
finding agrees of course with the discussion of Ref. [3] and
qualitatively is confirmed by calculations [5]. Also the de-
pendence on the initial and final spins J2 and J& is identical
to that of Ref. [3] (except the phase factor that is erroneously
missing in Ref. [3]).There is, however, one noticeable dif-
ference in the present discussion. In Ref. [3], the spin depen-
dence follows from consideration of the 5K=1 mixing of
the K= 1+ band both into the g.s. and y bands. Not surpris-
ingly such a spin dependence is also provided by the
5K=1 mixing considered in the general rotational model
frame [16]. In the present treatment, we include also the
AK= 0 mixing of the K=0+, F=F,„—1 state into the g.s.
band and of the K=2+, F=F „—1 state into the y band.
The AK= 0 mixing gives a contribution of the same order as
the AK= 1 one. The spin dependence is the same both in the
6K=0 and 1 cases. It is thus difficult to disentangle the two
mixing mechanisms experimentally.

The different spin dependence is obtained with the
AK= 2 mixing of the K=2+, F=F „—1 state into the g.s.
band and of the K=0+, F=F „—1 state into the y band.
Again, an agreement with the general rotational formula of
Ref. [16]is obtained. The contribution from the b K=2 mix-
ing to the y~g. s. M1 matrix elements is, however, by order
of 1/N smaller than contributions from the 6K=0 and 1

mixings and we generally do not expect it to be very impor-
tant. Experimental data indeed disfavor the 5K=2 mixing
[17,18].

There might be, however, cases in which the inhuence of
the 5K=2 mixing is magnified. This occurs when the re-
spective mixed bands lie close to each other and the small
energy difference gives preference to the mixing mechanism
that is otherwise suppressed in the 1/N expansion. Such a
situation is present in calculations of Ref. [9] for ' Sm in
which the mixed-symmetry K=0+ band very close to the

y band is advocated. Then the 2+~2+, M1 transition is
influenced mainly by the 5K= 2 mixing whereas the
3+~2,M1 transition goes through the 5K=0 and 1 mix-
ings (there is no 3,IV=0+ state to mix into the y band).
The b, K= 0 and 1 mixing formula (24e) gives the ratio of the
reduced M1 matrix element of the 2+~2+, transition to
that of the 3+—+2+, transition equal to 1/ 2 (phases here
and in the following discussion are fixed by positive signs of
the respective F2 matrix elements). On the other hand, cal-
culations for ' Sm with three sets of parameters denoted as
a, b, and c in Ref. [9] give the respective reduced Ml
matrix elements (in p,z) 0.0575, 0.0272, and 0.0252 for the
2 —+2+, transition and —0.0004, 0.0012, and 0.0019 for
the 3+—+2+, transition. The y~g. s. matrix elements thus
represent sensitive quantities to decide whether the conjec-
ture of Davis and Navratil about the low-lying mixed-
symmetry K=0+ band is appropriate. There are no respec-
tive data available for ' Sm.

In the approximation of equal F „—1 energies and with
5K breaking neglected, contributions due to the mixing of
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x(J,»IIJ,2)
6 1

NAg . (30)

F=F m»
—1 states into the g.s. band subtract in Eq. (24e)

and only mixing into the y band appears in the simplified
expression

(g.s.,J,Z = 0+ IIT(M I) II y,J,Z = 2+)

3 N~ J IJ(J+I)(—)""

Here, the y~g. s. M l matrix elements are not influenced by
6 e breaking as really confirmed in actual calculations

I 10].

