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Band-crossing phenomena in the high-spin region of deformed nuclei are studied in this paper. The power of
modern computers for large-matrix diagonalization (up to 17 527X 17 527) is exploited in a multinucleon-plus-

rotor model. The interesting test case of ' Gd is treated in this paper. Though a small basis set of 9—18 Nilsson

orbitals is used, the strict angular momentum and particle number conservation guarantees superior orthogonal

microscopic wave functions for nucleon transfer calculations. This method takes account of pairing correla-
tions among the valence particles and shows the effects of quadrupole pairing and the usually neglected

j j recoil terms.

PACS number(s): 21.10.Re, 21.60.eV, 27.70.+q

I. INTRODUCTION

The "backbending" phenomenon for yrast lowest bands
of spheroidal even-even nuclei has drawn much attention
since its discovery [1]. It was first thought to signal the
rotation-induced pairing collapse ("the nuclear Meissner ef-
fect") predicted by Mottelson and Valatin [2].Later, the gen-
eral explanation shifted to a spin alignment of some high-j
neutron orbitals, an explanation which was proposed and
modeled first by Stephens and Simon [3]. In this picture
there is a crossing of the ground band with a spin-aligned
band at some spin, which happens around (12—18)fi in the
rare-earth region. Bengtsson, Hamamoto, and Mottelson [4]
showed, after correcting a phase factor in Ref. [3], that the
mixing matrix element between these two bands varies sinu-

soidally as the chemical potential moves through the i/3/2
neutron subshell. The mixing strength Vz moves through zero
when the chemical potential is slightly above one of the
E i 3/2 Nilsson levels other than the first or last. When the
chemical potential of a real nucleus is near a zero of the
mixing matrix element, the band crossing is sharp. When the
chemical potential is midway between zeros, the band cross-
ing is soft.

Many refined models, too numerous to mention in this
Introduction, have been applied over the intervening years.
Many of these models are based on variational wave func-
tions and quasiparticle formalisms in which either angular
momentum or particle number or both Auctuate. These varia-
tional methods have difficulties with excited states.

Thus, it seemed important to expand on a more conven-
tional deformed shell model strictly conserving particle num-
ber and angular momentum. Furthermore, this approach
could be more reliable for the excited band structure of de-
formed nuclei. Shell-model calculations for several valence
particles coupled to a rotor were carried out in the past only
allowing particles in one intruder shell [5].Engeland [6] has
used Hamiltonian matrix diagonalization to calculate such

solutions for deformed nuclei. His diagonalization used a
two-step procedure: First diagonalize within each E sub-
space, and then mix the K solutions with the Coriolis force.
Our Hamiltonian matrix diagonalization (HMD) method
solves the matrix in a single step. This has the advantage that
it is easy to calculate the matrix elements, and the resultant
matrix is sparse and can be efficiently diagonalized by the
LANCZOS algorithm for the lowest few eigenstates. In earlier
model studies, some of the authors of this paper calculated
seniority-0 even-even 0 states by exact matrix diagonaliza-
tion of a pairing-force Hamiltonian with a half-filled, uni-
form level spacing in a six-Nilsson-orbital system [7].Later
we treated a set of nine orbitals about the chemical potential
[8]. In the present work we extend the method to include
nonzero even-spin values. We showed a first application of
these methods to even-even thorium isotopes [9], though
without quadrupole pairing. The material of this present pa-
per is mostly from the thesis of one of us [10].In Sec. II, the
Hamiltonian is discussed. In Sec. III, the choice of basis
states is discussed. In Sec. IV, energy level results and other
properties of separate neutron and proton systems are shown
and discussed. In Sec. V, the results for the very large matri-
ces of combined proton and neutron systems are shown and
discussed. In Sec. VI is a general discussion and conclusions.
Appendix A contains details on input parameters and Appen-
dix 8 has results of calculations at larger quadrupole defor-
mation than those in the main text.

II. HAMILTONIAN

The Hamiltonian can be written

HSP+ Hgm+ Hgq+ Hrot

where
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Hsp =~ e, a a„ (2)

=G g at a",— a„- a„,
Vy, V2~0 1 ] 2 2 (3)

(4)

The definition of H in Eq. (1) corresponds to Eq. (4.135) of
Ring and Schuck [11]except for the radial integral, which is
taken here as unity. The quadrupole pair creation operator
P2 is defined as follows:

1
P,",=2 2 (, I Y,„ I

—,) "., ".,V), V2

(5)

In Eqs. (2)—(5), at and a,— are, respectively, creation opera-
tors for the single-particle state v and its time-reversal con-
jugate p. In the quadrupole-pairing term, the diagonal self-
energy contribution S, where

S=g I(v I Y,o I
v)I'a', a',-a;a„, (6)

is subtracted, since it would introduce unphysical energy
shifts in selected single-particle orbitals. The rotational term

H„, will be discussed later in the section.
The single-particle Hamiltonian is that of Cwiok et al.

