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We construct finite Dyson boson-fermion mappings of general collective algebras extended by single-
fermion operators. A key element in the construction is the implementation of a similarity transformation which

transforms boson-fermion images obtained directly from the supercoherent state method. In addition to the

general construction, we give detailed applications to SO(2N), SU(8+1), SO(5), and SO(8) algebras.
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I. INTRODUCTION

The systematic construction of boson mappings for alge-
bras defined by collective bifermion operators, or more gen-
erally the construction of boson realizations of Lie algebras,
has by now been achieved in a rather complete fashion for
which a comprehensive literature exists. (See Refs. [1—3]
and references therein. ) As shown by Dobaczewski [1], one
of the most transparent ways to achieve this construction
exploits generalized coherent states [4], a formalism which
has also recently been shown [5,6] to be readily amenable to
the construction of boson-fermion mappings from superco-
herent states.

We refer to Ref. [5] for a background discussion and mo-
tivation concerning the construction of boson-fermion map-
pings of fermion systems in a many-body context. Here it
suffices to recall that these methods aim at mapping (collec-
tive) fermion states with an even number of particles onto
boson states, while those with an odd number of particles are
mapped onto boson-fermion states. In this way odd boson-
fermion states can be constructed in which collectivity and
the Pauli exclusion principle are consistently included in the
same theoretical framework.

In Ref. [5] it was possible to establish a general prescrip-
tion for constructing such mappings and in particular it was
shown that similarity transformations can be applied to
modify properties of boson-fermion images. However, one
important feature of these images was missing, namely, the
odd states were represented by complicated many-fermion
constructs instead of one-fermion states. Here we report on
the construction of a mapping which regains this desired
property and therefore corresponds to what has been hitherto
proposed in most phenomenological models for odd-fermion
states. Some aspects of our construction have already been
implemented in Ref. [6] where we discuss dynamical super-
symmetry in some specific fermion models.

It is thus the main objective of this paper to present the
general construction mentioned above and to give some ex-
amples. The paper is organized as follows. In Sec. II we
begin by recalling some basic definitions and notation and
then we proceed by constructing the similarity transforma-
tion which is the key element of the present approach. We
then discuss general properties of this similarity transforma-

tion when applied to the single-fermion images. Section III is
devoted to examples concerning the SO(2N), SU(e +I),
SO(5), and SO(8) algebras, respectively, and conclusions are
presented in Sec. IV.

II. DYSON BOSON-FERMION MAPPING OF THE
COLLECTIVE ALGEBRA

We consider the boson-fermion mapping of a collective
algebra defined by the collective fermion-pair creation opera-
tors

(2.1)

[[A, ,A~],A g] = c~Q

[A', a,]=y' „a~,

[A', a'] =0, (2.2)

(a~, a„)=8'~,

ta~, a")= 0,

where c~j, are structure constants and an implicit summation
over repeated indices is assumed. With the single-fermion
operators anticommuting to the identity, the odd and even
parts of this superalgebra are composed of single-fermion
and bifermion operators, respectively.

Following Ref. [7],we assume that the collective pairs are
orthogonal and normalized to a common number g, i.e.,

(2.3)

[y~"=(g' „)*] which gives the symmetry properties of
structure constants

labeled by the collective index i =1, . . . ,M. Together with
the corresponding collective fermion-pair annihilation opera-
tors A; = (A ') +, all linearly independent commutator s

[A;,AJ], and the single-fermion operators a' and a„, they
are assumed to form a closed collective superalgebra. [Here
p, , v=1, . . . ,N and M~N(N 1)/2. ] The—se closure condi-
tions read
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c~'=c =c =(c'ik ik ki jL (2.4)

A Dyson type boson-fermion mapping of this algebra was
derived in Ref. [5] using a collective Usui operator

U= &0l exp(B'A;+ a~a~) Io) (2.5)

A gB —-'ci Bi8 8,—g y,
' 8'n~n, +~

(2.6a)

suggested by the supercoherent state method. This operator
transforms collective even-fermion states, as well as collec-
tive states with additional individual fermions, into an ideal
space composed of collective bosons, B'=B, , [B,B']=
8,', and of ideal fermions u~.

The mapping of operators +-+0 can be obtained from
the equation HU= UO, which gives the following mapping
of the collective superalgebra (2.2):

freedom are simply accommodated as ideal fermions. Fur-
thermore, the ideal states should accommodate an arbitrary
number of ideal fermions, representing noncollective fermi-
ons, but of course still subject to reigning space limitations.

An attempt was made in the Ref. [5) to find a transforma-
tion leading to a mapping which reduces to the standard
Dyson mapping (with bosons only) if the odd degrees of
freedom are dropped. The drawback of the transformation
suggested was that the mapping resulted in images of single-
fermion operators given as infinite series. At the same time,
the odd states were mapped onto rather complicated boson-
fermion states.

In Ref. [6] we presented a similarity transformation which
resolves this problem, i.e., gives even collective ideal states
which are completely bosonized and at the same time yields
the odd states described by single ideal fermions. In that
paper we proved by induction that a specific similarity trans-
formation meets these requirements. Here we proceed differ-
ently, by showing how the same transformation can be de-
rived from properties of some Hamiltonian-like operators.

Aj~Bj,

[A;,A']~g 6!—c',kB B( X„X,"—~n~n„,

a'~ u'+ y,'~B'u,

(2.6b)

(2.6c)

(2.6d)

A. Construction of the transformation

We rewrite the right-hand sides of expressions (2.6a) and
(2.6c) in a shorthand notation as

a v+-+ ev

where we introduced collective ideal fermion pairs,

u"cr" M =(~)"

(2.6e)

(2.7)

AJ~R'+~,

A ~Bj,

[A;,A'] ~[B;,R'+ ~].