F. y~p transitions

For completeness, we present also the simplified expres-
sion for the y~p M 1 matrix elements. Such quantities are
experimentally extremely difficult to obtain. In the approxi-
mation of equal F,„—1 energies and with A~ breaking ne-
glected, we have

(p Ji&=0'IIT(MI)lly Jz&=2')= 3 N
(gP gag) N3 Ji JJi(Ji+ 1 )( —) ' '(J, 1 1 11J22)

1
+ (b e+PNhy).

max & max

(31)

G. E2IM1 mixing ratios

Directly experimentally measurable quantities involving the M 1 matrix elements are the 8(E2//M 1) mixing ratios

8'(E2/M 1)=0.00835E„,„,A (E2/M 1)

where the transition energy E„,„, is given in units of MeV and the reduced mixing ratio 6,

(Jill T(E2) II J2&

(J IIT(M I)Il») '

is calculated with E2 and M 1 matrix elements in units of e fm and p,N, respectively. The T(E2) operator in the IBA-2 is

T(E2)= .a.+ .a. ,

where the quadrupole operators Q are given by Eq. (10).Here, the g„and y„values could in principle differ from values used
in the Hamiltonian (9). Introducing the F=F,„projected values

N N,F. Ne+N

N,
gF =', e g + e

lV jV )

one gets the reduced E2 matrix elements in the leading order in 1/N as I 19]

Fm~

2PN
&v.Ji&=2+IIT(E2)llv J2&=2'&= J2(J»20IJi2) I z eF .„ $ 4 max~

(32a)

+N
(g s Jl&= o+IIT(E2) lip. JzK= 0+)= J2(J20201Ji0) 2 cia p —1 + p

1 +P maxi max j
(32b)

(g.s, JiIC=O+IIT(E2)lly, J2E=2 ) = J2(J222 21Jio)

&p, Ji&=0+IIT(E2)II@,J2I~ 2 ) J2(J222 2IJiO)

2N

1 +P2 max~

2 (
2eF

1 + P2 max(

mm)

Fmax)

(32c)

(32d)

With explicit formulas for the Clebsch-Gordan coefficients, the spin dependence of the reduced mixing ratios 6 for transitions
within the set of the g.s, p, and y bands is simply factorized as
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(33)

f(J2,JI) = Q~ov(Jz+ Ji+3)(J,—J2+2)(J2 —Ji+2)(J2+J,—1). (33a)

The expressions for quantities B are easily obtained by combination of the previous results. We give them in the simplified
case of the approximation of equal F „—1 energies and with 6 ~ breaking neglected:

1 (b, e 2PN—EX)
B(V~V) = —Gz~ &=2' 3P(1 —PU —,',XF )

(34a)

1 1
B(p~g s )= G. 2. 2P I + P 87X—Fmax

1
(Phe+ P Nhx)+ (PA e Nb, x)—,

max

(34b)

1 NAy
B(7~g s ) = G2 ~ - — I+Pvlx.

max

(34c)

( 1 1 ~ Ae+ PNbx
B( Y P)= —G2 + ...— i 3P'(P 87XF )—

max

(34d)

with the notation

G2=
30 (g,—g ) N~
4m eF N

The reduced mixing ratios 5 for the above discussed transitions are all of the same order in the parameter N. The spin
dependence of 5 is determined essentially by the geometry of the rotational collectivity in the IBM and it is the same as in
other model approaches based on the rotational picture [20]. Of course, predictions for the values of B may be specific for the
particular model.

VIII. M1 PROPERTIES IN THE IBM-1

The inclusion of the neutron and proton degrees of freedom is essential for explanation of M1 properties in the interacting
boson model. Still, there is a potentiality to describe the M1 properties of the low-lying states with the predominant
F= F „component by considering only the F,„(IBM-1) space with an effective M 1 operator [20,21]. Such an operator up
to two-body terms is written most generally as [22]

IBM —1(M l ) gF L+ T„(M1) (35)

T IBM- I
(M I )

3
/IAL+[(BI(std+dies)~ +B2(dtd) l)L] ' +CdtdL'/. (35a)

One now attempts at specifying the parameters A, B&, B2, and C so that the T„' operator simulates as much as possible
the action of the T„operator (23) in the proton-neutron version of the IBM.