[13] for the deformed Woods-Saxon potential, including
quadrupole and hexadecapole deformations. For details, see
Appendix A.

Both monopole and quadrupole pairing are included in the
calculation. Our combined pairing strength (G and G ) is
adjusted so the gap at low spin to noncollective excited
bands is about twice the experimental odd-even mass differ-
ence, as determined by a spline fit to the masses of the ga-
dolinium isotopes with %=89—94. Relative matrix elements
of quadrupole pairing were estimated from the slopes of or-
bitals in the deformed Woods-Saxon energy plots (Figs 6.
and 7, below).

It is, at first, not obvious how to adjust the strength of the
quadrupole pairing relative to that of the monopole. A ratio
of unity in our units (0.25 in units of Ref. [14]) would cor-
respond to a surface delta force, quite similar to the density-
dependent delta interaction, successfully used in deformed
nuclei by Chasman [12].Hara and Sun [14]used a somewhat
weaker ratio Gq/G of 70% of the surface delta interaction

R=I—g(v, Ig Iv, )a', a„.
V] V2

(7)

If the body-fixed coordinates are labeled by x', y', and z',
where z' is the cylindrical symmetry axis, then the rotational
Hamiltonian can be expressed as follows:

values. There are three components of quadrupole pairing:
Y2O, Y2&, and Y2z. Hamamoto [15]has pointed out the pos-
sible importance of the Y2& component in microscopic calcu-
lations of the moment of inertia. The Y2o component plays a
special role in a region of the Nilsson diagram where the
orbitals fall into two families, downgoing (prolate driving)
and upgoing (oblate driving) (see Appendix A). The quadru-
pole interaction strengthens pairing between orbitals with
similar slopes but weakens it between orbitals with strongly
differing slopes, much as a short-range or delta function
would weaken the interaction between orbitals with little
overlap. The 90-neutron isotones are just over the borderline
for stabilized deformed ground states, with %~88 generally
having on average spherical ground states. This fairly sharp
demarcation is in part a consequence of there being, in addi-
tion to several downgoing orbitals, strongly upgoing (oblate)
h»&2 orbitals very near the Fermi surface. The even-Z 90-
neutron isotones generally have unusually low excited 0
bands (- 600—800 keV). We find that the energy of these
excited 0 bands is quite sensitive to the Gq/G ratio in the
calculation. Thus, we renormalize the Y2o part of the quad-
rupole pairing to a high ratio (- 2.5) to fit the 0+ '

energy (a
larger configuration space with more orbitals would not re-
quire such a large renormalization of the Y2O quadrupole
pairing). The Y2& and Y22 components of quadrupole pairing
are left at their delta-force strength. This means in particular
that the residual interaction used in this investigation is no
longer rotationally invariant. Since our forces are effective
forces in the intrinsic scheme, where rotational symmetry is
broken anyhow, this fact does not hurt the final rotational
invariance of our total wave function, which is guaranteed by
the coupling to the rotor.

The rotational energy part of the Hamiltonian is treated
with more care than usual. Bohr [16], in 1951, gave the
expression for the rotational energy associated with a single
nucleon strongly coupled to a spheroidal core, and this ex-
pression is usually used for the diagonal rotational energy in
odd-A nuclei before Coriolis mixing of states. If one derives
the expression for core rotational energy with more than one
nucleon, new terms of the form j j appear. Let the rotor
angular momentum be R, then,

H„,—=a„, (R, , +R, ) (8)

=a„, (I —I, , ) —g [I+(j )„,+I (j+), „] a„a, +a„„H~J,

where (j ) „,„, and H,, are

I vt)
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TABLE I. Input parameters for various calculations.