(2.9a)

(2.9b)

(2.9c)

and the operator A,

A=gB B( 4c~„B B—"BIBk X„pXI B Bko' cr—v ~ (2.8)

invariant with respect to the core subalgebra.
At this point it is important to recall that a key element in

the boson-fermion mapping formalism is the existence of a
physical subspace of the ideal space. This subspace is the
one whose states can be put into a one-to-one correspon-
dence with the original fermion space. In Dyson type map-
pings (as opposed to, e.g., Schwinger type mappings [8]) this
one-to-one correspondence is guaranteed by simply operat-
ing (repeatedly) with bifermion and single-fermion images
onto the ideal space vacuum. At the same time the nature of
the physical states obtained from this construction will
clearly depend on the structure of the images and may not
necessarily correspond to some preconceived physically de-
sirable structure. This point was discussed in Ref. [5] and is
illustrated by the images (2.6).

Consider, e.g. , the image of the collective pair operator
A', Eq. (2.6a), which contains the corresponding ideal col-
lective pair operator M'. Operating with this image onto the
ideal space vaccum l0) gives A'l0)~(M'+gB')l0), and
the collective one-pair states are therefore not completely
bosonized as one would desire from a physical point of view.
It is necessary, therefore, to transform the mapping (2.6) into
a form which will suitably address this problem, namely,
result in a description where collective fermion pairs are rep-
resented by bosons only, while all other fermion degrees of

First, we observe that because [B;,~]=0 we may simply
drop the term ~ in Eqs. (2.9a) and (2.9c), and the commu-
tation relations of the collective algebra will still be satisfied,
i.e., the operator R alone when commuted with 8 gives the
right-hand side of Eq. (2.6c). We may, therefore, envisage a
similarity transformation (X, say) that will achieve just this
modification, namely,

X '(R'+~)X=R',

X '8 X=BJ J'

(2.10a)

(2.10b)

H—=R Bj+~Bj, (2.11)

where the first term on the right-hand side conserves the
number of bosons and ideal fermions separately, while the
second term decreases the number of bosons by 1 and in-
creases the number of ideal fermions by 2. It is clear that this
operator has an upper (or lower) triangular structure in the
basis characterized by the numbers of ideal bosons (or fer-
mions). Consequently, it has the same spectrum as the opera-
tor

Ho —=R~B) (2.12)

and which could then be applied to the right-hand sides of
expressions (2.6d) and (2.6e) to find the corresponding
single-fermion images.

To evaluate X we first multiply expression (2.9a) by B.
and sum over j. This gives the operator
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and, therefore, H and Hp are related by a similarity transfor-
mation of the type introduced by Geyer [9]

[C~F, .MB,]= 0 (2.20)

i.e.,

( 1

0 p

)k
.~B (2.13)

the desired result is

Hp —Hp = CF—CF (2.21)

X 'HX= Hp . (2.14)

C~ = g B'BI—2 c~„B B"B~B(

=gB'B~ 2cm„B BkB—"B~+2cm'&B Bk (2.15)

as the invariant operator of the boson core algebra, and

Here the lone caret "n" is read together with a positional
operator t10] and determines at which position the careted
operator, Hp in this case, is evaluated.

The denominator in expression (2.13) can be written in a
convenient form much more directly linked to the structure
of the ideal fermion (core) algebra. To show this we first
identify

which explicitly demonstrates that the denominator in (2.13)
depends only on the invariant operators of the ideal fermion
core algebra, i.e.,

( 1 gk
X= g Xk= g i,~B

ko ko I CF CF (
(2.22)

We were not able to derive a similar closed form of the
inverse transformation X ', but in fact this is not necessary
provided we know how to commute boson-fermion operators
with X. Indeed, is the similarity transform of the operator
CD' if it satisfies the equation ~B =X&' where only the op-
erator X appears. By inspection of the structure of X, how-
ever, it is possible to write down the lowest-order terms in an
expansion for X

CF—M (2.16)

as the invariant operator of the ideal fermion core algebra.
The invariant operator of the boson-fermion core algebra
may be conveniently expressed if we perform an auxiliary
bosonization of the ideal fermion-pair algebra by using aux-
iliary bosons b' and b~ which commute with the other boson
operators B,

l
MMB, ~

CF CF

1 . 1( 1
,MH B .A&'B;

cF—cF ( I, CF CF—
~g b' —

—,
' c,.~b'b b I, (2.17a)

1 . 1~B, - M~'B;~. . . , (2.23)
CF —CF CF CF

b, , (2.17b)

[M;,.M]~g6', —c',„'b"b, . (2.17c)

C8F=g(B'B, +b'b~) —,'c „(B B„+b—bk)(B"B(+b"b()

+2c 'I(B B„+b bk).

This can be further rewritten as

(2.18)

This greatly facilitates the construction of the boson-fermion
invariant operator, since the similar structures of Cz and

CF (when the latter is expressed in terms of the auxiliary
bosons) allow one to write in analogy of expression (2.15)

where brackets demarcate where the careted operators are to
be evaluated in a term with more than one of these caret
indicators.

It should be noted that X and X ' have an identical tri-
angular structure, namely, they contain terms which decrease
(increase) boson (fermion) numbers by 0, 1, 2, etc. (0, 2, 4,
etc.).