For the transitions within the set of g.s. , P, and y bands, the T„' operator provides the geometrical dependence on the
initial and final spins J, and J2 identical to that obtained above for the IBM-2 T„operator [20]. One again obtains the reduced
mixing ratios as Eq. (33) with the quantities B equal in the 1/N leading order to
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IBM I (y~y) (36a)

operator. However, we should perhaps note that accurate ex-
perimental data on magnetic moments of excited band states
are rather sparse.

pIBM-1(p )

4~eF
max

(P —1)BI + P +B2 P~I—OC

O' I+p—v 7xF
(36b)

'(r g s )=. .
3 1 BI + P +7B2

(36c)
4meF 1+PP

max

BIBM I
( y~ p) 4' eF p —p max

(36d)

When we do not consider y—+p transitions, the parameters
B&, 82, and C can be found so that the effective IBM-1 B
quantities agree with the IBM-2 ones. On the level of the
leading order mean field approximation, one can thus con-
struct an effective M1 IBM-1 operator that gives the y—+y,
p~g. s. , and y~g. s. transitions identical to the proton-
neutron IBM-2 results.

For the factors Ag in the gyromagnetic ratios, the opera-
tor Tp

' gives in the leading order

Ag(g. s.)

=A+ pX 1'

1+P' ~' P 14"'P C, (37a)

b, g(p) = Ag(g. s.), (37b)

~g(r. J)

px r'

1+p2, I p 14

(37c)

Even if we take parameters of the operator T„'
' as free

ones and do not fix them by transition rates, the expressions
for the Ag factors in the IBM-1 do not match generally those
given in Eqs. (25), (26), and (27) for the IBM-2 formalism.
In the g.s. and p bands, the IBM-1 gives equal and spin
independent g factors. On the other hand, it was argued
above that the IBM-2 Ag factor should be smaller in the
absolute value in the p band than in the g.s. band. Also the
spin dependence given in the IBM-2 for the Ag in the y
band is not obtained within the IBM-1 context unless

Ag(g. s.) is zero. The IBM-1 formalism with an effective
two-body Ml operator of Eq. (35) is not thus able to simu-
late diversity in the g factors that might be present in the
neutron-proton version of the model. To achieve this, one
should then include three-body terms into the effective M 1

IX. CONCLUSIONS

We have studied the F-spin mixing and M1 properties of
the low-lying states in the IBM-2. Application of the intrinsic
state formalism in the leading order in 1/N and of the per-
turbative approach makes it possible to obtain analytical ex-
pressions in which a dependence on the various F-spin
breaking terms is clearly exhibited. We can thus give a
simple explanation of many features observed in numerical
studies.

Of course, the present formulas are only approximate
ones and might not always perfectly agree with exact nu-
merical solutions. An example has been discussed in which
numerical results are driven by the higher order terms in the
1/N expansion because of proximity of the particular sym-
metric and mixed-symmetry states. The intrinsic state for-
malism also loses its applicability in the vibrational regime.
Nevertheless, the analytical expressions can be useful to give
a first guess for a detailed numerical analysis.

The intrinsic state formalism also enables a simple com-
parison between the original IBM-2 results and the treatment
of M1 properties with the extended M1 operator in the
IBM-1 approach. We have found that the IBM-1 procedure
could explain the M1 transition rates but, on the other hand,
it might get into trouble as concerns magnetic moments.

The F-spin conserving part of the IBM-2 Hamiltonian (9)
can be fixed by properties as the energy levels (including
energies of mixed-symmetry states) and F2 values that are
not influenced much by the F-spin mixing. We are then left
with four parameters to characterize M1 matrix elements,
namely, the mixing parameters Ae and Ay and boson gyro-
magnetic factors g, and g . On the other hand, the above
discussion shows that the M1 elements between the low-
lying predominantly symmetric states depend essentially on
three combinations of these parameters: g Fmax

(g,—g )Ae, and (g„—g„)AX. We cannot thus find the four
parameters unambiguously when inspecting the M1 proper-
ties of the low-lying states only. Even an analysis of a chain
of neighboring nuclei under assumption that the boson gyro-
magnetic factor g~ does not vary in nuclei with the same
boson number N~ should be done carefully. To make a full
specification, one has to use additional information such as
the total M1 strength.

Finally, we should perhaps note that degrees of freedom
outside the IBM-2 space may influence M1 properties in
collective even-even nuclei and thus complicate practical
analyses of F-spin mixing.
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