9 proton levels 9 neutron levels 12 neutron levels 12 neutron levels 9 proton and 9 neutron levels

a„,(0) (MeV/6 )
a,'„(fi )

G (MeV)

Gq

Gq for F20
Particle number

0.23

0.017
0.002

P
0.355
0.355
0.888

10

0.23

0.019
0.002

N
0.29
0.29
0.73

8

0.23

0.019
0.002

N
0.24
0.24
0.60
10

0.28

0.019
near constant

N
0.24
0.24
0.72
12

P
0.37
0.37
0.92
10

0,23

0.024
0.002

N
0.33
0.33
0.83

8

P3~ P4

These terms are known as "recoil" terms and usually are
neglected, with the rationalization that the Nilsson model
parameters have been adjusted to give the correct one-
quasiparticle energy spectrum without them, and their inclu-
sion would require some awkward readjustment in the shell-
model potential. However, our reexamination showed that
the recoil term makes a large off-diagonal contribution, rein-
forcing pairing matrix elements between high-j orbitals of
projection 0 differing by 1. Furthermore, the separation be-
tween seniority-0 and seniority-2 states can be significantly
affected. Thus, we chose to include diagonal and off-

diagonal contributions of the j.j recoil terms for the i/3/p

neutron orbitals and h»&2 proton orbitals and neglect it for
the low-j orbitals. To include recoil terms for the low-j or-

bitals would add considerably to the computational time and

was judged to be less important especially since our calcula-
tion excludes configurations with broken pairs in all but the

highest-j orbital. In discussing the rotational Hamiltonian,
the time-reversal basis for the single-particle orbital is not
used but the phase conventions are kept consistent in our
calculation.

TABLE II. Comparison of theoretical eigenvalues to the experimental energy levels.

9 neutron levels (keV) 12 neutron levels (keV) 12 neutron levels (keV) 9 neutron and 9 proton levels (keV) Expt. (keV)
0.23 0.23 0.28 0.23

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Yrast

0
104
340
698
1156
1694
2289
2917
3557
4017
4481
4998
5563
6176
6838
7552

Yrare

714
818

1056
1414
1870
2394
2901
3263
3613
4195
4806
5394
5993
6624
7298
8020

Yrast

0
104
341
700
1163
1709
2316
2960
3616
4049
4492
4989
5533
6124
6763
7452

Yrare

756
859

1095
1452
1910
2441
2972
3331
3663
4254
4850
5420
6003
6617
7273
7976

Yrast

0
101
332
682
1137
1674
2261
2828
3306
3791
4338
4955
5641
6397
7225
8128

Yrare

1119
1212
1422
1734
2112
2462
2751
3135
3696
4325
4972
5642
6351
7109
7925
8804

Yrast

0
112
365
745
1231
1797
2421
3080
3758
4275
4807
5405
6065
6784
7563
8405

Yrare

687
801

1058
1444
1934
2490
3026
3424
3817
4441
5113
5783
6478
7216
8007
8858

Yrast Yrare

0 681
123 816
371 1048
718 1366
1145 1756
1637 2194
2184 2622
2778 3028
3405 3491
4016 4087
4647 4782
5350 5520
6122 6294
6955 7056
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It should be mentioned that in the combined proton and
neutron calculation the proton and neutron motions are
coupled through the "recoil" term. The coupling term comes
from the fact that both the protons and the neutrons contrib-
ute to the total angular momentum. From Eq. (11), this can
be written as follows:

[0+)...,U-) ...,vi, v3 or p
V2, V4 for n

(12)

tional energy constant a„,at higher spins. Models with vari-
able moments of inertia may give a more realistic descrip-
tion. Especially in the cases where neutron (or proton)
systems were treated microscopically with the other type of
nucleon system within the core rotor it was felt that a vari-
able moment of inertia (VMI) was appropriate. An empirical
expression is used where a„, starts at a low-spin value that
its the lowest rotational band spacing in ' "Gd and saturates
at half this value, which corresponds roughly to a rigid-body
moment of inertia. This can be expressed as

a„,(I)= a„,(0)(1 + exp[
—a'„,I(I+ 1)])/2, (13)

For realistic calculations of the neutron (proton) system
alone, it is clearly not correct to use a fixed moment of iner-
tia for the core, since broken pairs are allowed only in the

t, 3&2 neutrons (h»&2 protons). In particular, there will be
higher-order alignment of the it3/2 neutrons (h», z protons) at
the higher spins, leading to an effective decrease in the rota-

where the values of parameters a„,(0) and a,'„are adjusted
for an overall fit to the backbending curve. The actual values
of the parameters are given in Table I. Our later calculations
(see Appendix B) of the neutron-only system used a nearly
constant core moment of inertia, yielding a better fit to lim-
iting high-spin values of the yrast kinetic moment of inertia
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FIG. 1. Results for 12-neutron
level calculation for ' Gd with
single-particle levels at the experi-
mental ground P2=0.23. (a) Low-
est eight eigenvalues as a function
of spin. (b) Plot of moment of in-