After deriving the expression for X we may now verify
Eqs. (2.10).A proof of these identities by induction has been
given in Ref. [6] and will not be repeated here. While it is
clear that the transformation law (2.14) for 0 is a conse-
quence of the transformation laws (2.10) for R~+~ and

B~, it was, however, only by considering the Hamiltonian H
that we were actually able to derive the similarity transfor-
mation in the form of Eqs. (2.13) and (2.22).

C~F= CF+B'[M', A"]Bk—2cm„B B"BkB~

= CF+ Hp, (2.19)

with CF now again given by expression (2.16). It follows
that Hp =CpF CF, and since

B. Single-fermion images

To find the Dyson boson-fermion images of single-
fermion operators we apply the transformation (2.22) to
(2.6e) and (2.6f). From Eqs. (2.22) and (2.23) it follows that
the transformed annihilation operator
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1
l

1 1 1
X 'nP'= u, — - A~Bi~n, +n„- A'Bi~ — - A'8& . A 8 nn„

CF —CF CF CF CF CF CF CF

1 ( 1, i ( 1
+ 0'v M Bl M BmR M BlR uv' ~ Bm

CF CF — CF CF— i CF CF —
( i CF CF—

)

+ I ~ BlR ~ ~ BmR Clv+
CF —CF ) I, CF—CF

(2.24)

decreases the number of ideal fermions by 1 and increases the number of ideal fermions by 1, 3, 5 etc. The same is true for
the transformed creation operator

I 1
X '(u" +X„"8"u~)X= u'+X„" 8"n~ = M'Bi~X„" 8"u~+X„' 8"n~ - .A'Bi.

F F F F

I 1 1
+ n' - A'BlR — - A'Bl - A B Rg„"~B"O.

CF—CF CF—CF CF—CF

1
ABlCF- CF

1, 1 ( 1, i ( 1
+ X„" 8"up A Bi M B~r — %~Bi~ .~ X„" 8"n ' M B~n

CF —CF CF —CF 1 CF —CF ( ( CF—CF )

( 1, ~(
+ - M'BlR - M B R y„'~B"u +.

(CF—CF j L, CF—CF
(2.25)

.wi~p) =o (2.26)

In Eqs. (2.24) and (2.25) we show all terms changing the
number of ideal fermions by I and increasing this number

by 3.
The question arises whether the terms in the single-

fermion operator images which increase the ideal fermion
number by more than I can contribute to matrix elements in
the full ideal boson-fermion space. Although we were not
able to settle this question on the operator level, we will
demonstrate that the answer is negative for at least a wide
class of states characterized by the condition

A gB ,' c;„8'8"8—, —XX,' 8'n—~n„, (2.27a)

(2.27b)

LA;,A~]~gP, —cjkB Bi X~„X,'~u~n—„, (2.27c)

1

F F

I
+ y„'~B"np - ~'BlR. . . ,

CF —CF
(2.27d)

for all those I which refer to the collective pairs singled out
for mapping onto bosons as in (2.26a).

On the one hand this is a physically relevant condition,
since the mapping should be designed to eliminate collective
ideal fermion pairs in favor of bosons. At the same time
condition (2.26) does not limit the considerations to the
physical subspace of the ideal boson-fermion space, as is
often the case with ideal space relations which are the coun-
terparts of operator identities in the original space. (See also
an explicit example in Sec. III C.) We note that the condition
(2.26) is automatically fulfilled for the most practically inter-
esting cases of nF =0 and nF= I. For ideal space states with
two ideal fermions, the condition implies, as anticipated
above, that the ideal fermions should form pairs orthogonal
to all the collective pairs mapped onto bosons.

Condition (2.26) and its consequences for the single-
fermion images are explicitly discussed in Appendix I. Here
we only collect the final expressions which define the Dyson
boson-fermion mapping of the general collective algebra
characterized by (anti)commutation relations (2.2):

1 I
0 ~cv MBl 0! +El MBl

CF—C CF-CF
(2.27e)

where the ellipses refer in general to higher-order terms in-
creasing the number of ideal fermions by 3, 5, etc. These
terms cancel when acting on a wide class of states character-
ized by condition (2.26).

a io) n "~o). (2.28)

C. Physical subspace

We now discuss the structure of the physical states and
show how the condition (2.26) is satisfied for them. Simul-
taneously, it becomes clear that the higher-order terms in the
single-fermion operator image cannot contribute to the
physical states. First we note that the similarity transforma-
tion (2.22) does not change any state in which there are no
bosons B~, and therefore the single-fermion states are
mapped onto single ideal fermion states,
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Since the images of pair creation operators (2.27a) do not
change the ideal fermion number, collective odd states
~%',dd) will be mapped onto ideal states with one ideal ferm-
ion only. Especially from a physical point of view, this result
is a clear improvement over the solutions found in Ref. [5],
where collective odd states were mapped onto ideal states
with many-fermion components.

Repeated application of (2.27d) shows that the two-
fermion states are mapped as

(
a"a "IO)~~ a~a +y~"B'— y~"~' ~0), (229)

CF

and in general contain the noncollective pair of ideal fermi-
ons u~n "~0). However, when the collective pair AJ is
formed by summing the pairs a~a' with collective ampli-
tudes —,

' y'„, the ideal noncollective pairs above recombine

and since [see Eq. (2.3)] CF~~O) =g~~O) the first and last
terms above cancel. Only the boson state gB'~0) therefore
remains as the image of a collective fermion pair state.
Again, since the images (2.27a) conserve the ideal fermion
number, the same recombination mechariism is also valid for
any even state. It is also clear that .AI acting on the right-
hand side of (2.29) gives zero, in accordance with the con-
dition (2.26).