ertia vs angular velocity from the
yrast band. The dots are experi-
mental values, and the solid curve
is from the theoretical calculation.
(c) The monopole pairing (without
the diagonal contribution) expec-
tation values for the lowest three
bands. The symbols represent X,
yrast; +, yrare; ~, the second ex-
cited band. (d) Same as in (c) but
for quadrupole pairing. (e) The
spin alignment of the lowest three
bands as a function of spin. The
symbol are the same as in (c). (f)
The monopole pairing matrix be-
tween two eigenstates as a func-
tion of spin. The symbols repre-
sent X, yrast to yrare; +, yrast to
the second excited state; ~, the
yrare to the second excited state.
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than did the variable expression (13). In retrospect the VMI
feature of Eq. (13) might have been left out.

III. BASIS STATES AND SINGLE-PARTICLE ENERGIES

For exact matrix diagonalization (without the more com-
mon use of BCS variational approach) there is a combinato-
rial explosion in the dimensions as additional Nilsson orbit-
als are included in the basis. The dimensionality is easy to
calculate for the constricted calculation of seniority-0 0+
states and is just the binomial coefficient ( ), where N is the
number of Nilsson orbitals and p is the number of nucleon
pairs in the system. For the 9 orbitals and 4 or 5 pairs treated
in Ref. [8] the matrix has the dimensions 126X 126. For 40
orbitals and 20 pairs, comparable to the two-oscillator shells
used in many BCS and Hartree-Fock-Bogolyubov (HFB)
calculations, the dimensionality is close to Avogadro s
number.

If broken pairs are included to treat nonzero spin, the
dimensionality again climbs rapidly beyond practical limits

even for supercomputers. Thus, just those broken pairs most
important for moderate-spin rotational properties, including
the aligned band and the backbending phenomena, are in-
cluded.

Clearly, broken pairs in some i13/2 neutron orbitals near
the Fermi surface must be allowed in order to reproduce the
aligned band. Indeed, with the two nearest orbitals one can
reproduce the aligned band but not the total cancellation of
mixing with ground at the diabolic point. For the latter, a
minimum of the three nearest i13/2 orbitals is required. Bro-
ken pairs in odd-parity neutron orbits which are of lower j
are not allowed. Thus, their contribution to the moment of
inertia enters only through the core moment of inertia. Most
configurations with body-axis projection of angular momen-
tum K= 0, 1, and 2 are included. This paper presents results
for the even-spin states of ' Gd, but similarities to the even-
even 90-neutron isotones are evident. The four i13/2 orbitals
included are the 0 = 1/2, 3/2, 5/2, and 7/2 projections. To
limit the number of basis states, those with K)2 are ex-
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eluded, since they will be coupled to the low-lying states
only through higher-order Coriolis interactions and occur
with higher single-particle energies.

With the above limitations, the dimensionality of the
Hamiltonian matrix is 266X 266 for 8 neutrons in 9 Nilsson
orbitals, 3 of which are i]3/Q The dimensionality of the sys-
tem with 12 neutrons in 12 Nilsson orbitals is 2646X 2646.
The matrix must be diagonalized for each spin value, which
is done for even spins from 0 to 30A, . Results for the
9-orbital neutron system and then for a 12-orbital neutron
system at quadrupole deformations of 0.23 and 0.28 (with
four i, 3&2 orbitals and renormalized pairing strength) are pre-
sented in Table II in order to test convergence in these small
basis calculations. Also, results for a combined 9-neutron
and 9-proton orbital system are shown in Table II. In the
latter case one has to diagonalize a 17 527X 17 527 matrix.
For this purpose, a modified version of a code obtained from
H. Wildenthal, based on the LANCXOS algorithm was used.

IV. RESULTS FOR THE NEUTRON-ONLY AND
PROTON-ONLY CALCULATIONS

It early became clear that the sharp experimental band
crossing could not be reproduced with the energy levels from
the deformed Woods-Saxon code at the theoretical equilib-
rium deformation values (p2=0.23, p4=0.046) of Nazare-
wicz [17j. The chemical potential for N=90 lies midway
between the lowest two i/3/2 orbitals, giving a soft crossing.
The most reasonable way to shift the chemical potential to
near the it3/2 (0=3/2) orbital energy was to shift upward
the energy of orbitals from the major shell below, namely,
the h»&2 neutron orbitals (0=9/2 and 11/2). There is some
experimental justification for this because of the low-lying
11/2 levels observed in adjacent odd-N nuclei.

We realized later that if we had used the somewhat larger

p2 deformation of 0.28 the arbitrary shift of h», 2 neutron
levels might not be necessary. Appendix 8 shows recalcula-
tions with single-particle energies at pz =0.28. This might at
first seem unreasonable in view of the Nazarewicz [17]theo-
retical calculations giving a p2=0.23 close to the experi-
mental p2. The private communication from Nazarewicz
gave indication of no beta stretching as the spin increased.
Recently, at our request, Egido [18jhas run his sophisticated
Gogny-force nuclear structure code for ' Gd with the result
of p2 near 0.28, with no beta stretching. This result is in
disagreement with the lowest 2+ —+0+(ground) F2 strength.
We have heard indirectly that there exists a theoretical shape
calculation showing beta stretching from 0.23 near ground to
0.28 near first yrast band crossing. However, our literature
search has failed to find such a study. It seems that all three
deformation theory results are plausible, given the great sen-
sitivity to input parameters at N=90, where there is a con-
Auence of strongly deformation-dnving orbitals of opposite
type. A plot of experimental B(E2) values vs spin, as given
by Wollersheim and Elze [19] (their Fig. 2), shows clearly
the departure of B(E2) values from the fixed-deformation
rotor for ' Gd. We calculated the next three higher-spin
points using lifetime data from the most recent Nuclear Data
sheets. These points nicely follow the solid line and its ex-
tension, confirming beta stretching from spin 4 to 10.

We considered, but rejected, the idea of using a spin-

dependent deformation, with a different single-particle level
set for each spin. Even if the yrast deformation values were
known experimentally or theoretically, the yrast deformation
would not be the proper deformation for any excited states of
a given spin, where relative populations of prolate-driving
and oblate-driving orbitals changed. Furthermore, a deforma-
tion changing with spin would give nonorthogonalities of
basis that would give serious problems in using the wave
vectors for pair-transfer and electromagnetic transition prob-
abilities in subsequent works. It is clearly appropriate to
carry out the calculations for all spins using a set of single-
particle energies calculated at a fixed deformation of the
Woods-Saxon potential well. (One can expand in any basis,
even spherical, but the expansion converges more rapidly in
a deformed basis at the experimental deformation. ) We will
say more on this in Sec. VI and in Appendix B.

The lowest eight bands (neutron excitations) calculated
for the ' Gd 12-neutron orbital system for strong F2o quad-
rupole pairing (6 /G =2.5) and shift of +1.55 MeV for
the h»&z neutron energy levels are shown in Fig. 1(a). The
sharp yrast crossing at spin (16—18)A, closely matches ex-
periment, though the sharpness is very sensitive to the
chemical potential in this model and the sharpness is tuned

by shifting the h»/2 orbitals up 1.55 MeV.
As a surprising bonus, the crossing of second and third

bands around spin 12A, , experimentally observed in ' Gd, is
reproduced. The traditional backbending plot is shown in
Fig. 1(b), comparing theory with experiment. The expecta-
tion values of the monopole and quadrupole pairing terms for
the lowest three bands are shown in Figs. 1(c) and 1(d),
respectively. The monopole pairing expectation value,
equivalent to the BCS (X;u;U;), is about 13.4 in the ground
state, and it steadily decreases with spin, as expected due to
the Coriolis antipairing (CAP) effect. We need to make clear
that the (P~P) expectation values plotted in Figs. 1(c), l(d),
and 1(f) exclude diagonal terms a,+ a-,+ a-„a„, so as to vanish
when there is no pairing correlation. This makes our plotted
(PtP) equivalent to 5 in BCS, but our values are no longer
positive definite and are not directly comparable to the pair-
transfer sum rules. The diagonal monopole terms of Eq. (3)
are included in the Hamiltonian, though. The two excited
bands have significantly lower monopole pairing correla-
tions. The smooth trends apply to the extension of the bands
beyond the sharp band crossing near spin 186. In Fig. 1(d),
the first excited band has the greatest quadrupole pairing ex-
pectation value at the bandhead, switching at the soft band
crossing at spin 126.

It was at first surprising that the Coriolis antipairing
(CAP) effect is comparable to that in HFB calculations with
a much larger shell-model space [20]. However, there are
compensating features for CAP in our model, namely, that
only 12 orbitals used might promote a more rapid pairing
decrease, but the constraint that the 8 odd-parity orbitals may
not have broken pairs has the opposite effect of slowing pair-
ing collapse. It would be legitimate in our small-basis model
to introduce a spin-dependent pairing force strength, but that
does not seem to be necessary, at least in the 90-neutron
region. Of course, at sufficiently high spin our exclusion of
pair breaking in lower-j orbitals wi11 result in too much pair-
ing.