Consider now the images of 3-fermion states. From (2.25)
and (2.29) we observe that the terms increasing the ideal
fermion number by 3 could also contribute to a three-fermion
state constructed by an application of (2.25) on (2.29). These
terms cancel as follows from the proof in the preceding sec-
tion, because here these terms would act on a state with no
ideal fermion. The three-fermion state therefore contains
contributions of only those terms shown explicitly in (2.27d)
and can be written as

a'a~a "~0)~ n'n~n" + a'y' g'+ n'y, '~B'+ n~y,"'B' n' —y~'M' — y,'~M'n" — g,"M'a~

(2.30)

It is simple to verify that y~ „a'a ~a "~0) maps onto
R'a "~0), but it is more involved to show that the image of,
say, y',„a'a~a'~0), obtained by explicitly combining the
three indicated images, reduces to R'n'~0), as it should if
the mapping is consistent. This calculation can again be fa-
cilitated by performing an auxiliary bosonization of the ideal
fermion operators using (A4). Once more the higher-order
terms do not contribute when acting as in (2.30) as it fulfills
the condition MI

~ P) =0, which can best be recognized in the
auxiliary bosonized picture.

So far we have discussed states constructed from the
single-fermion operator (2.27d). However, because the pair
creation operator image (2.27a) does not change the ideal
fermion number and commutes with (2.27d) (which can be
checked explicitly) our previous analysis is valid for any
physical state obtained by the application of (2.27a) on the
states (2.28), (2.29), and (2.30). In particular, the terms in-
creasing the ideal fermion number by 3, 5, etc. do not con-
tribute to these physical states.

One property of the single-fermion images that has so far
not been discussed concerns the question whether anticom-
mutators among the original fermion operators a~ and a are
preserved on the ideal space by their images. Common wis-
dom has so far held that it is only on the physical subspace
that the images can in fact preserve these anticommutators
[2,11—13].This conclusion mostly follows from the particu-
lar construction of images and the subsequent method of
verifying these relations in the ideal space, which typically
leads to results of the type ((a,)I,(a~)1)P= 8'~P, where the
subscript I denotes a general image and P the projection
operator to the physical subspace of the full ideal space.

One of the advantages of our construction through super-
coherent states is that it is easily verified that the images

III. APPLICATIONS AND EXAMPLES

The mapping derived in the previous section also covers
the noncollective algebra SO(2N). As we discuss in Sec.
III A, the similarity transformation may in this case be ex-
pressed in a more compact form. Other examples, pertaining
to collective algebras, are presented in Secs. III 8—III D.

A. SO(ZN) mapping

The Dyson boson-fermion mapping obtained in Ref. [5]
from the supercoherent state method for SO(2N) is

a+a'+-+B~ —B+~B B q
—B+~n'o. +B'~o.+n + n+a',

(3.1a)

a va ~~B~v & (3.1b)

a~a,~B~ B,g+ n~n (3.1c)

0 ~A +B Clp, (3.1d)

a,+-+ n, . (3.1e)

(2.6d) and (2.6e) preserve anticommutation relations on the
full ideal space. Subsequent images obtained from these
original images through similarity transformation will natu-
rally retain this property, as long as the transformation X,
which defines the similarity transform H' of operator S'
through AX=X&', is nonsingular, as is the case in our ap-
plications. We return to this point in the following examples.
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The invariant operator of the ideal fermion core algebra de-
pends in this case only on the number operator n=u np,
namely,

algebra SU(8+1), i.e., one has 8 collective pairs A;. This
model can be realized in an (8+1)XQ system of states,
forming 8+1 degenerate levels, by introducing the pairs

CF= 2u~—u'u, u~= —,'n(n —1). (3.2) A'= g a,'a,',
m= 1

(3.6)

CF—CF = ,'(n—n—)(n+. n —1), (3.3)

This simplifies the similarity transformation significantly. In
particular, we have

where the index 0 refers to one of the levels, and
i = 1, . . . ,/. The simplest example is provided by the well-
known quasispin SU(2) algebra obtained for /=1. By nor-
malizing the collective pairs so that g=A, one obtains
0-independent structure constants:

and the transformation (2.22) can be summed to the follow-
ing closed form: cjl', = 8!8~+ 8„'8,'. (3.7)

(2n. —1)!!X= exp[-,'u~u'B „]~.
(n+ n —1)!! (3.4) A'~ B'N~+ B—'[M;,~]+~ (3.8a)

The mapping of this algebra derived in Ref. [5] from su-
percoherent states is

Finally, the transformed Dyson boson-fermion mapping is Aq~Bq, (3.8b)

a~a'+-+B~ —B~PB' B —B~Po.'n +B Pm+ap0 P p (3 5a) [A;,A']~ 8!(A N~) B'B; —(—AB,' —[—M;,~]), (3.8c)

a va~~B~V ~ (3.5b)
a "~u'+B'[M, , u'],

av~ clv ~

(3.8d)

(3.8e)

a~a,~B" B,q+ u~u„

a'~a'+B Po. — n n+ n'B 'PB,
2n —3 2n —1

(3.5c) where N&=B Bk is the boson number operator.
Again we may express the similarity transformation in a

compact form as the invariant operator of the fermion core
algebra depends only on the ideal fermion number operator
n= o.Pap, namely,

1
cT 7 BvPB

(2n —1)(2n —3)
(3.5d) We then get

CF 2n (A + 1 ——2n) . (3.9)

C„—C„=-,'(n —n)[0+1 ——,'(n+n)], (3.10)
1 17 B + 'B

( — )( — )
(3.5e)

We observe that the single-fermion images are finite and
comprised of terms changing the ideal fermion number by 1

only. Moreover, the mapping is such that an attempt to create
a fermion pair using successive applications of (3.5d) is
equivalent to the application of (3.5a).

It is not difficult to verify, as anticipated in the previous
section, that the images (3.5d) and (3.5e) preserve anticom-
mutators on the full ideal space, i.e., as operator identities.
An efficient way to do this is first to form a product of two
single-fermion images and then to symmetrize with respect to
the indices. Upon symmetrization some terms in the product
will immediately yield zero on their own, because of their
antisymmetry, while others will conspire to yield either zero
or unity, depending on the anticommutator being verified.

B. SU(8+1) mapping

and the transformation (2.13) is

[0,—(n+n)]!
X= exp[M~B;]~.

(0 n)!— (3.1 1)

A'~ B'Nn+ B'[M;,~— ],

AJ~B,

(3.12a)

(3.12b)

A Ai ]~8'(0 Na) BJB (08,' —[M;,~]), (3.12c)

1
a "~u"+B'[M;,u']- M'[M;, u "]0-n+2

1
+ B'[[M, , u "],M']B,

The transformed Dyson boson-fermion mapping is obtained
in the form

Let us suppose that the collective operators form an
(A+ 1)-dimensional symmetric representation of the unitary

1

(0—n+ 1)(A —n+ 2)
(3.12d)
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L ~B„, (3.15e)

1
+ ~ [n„M']B, . (3.12e)

Lp~ p (2N&+Nf+ n& 0), (3.15f)

As in the SO(2N) case we observe that the single-fermion
images are finite and contain terms changing the ideal ferm-
ion number by 1 only. For the SU(2) algebra the mapping
(3.12) reduces to the one derived previously in Ref. [12].
Furthermore, the images (3.12d) and (3.12e) preserve anti-
commutation relations on the full ideal space, as can be veri-
fied after some algebra. In Ref. [12] the construction of these
same images allowed a simple argument to prove that these
relations were preserved at least on the physical subspace.
That we could anticipate and finally make a more general
and complete statement about the anticommutation relations
here once again illustrates the versatility of the (super)coher-
ent state method.

K ~BI, , (3.15h)

Kp~ -'(2N&+Nf+n& II), — (3.15i)

T B"Bf+BB~+M~ (3.»j)

T~8Bp+8Bf+ (3.15k)

K+~B"(I), NI,—Nf—nq—) —
2 BfBfB„Bf—& +M+,

(3.15g)

C. SO(5) mapping

Probably the simplest model with an invariant operator
CF does not just trivially depend on the fermion number, as
in SO(2N) and SU(/+ I), is the SO(5) model [2]. It assumes
two single-j shells with the same degeneracy 0, =2j+1,
where three kinds of monopole pairs can be formed. Let us
denote these shells by p and h and introduce the following
pairs with the normalization g in (2.3) chosen to be equal
to 0, :

5+ = ~A(a"a")( ~, S = (5+)+, Sp =
4 (n„+nj, —2A),

(3.13a)

Tp~ 2 (N„+ ~ n„—Nq —
—, nI, ),

1a"~ n" + Bfa„+B"np,
2

Op~ Ap,

1a"~n + B np+B"aq,
2

(3.151)

(3.15m)

(3.15n)

(3.15o)

L+ = gA/2(a"a")( ), L =(L+)+, Lp= 2 (n~ —II),
(3.13b)

Qy ~Ng. (3.15p)

K~ = gQ/2(a "a")tP), K = (K~)+, Kp ———,
'

(nq —0),
(3.13c)

where the fermion creation operators are coupled to angular
momentum zero. The algebra is closed by monopole single-
particle operators:

The ideal-fermion-pair and the single-particle operators are
defined in the same way as in (3.13) and (3.14) with the a
operators replaced by cx.

The similarity transformation is given by

T+ = —~Q, (a"aq), T = (T+)+, Tp= 4 (n„—nI, ),
(3.14)

where the tilde denotes the time-reversed operator.
The boson-fermion mapping derived from the supercoher-

ent state method is (see also Ref. [14] where a different
normalization is used)

S+~B [II—
z (Nf+ n„+nz) N„—N~] —B"B"B—f

with

and

x=g w
a=p ( CF —CF i

W=W~Bf+ M~Bp+ M~B~

(3.16)

(3.17)

(3.15a)

(3.15b)

Sp~ 2(N~+N„+Nf+ —,
'

n~—+ —,
'

nz A), (3.1—5c)

L+~B"(II N„—Nf n„)—
2 B —B B&—B —M++M+,

(3.15d)

C,=,W,M+M M+M M . (3.18)

Consequently, the transformed mapping of the bifermion op-
erators is identical to that given in Eqs. (3.15a)—(3.15p), ex-
cept for the fact that the ideal fermion pairs M+, M+, and
~+ disappear from Eqs. (3.15a), (3.15d), and (3.15g), re-
spectively. On the other hand, the mapping of single-fermion
operators now reads
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1 f-, - 1 (1 f-aP++uP+ Bfnh+B"u„— - W~ Bfah
2 " CF CF— ( 2

ah+-+nI, — - F uh+o. h - W +. . .
CF —CF CF CF

(3.19d)