In Fig. 1(e), we show the neutron-aligned angular mo-
mentum i . These are not calculated from energy levels, as
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FIG. 3. Results for combined

nine-neutron-level and nine-
proton-level calculation for

Gd. (a) Lowest eight eigenval-
ues as a function of spin. (b) Plots
of moment of inertia vs angular
velocity from yrast band. The dis-
crete dots are experimental values,
and the solid curve is from theo-
retical calculation. (c) The proton
monopole pairing (without the di-

agonal contribution) expectation
values for the lowest three bands.
The symbols represent X, yrast,
+, yrare, and ~, the second ex-
cited band. (d) Same as in (c) but
for neutron monopole pairing. (e)
Same as in (c) but for proton
quadrupole pairing. (f) Same as in

(c) but for neutron quadrupole
pairing.
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must be done with experimental data to infer spin alignment.
Rather, these are microscopic expectation values calculated
directly from the wave functions (I Xj)l/I(I+1). From
Fig. 1(a) there is no idealized aligned band (displaced pa-
rabola with minimum energy around i ) as the calculations
of Hara and Sun [14] have obtained. Rather, there seems to
be a spin-aligned strength function which moves down into
the yrare at spin (14—16)fi, and onto the yrast for spin ~18tt.
The alignment saturates at about 9.8A, , quite comparable
with the spin alignment deduced from energy levels by Mor-
rison et al. [21].

An interesting and unexpected feature in Fig. 1(e) is that
above band crossing (I~18A,) both yrast and yrare states
have large and nearly identical neutron alignment (the con-
ventional expectation is that yrare is a continuation of the
ground band and would have low alignment). The story is
revealed in Figs. 1(c) and 1(d). At highest spins the yrast and
yrare differ in that the yrast exploits monopole pairing and
the yrare the quadrupole pairing (just as at lowest spins).

Their neutron alignment structures are the same. At highest
spins, the strength of the ground band, with its low neutron
alignment, is spread to yet higher states.

In Fig. 1(f), the off-diagonal elements of the monopole
pairing operator among the three lowest states are plotted,
(&&) first to second, (+) first to third, and (~ ) second to
third. The large magnitude (-—6) of the first-to-second el-
ement signifies that the first excited state has pairing-
vibrational strength through spin 10fi, , where it crosses the
aligned band and changes character.

The corresponding HMD calculations are shown in Fig. 2
for the proton system with nine orbitals, three of which are

h», 2. Note in Fig. 2(a) that there is a sharp crossing of the
yrast band, but not until spin 28A, , considerably higher than
the neutron band crossing of Fig. 1(a). The proton single-
particle energies are bunched into three levels close to the
Fermi energy. As a consequence, we see near-ideal pairing
behavior at lower spins, with the pairing strength concentrat-
ing on yrast and the first two excited bands nearly degenerate
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FIG. 5. The proton single-particle levels near the Fermi surface
of 's4Gd are plotted as functions of the deformation pz, with p4
fixed at the constant value 0.046. The 0 quantum number labels the
single-particle level, and the vertical dotted line indicates the loca-
tion of the theoretical P2 deformation for '5 Gd.

which draw collective strength over a somewhat wider range
of orbitals.

In our previous reports on Th isotopes 230, 232, and 234
[9] and on Dy isotopes 160, 162, and 164 [24] the calcula-
tions with basis states at fixed deformation are well justified,
since the nuclei in question are well removed from the edge
of the region of stable quadrupole deformation. That is not
the case for the %=90 nuclei, such as ' Gd, treated here.

FIG. 6. Same as Fig. 6 but for neutrons. The energy of the

h»&2 orbitals (thinner-dotted lines) is shifted upward by 1.55 MeV
as indicated by the vertical arrows.

There are several papers on the possible shape coexistence in
these nuclei, and there is clearly a softness toward quadru-
pole deformation. Nevertheless, we felt it important to try
our fixed-basis model for ' Gd, since the neutron-pair-
transfer data we hoped to confront involved this nucleus and
since the data on energy levels of the lowest three bands are
so extensive.

Another reason that it is interesting to push the limits of
our model at N=90 is that it is likely that nontrivial effects
of quadrupole pairing may be observed. Well within the de-
formed region the Nilsson orbitals near the Fermi energy

TABLE III. Single-particle energies of basis states.