+B"up + Bfnh+B"a„- W +
) I 2 )Cp —Cp

1 1
ap~up — - W~n +u 8'n+. -

CF CF CF —CF

(3.19a)

(3.19b)

It is not difficult to perform explicit calculations in this
model and present explicit results for some particular con-
figurations. For example, it is straightforward to show that
the image of ap (3.19b) acting on the Inp=O) subspace has
the form

a"~ n" + Bfnp+B"ah -—W~ Bfup
2 " CF Cp (

—2

1
a InF=O)+-+ —([u,W~]Bf+ I' n, M+]B )Inp=0

(3.20)

.- ' ( 1 f- .- 1
+B"uh ~ + Bfa„+B nh - W~+

) I, 2 " CF-Cp

(3.19c)

where Inp=O) means that all the fermions form collective
pairs only. The image of the same operator acting on the
subspace InF(p)=1) is as follows:

l 1 1
apInF(p)=I)~ n — (W+Bf+M—+Bp+ W~Bh)n„+ . ((Au„P'+ —n W~~W )Bf+[(0— )M+n

(A —1)(Q,+ —,')

l1
npW+W —]BQ)+ fI up~+Bp ~ Inp(p) = I) (3.21)

where Inp(p) = 1) means that one fermion is unpaired and
occupies the level p. In Appendix II we show how the gen-
eral structure of the single-fermion images specifies to the
case of the SO(5) model.

A A

P $2fIQ ( 1)j+i+k+j )
. j~j2 ji j2

i i k

(3.22b)

D. SO(8) mapping

The SO(8) model I 15] is defined by collective pairs

A A

,
j]jjij2

l l
M

(3.22a)

with i =
~ and k integer. In (3.22a) only 5+ (J=O) and D+

(J=2) pairs are allowed, while in (3.22b) J takes values 0, 1,
2, and 3.

In order to generalize the model to odd systems we may
add creation and annihilation operators a~ and a . The
boson-fermion mapping of this algebra derived from super-
coherent states is

+ 2 ~ A A A A
~

FJM JM
J)J2J3J' J2

(Bj &~2)M +W

(3.23a)

FJM~B (3.23b)
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2 $20
P~M~ ( —1) 'g J,J2 . (B~ B~ )M +HqM,

i i i
(3.23c)

+ +k Jl J 1J
a, n, + Jj)(—1)'+' . (B~ u )',

i i k
(3.23d)

+jm ~jm ~ (3.23e)

where B~~=(—1) B~ M and a, =(—1)' a, . The ideal fermion-pair operators M~M and HzM are given by Eqs.
(3.24a) and (3.24b), respectively, with the fermion operators a, replaced by ideal fermion operators n,

In this case we cannot simplify the similarity transformation

( )k
X=~ M~ B~

a=o (CF CF —
)

(3.24)

A
1CF —CF = ~ (-, (n —n) [0,+ 6 —
~ (n + n) ]+ Cq, p,„(6)—Cq, p,„(6)), (3.25)

with n the ideal fermion number operator and C2,~;„(6)=4 (P& P&+P2 P2+P3 P3). The transformed mapping then readssplnF

+ A A A A
~

F~M~B~M ——.
2

Jg J2J3
~ ~1~Z~3~' J

Jg J2 J
J3 ' [(Bq Bq ) Bg ]M + „„(—1) J)J2 . . (BJ Wj )M

J) J',

FzM~B&M

(3.26a)

(3.26b)

J
(B~ B~ )M +HIM (3.26c)

for the collective pair operators while for the single-fermion operators we obtain

a +-+n" +B~~.[.P~, nt ]— - .Xt . B~ nB~t [.X~~, n," ]+8~ [.X~~, nt ] - X~~~ B~ ~ (3.27a)

1
g

~ 1
aJm ~Jm " ~g Bz ~u,„+~m " ~g 8

CF—CF ' ' CF—C)
(3.27b)

The commutator Bz [M~z, n" ] in (3.27a) just gives the second term in (3.23d) and the ellipses refer to the same class of
1 Jm

terms as in Eqs. (2.27d) and (2.27e).
Let us now consider the matrix elements of the mapped single-fermion operators (3.27a) and (3.27b) between even and odd

states I'Ij') and I%"') corresponding to nuclei with particle numbers differing by 1. It is assumed that the even state contains
collective pairs only. These matrix elements give then the spectroscopic factors and can be written in the following form:

k l JpJ)
(q'Iaj' I+')=(+I ~j.+ - J)Ji(—1)""" . . (B.' ~ )"'+=, X JiJ2J3J" i

(3.28a)

(3.28b)
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Note that unlike the phenomenological interacting boson-
fermion model (IBFM) case [16] the tensorial form of the
appropriate single-fermion transfer operators, as functions of
supergenerators and ideal fermions [compare Eqs. (3.5) or
their collective counterparts], is here uniquely fixed by the
mapping. For example, in the U(6/4) case [k=0 in Eqs.
(3.28)] the operators have the o i

=
2 spin(6) tensorial char-

acter.
It should be mentioned that a boson-fermion analysis of

the SO(8) model had previously been presented by Frank et
al. [17] from the point of view of group contractions. Al-
though this led to the emergence of an IBFM type structure,
only some truncated Holstein-Primakoff images of the SO(8)
generators were presented, which makes direct comparison
with our exact Dyson images (3.28) difficult. Furthermore,
the construction of single-fermion images is not considered
at all in Ref. [17],while the identification of possible super-
symmetric structures is only speculated about. We refer to
Ref. [6] for further discussion concerning supersymmetry in
this context, as well as for a concrete example.

Finally, it is important to realize that the operator images
of a,

+ and a, which are effective in Eqs. (3.28) cannot
simply be compounded to obtain the image of an interaction
term of the type a+a+aa, say, as these images are valid only
for the subspace with zero and one ideal fermions only. This
type of inconsistent application in some semimicroscopic ap-
plications is also analyzed and discussed in Ref. [18].

IV. CONCLUSIONS

In this paper we have derived a generalized Dyson boson-
fermion mapping of the most general collective fermion-pair
algebra extended by single-fermion operators. The mapping
is given as finite non-Hermitian boson-fermion images of
fermion pairs and single-fermion operators, both expressed
in terms of ideal boson and ideal fermion annihilation and
creation operators.

The constructed mapping exploits an important freedom
available in the boson-fermion space, namely, that suitable
similarity transformations can be devised to shift between
components of the boson sector and the ideal fermion-pair
sector of the ideal space. The principal achievement of the
present paper lies in finding an explicit form of such a simi-
larity transformation which leads to collective even states
being mapped onto boson states only, while collective odd
states are mapped onto boson-fermion states with one ideal

fermion only. In algebraic models we are thus able to ac-
count fully for the effects of the Pauli correlations between
the odd fermion and the collective fermion pairs.

Although our results are based on stringent conditions of
algebra closure, they may serve as guidelines for realistic
cases where the exact closure need not be fulfilled. In par-
ticular, by using our boson-fermion mapping we have been
able to derive microscopically some supersymmetric struc-
tures [6] which previously have only been introduced in a
phenomenological way. Similarly, we can explicitly obtain
the tensorial structure of the single-fermion operators defin-
ing the spectroscopic factors in boson-fermion models.

We have derived a general formula for the required simi-
larity transformation as a power series in terms of a particu-
lar operator invariant with respect to the ideal-fermion core
subalgebra. In two cases, for the SO(2N) and SU(X+I)
models, we can sum the series and give finite expressions for
the images of single-fermion operators. We also showed that
in the general case simple physical requirements allow the
series to be truncated to low-order terms when one is, e.g. ,
interested in calculating spectroscopic factors.

Our two-stage construction of boson-fermion images, viz.
a first image deduced from a supercoherent state, followed
by a similarity transformation, allowed us to demonstrate
that the single-fermion images constructed in this way gen-
erally preserve anticommutation relations on the full ideal
space, unlike previous constructions of many workers in this
field where these relations were valid on the physical sub-
space only. We anticipate that our more general result will
become important especially when boson-fermion calcula-
tions are carried out in the full ideal space as part of the
program discussed and advocated in Ref. [7].
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APPENDIX A: STRUCTURE OF SINGLE-FERMION
IMAGES IN THE GENERAL CASE

We consider here the second-order terms in the annihila-
tion operator (2.24) containing two boson operators 8,

1 1 1 1

C~ C~ Cp —Cp C~ —Cp- C~ Cp1, l ) 1 l ) 1, l) 1
w'a, . ~, Ma. + - M'ai- - M& ~ ~ „lp)

( CF CF ) ( CF CF ) (Cp —C~ ) (Cp- —Cp. )

(A1)



1404 P. NAVRATIL, H. B. GEYER, AND J. DOBACZEWSKI

where (2.26) is assumed. We furthermore investigate

1 1
CFo.„M'BI M 8 ~P)

F' F

1 1
=M'n„M; M'Bt M 8 ~P).

F F

To evaluate 1, 1~'8, ~-8
~ y)

F F

(A2)

(A3)

A=gb'bI 4 c~~b b blbk XpPXI b bk~ ~v

=(CF)bf+ 4 c~„b b blbk

2 (CF)bf+ 2 b'[~I .~"lbk ~ (A5)

where (CF)&f is expressed using the operators b and n. The
condition (2 26) in the b, n space takes the form
b I ~

l/I) gf 0, that is, there are no bosons b contained in

I O)if.
It follows that (1.7) is mapped onto

we perform an auxiliary bosonization of the fermion opera-
tors M in the spirit of mapping (2.17). This time, however,
we introduce, in addition to the auxiliary bosons b, also aux-
iliary fermions n commuting with the bosons B and b and
consider the mapping (2.17) in the alternative form

1 1
b; - [A,b']Bi

(CF)bf ( F)bf ( F)bf ( F)bf

X [A,bk]Bk" ~n„=O)

=b; 2 b'Blb"Bk~nk, =O) =8;b Bk~nI, =O). (A6)~~ [A,b'],

M, ~b, ,

[M, ,~]~g6!—c',„'b b, g' y,
'—~a"n„,

1
+X ~b6 — - ~~b-X ~b6C-Cf f

1
+X„' b"n - M'bI~. . . ,

C~—Cy

1 1
v~ v " ~ bi@v+ P " ~ bl

Cy Cf Cf Cf

with M'= —,
' X' vn~u', Cy=M'M), and

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

This is the image of the original ideal space state
8;(1CF)M Bk~ p), which follows after operating with

AA ' on the final state above and completing the commuta-
tor [A, b ] to identify the image of M . Consequently, we
find from (A2) the relation

1 1 1 . 1
n, A'8, . M 8 ~P)= M'8;n, M 8 ~P).