N, j,' 0

11 15 2 0 2
11 35
11 35 2 & 2
11 75 2 0 2

4, , —,+
4 2+
4, , 2+5

4, , 2+
4, , —,+

Proton

Energy (MeV)

p, =o.z3

—8.1467
—7.4402
—6.2766
—4.8438
—8.4444
—6.2217
—4.4359
—6.3974
—4.7732

N, j,' A

6 — -+13 1

6 — -+13 3
2 & 2

6 — -+13 5
2 7 2

6 — -+13 7

11 95 2 & 2
11 115 2 9 2

15
5 3

55

5 3

55
15
-+

4, , 2+3

Neutron

Energy (MeV)

P, =O.23

—8.2798
—7.7491
—6.8544
—5.7172"'
—8.7317
—7.6585
—9.0213'
—8.7001
—6.7776
—7.4088
—5.8190'
—6.1870

N.A.
N.A.

Energy (MeV)

p2 = 0.28

—8.9009
—8.2579
-7.1969
—5.8387

N.A.
—8.4563
—9.3634
—9.0442
—6.7294
—7.4201

N.A.
—6.1413
—9.4013
—9.2085

'Approximate j quantum number.

Intruder orbitals.
'Used only in 12-neutron-orbital calculation.
Neutron h»&2 orbital shifted by 1.55 MeV.
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have generally similar slopes; that is, the mass quadrupole
moments associated with various orbitals are similar. It is
easy to show in such a case that the addition of a quadrupole
pairing interaction effects just a trivial renormalization of the
monopole pairing interaction. However, at the edge of defor-
mation, where strong up-sloping (oblate-driving) and down-
sloping (prolate-driving) orbitals are both near the Fermi en-

ergy, quadrupole pairing plays a special role. Whereas
monopole pairing energetically favors coherent states with
all the same sign for configurations with different arrange-
ments of pair occupation, quadrupole pairing will favor a
coherence with signs dependent on the signs of the orbital
quadrupole moments. We indeed find a great sensitivity of
the N = 90 first excited 0+ energy to the quadrupole pairing
strength.

With the availability of greater computing power, it is
now feasible to use Inore traditional shell-model approaches
with large matrix diagonalization to model nuclear band

structure. The insights gained from decades of pairing force
BCS, random-phase-approximation (RPA), and HFB calcula-
tions form a strong guide from which one can now determine
band structure by exact matrix diagonalization on basis sets
of a few orbitals near the Fermi surface. The resulting HMD
wave functions have good angular momentum and particle
number and should provide wave functions valuable for
theoretical studies on near-barrier heavy-ion inelastic scatter-
ing and transfer reactions [25].
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APPENDIX A: INPUT PARAMETERS

The single-particle Hamiltonian of Cwiok et al. [13] for
the deformed Woods-Saxon potential, including quadrupole
and hexadecapole deformations, is used. The code swBETA
was used to calculate single-particle energies e. A portion of
the single-particle energy levels around the Fermi surface as
a function of P2 is shown in Fig. 5, for protons (Z= 64), and
in Fig. 6, for neutrons (%=90). The calculations include a
hexadecapole deformation of P4 = 0.046 with positive-
parity levels denoted by solid lines and negative-parity levels
by dashed lines. The levels are labeled with the appropriate

quantum numbers. The vertical dashed line indicates the

P2 deformation from a self-consistent total Routhian surface
(TRS) calculation of Nazarewicz [17] for ' Gd (the mini-
mum had deformation parameters of P2 = 0.23,
P4=0.046). These deformation parameters were fixed for
the HMD calculations, and since the experimental hexadeca-
pole deformation is twice the theoretical value for ' Gd, the
theoretical value was used for consistency. The vertical ar-
rows in Fig. 6 (the neutron calculation) indicate the magni-
tude of the shift of the h»&2 orbitals (1.55 MeV) as discussed
in Sec. IV of the main text. The dotted lines correspond to
the unshifted position of the h»&2 orbitals.