F F
(A7)

We note that it is not possible to repeat a similar derivation
for the first-order terms as CF acting on n„(lfCF)M'BI~ /)
has in general zero eigenvalues —this is evident for

~

P)=—~nF=O), for example.
Returning to Eq. (Al) and using (A7), we have after some

manipulation

IC —C 1 . 1 1, 1
M'B;~o.„M B — - M'BI~o. , M 8 M'8;M 8 n, ~P)

( CF—CF CF CF CF—CF CF CF(CF CF)—
M'8;M n„Mk MB + . M'8;MB n„~P)

CF(CF CF) — F CF(CF CF) —
)

(AS)

because, using (A4) again, we have Mk(IICF)M 8
~ P) =Bk~ P).

It is now straightforward to prove the cancellation for all higher-order terms by induction using

1 1 1
bt - [A,b"]8; . . . - [A, b'"]8; ~nI, =O) =bI —,b"8 b'"8; ~n1, =0)

( F)bf ( F)bf (CF)bf (CF)bf

1
=B) b' IB . b" ~B In„—0).

(Iz —1) I 't 'n

Since annihilation and creation operators are linked by the commutation relations (2.2) it follows that the terms increasing the
number of ideal fermions u by 3, 5, etc. also cancel in the creation operator (2.25) when acting on the class of states
characterized by (2.26).



52 BOSON-FERMION MAPPING OF COLLECTIVE FERMION-PAIR . . . 1405

Nevertheless, it is instructive to see explicitly how the terms increasing the ideal fermion number by 3 in the creation
operator image actually cancel. These terms appear in expression (2.25) which shows that the relevant boson operator parts
have, respectively, the structure 8 BIB; and that of a single-boson annihilation operator. The terms of the former type cancel
as the structure is of exactly the same form as the second-order part of the annihilation operator image for which we have
demonstrated the cancellation above. The latter part can be written as

( u' W'B, —
CF

1
W'B,.u"—

CF CF

1
l

1 1
M'~[M, , n"] M 8 + . M 8 M'[M, , u"]

CF —CF F CF(CF CF)—

+ - M'~M 8 [M, , n"] ~P)
CF(CF CF)

'
(

M'[M(, n"] M 8 — . M 8 ~MkMka'
( CF

*
CF CF(CF CF)—

1 1
M'~[M, , u"] M 8C„IF—CF CF

1 1~'[~, , a"]+ M' M 8 [Mi, n"] ~P)c,(c,—c,) ' c,(c„-c,)
'

)

(CF—CF 1, 1 1, 1 1
M'~[MI, n"] M 8 -—M~'~[M), a"] M 8 + . M'~M 8 [M(,u"] ~P)

1 CF CF F F CF CF F CF(CF CF)

( 1
IM' M"M„[M, , n"] M 8 + - M' M 8m[M(, u'] ~P)=0,

CF(CF —CF) F CF(CF —CF)
(A10)

using

1 1 1u, = [CF,u ]
F F F

(Al 1)

higher-order terms in the single-fermion images cancel for
the second-order part of the annihilation operator acting in
the space where no ideal fermions are present. To be explicit,
we show that

and

1
CF[M, , n "] M 8

~ P) =M 8 [M), u "]
~ P)

F
(A12)

1 1
np"CF- CF Cr- CF

derived from expressions (A4) and the definition (2.16).

APPENDIX B:STRVCTVRE OF SINGLE-FERMION
IMAGES IN THE SO(5) CASE

Here we exemplify the result of Appendix I in the case of
the SO(5) model discussed in Sec. III C. We show that

( 1 ) (
W, n - W fnF=O)=0.

) scF CF ). —

The left-hand side follows from (Al), W is given by (3.17),
and CF by (3.18). It can be derived that

1 1 (
W . W ~nF=0) = (M+W+BfB +M~5 ~BfBh+ —,

' M~M+8 Bp+ —, M+M~BhBI, )
CF —CF CF—CF (

—1

1

n(n 1)(2n+1)(n~ ~ ~ ~ )BfBf

1
+ (W~W~+(2A —1)M+M+)BpBh ~nF=O)

and
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1 i / 1 i t 1
np W+

~

n P' 0) [(~+[np ~y ]+~+[np ~+])BfBp
+~+[np ~/ ]BfBh(0 0—1

+M, [n„,M, ]B„B„]+
A(A —l)(A+ -,')

X(Q~+[np, ~+]+ 2 ~~[np, ~~])BfBlf+
A(A —I )(0+ —,')

X(W~[n„,W~]+(0 ——,')M+[np, M+])BpBh ~nF=O) (83)

From (82) and (83) it is apparent that (81) is fulfilled.
It is interesting to note that the above derivation is valid

even for spurious states in the boson-fermion space. Con-
sider, e.g. , A = 1. The two-boson configuration

W . W~~nF=O)
CF—C@ Cp- CF

(BfBf+B"B")~0) (84)
X ( —

—,
' BfBf+BpBh) lnF= » (87)

is then a spurious state [7]. We observe that expressions
(3.21), (2.2), and (2.6) are singular for 6= 1. However, for
0=1 these equations are simply not applicable as they
stand, because

and (2.6) should be replaced by

W~np - W~~nF = 0)CF- CF " CF- CF

(W,W +M, M, )~0)=0 (85)
4

)
(~+[np ~~+]+~+[np, ~+])

X ( 2 BfBf+BpBh) InF 0) (BS)

(W~ n" +M+ n")
~
0) = 0.

Consequently, instead of (82) we have here

(86)
from which we can see that the second-order contributions to
the single-fermion annihilation operator image cancel even
in this case. Moreover, it is apparent that the operators that
act on ~n p=0) in both (87) and (88) give a zero state when
they act on the spurious state (84).
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