One can clearly see from Fig. 5, Fig. 6, and Table III that
the basis includes orbitals that are down sloping with in-
creasing P2 deformation (namely, prolate driving) and up
sloping with increasing P2 deformation (namely, oblate driv-

ing). Note the splitting of the degeneracy of same-j orbitals
at P2 = 0 owing to the hexadecapole deformation included in
the calculation. Also, at larger deformations P2-0.3, note
the strong interaction between the neutron —,

' and —,
' orbitals

and the -', and —,
' orbitals, clearly indicating the mixing of the

levels. The single-particle levels actually used in the calcu-
lations are shown in Table III. The four sets of input param-
eters used in the calculations are shown in Table I.

tions at the larger deformation. Figure 7(a) shows the band-
energy results and is to be compared with Fig. 1(a). Both
calculations are for the neutron-only system with 12 orbitals
(plus rotor). At the larger deformation the orbitals included in
the 12-orbital set nearest the Fermi energy must be changed
somewhat, as examination of the neutron level diagram of
Fig. 6 makes clear. Two upgoing orbitals —,'+ and —,'+ from
the fourth oscillator shell are included in the set at larger
deformation, while the upgoing -,'—from the h»&2 is deleted,
since it no longer gets the upward shift of 1.5 MeV. The
higher of two 5/2 orbitals is also deleted. Note now the im-
portant fact that the unshifted —", —orbital crosses the down-
going —,+ right at the Fermi energy. This circumstance of the
Fermi energy being so close to an i]3/2 level, the —,'+, results
in the relatively sharp first yrast band crossing. The back-
bending plot of Fig. 7(b) shows a somewhat better agreement
with experiment for the new higher deformation calculations,
but that is mainly because a more nearly constant rotor mo-
ment of inertia is used in the new calculations. The general
patterns of bands and band crossings are very similar be-
tween the two calculations. Several details differ. The first
bandhead of spin 2 occurs as the third excited 2+ state in the
erst calculations and as the second excited 2+ state in the
newer calculations. At highest spin is a bunching of three
lowest bands, while in the new calculations two lowest bands
comprise the bunch. Examination of parts (c) and (d) of Fig.
7 shows the same qualitative behavior of the monopole and
quadrupole pairing expectation values. The yrast levels (and
their continuation after band crossing) in each case show
strong monopole pairing, falling off with spin because of the
Coriolis antipairing effect (CAP). The yrare levels in contrast
show strong quadrupole pairing, also with a CAP decrease
with spin. In part (e) we view similar neutron-spin-alignment
patterns. Curiously, the off-diagonal matrix elements of the
pair-transfer operator, part (f), seem quite different between
the old and new calculations. Let us compare only the ele-
ments connecting ground and first excited bands (x), since as
noted from the level diagrams (a) the second excited states

APPENDIX B: RECALCULATION AT LARGER
DEFORMATION

As pointed out in Sec. IV, the calculations in the main
body of this paper were performed with single-particle en-
ergy levels calculated at the experimental quadrupole defor-
mation of Pz=0.23. It was necessary to make a large posi-
tive shift in energy levels for the h»&2 orbitals from the shell
below in order to reproduce a sharp yrast band crossing. As
we discussed in Sec. IV, experimental F2 transition rates
show that the deformation probably increases with spin, and
a deformation of P2=0.28 near the band crossing could
make the arbitrary energy shift of h»~2 unnecessary. In this
appendix we show and discuss the results of HMD calcula-

I I I I I I I I

10 20
Spin (h)

30

FIG. 8. Deformation-driving tendency of neutron systems in the
three lowest bands, as a function of spin. The first excited band

(+) is seen to be prolate driving throughout, and thus this band
should be more prolate than the ground (X) and second excited
band (~).
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have a different character. In the old case there were strong
pair-transfer matrix elements between the lowest two bands,
up to spin 10, while in the new calculations these elements
remain near zero up to spin 10.The off-diagonal pair-transfer
matrix elements from yrast to higher bands are a measure of
the "pairing vibrational" strength, and they will be sensitive
to the presence of subshells in the single-particle spacing.

In Fig. 7(a) the energy of the first excited 0+ is above 1

MeV, in disagreement with experiment for ' Gd and other
90-neutron nuclei. Probably the inability of our model to
calculate the first excited 0+ state low enough at N= 90 is a
consequence of the beta softness at the edge of the deformed
region. The N=90 nuclei are a challenge for our fixed de-
formation single-particle-energy basis. Our method, despite
its lack of shape self-consistency, does give different mass

quadrupole moments as the occupation probabilities of orbit-
als shift with increasing spin. The calculated mass quadru-
pole moments of the neutron system as a function of spin for
the three lowest bands of Fig. 7 are shown in Fig. 8. The
neutron system in turn will polarize the shape and modify the
charge quadrupole moment. The prediction through spin 8 is
that the erst excited band is more prolate than the ground
band. The experimental moments of inertia of these bands
support that conclusion. Further, our model calculations sug-
gest that the second excited band is the least prolate after the
band-crossing region, where the deformation-driving tenden-
cies of the neutrons converge, and deformations similar to
the low-spin values prevail, with yrast and second excited
bands reversing positions.
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