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A relativistic hadronic model for nuclear matter and finite nuclei, which incorporates nonlinear chiral sym-

metry and broken scale invariance, is presented and applied at the one-baryon-loop level to finite nuclei. The
model contains an effective light scalar field that is responsible for the midrange nucleon-nucleon attraction

and which has anomalous scaling behavior. One-loop vacuum contributions in this background scalar field at

finite density are constrained by low-energy theorems that reflect the broken scale invariance of quantum

chromodynamics. A mean-field energy functional for nuclear matter and nuclei is derived that contains small

powers of the fields and their derivatives, and the validity of this truncation is discussed. Good fits to the bulk

properties of finite nuclei and single-particle spectra are obtained.

PACS number(s): 21.65.+f, 11.30.Rd, 21.30.+y, 24.85.+p

I. INTRODUCTION

Descriptions of nuclear matter and finite nuclei, which are
ultimately governed by the physics of low-energy quantum
chromodynamics (QCD), are efficiently formulated using
low-energy degrees of freedom —the hadrons. In the absence
of direct derivations from QCD, such effective descriptions
should be constrained by the underlying symmetries of QCD,
both broken and unbroken. Nevertheless, the appropriate re-
alization of these symmetries for phenomenological models
is not yet established. In this paper, we explore some conse-
quences of applying QCD symmetry constraints to a relativ-
istic model of finite nuclei that features a light scalar meson.

At present, the most developed framework for constrain-
ing hadronic physics by QCD symmetries is chiral perturba-
tion theory (CPT) [I], which provides a systematic expan-
sion in energy for low-energy scattering processes. The
degrees of freedom are the Goldstone bosons (pions, etc.)
and, when appropriate, nucleons. This approach builds in
constraints due to chiral symmetry without any additional
constraints on the dynamics or ad hoc model assumptions;
physics beyond chiral symmetry is incorporated through con-
stants in the low-energy Lagrangian, which are usually de-
termined from experiment. Because additional constants are
needed at each stage in the energy expansion, CPT is predic-
tive only at sufficiently low energies, where the number of
parameters introduced does not overwhelm the data to be
described.

The prospects for extending CPT in a useful way to cal-
culations at finite density are unclear at present. On the other
hand, the general framework of CPT has validated the prin-
ciple of resonance dominance of low-energy QCD. In par-
ticular, the F. coupling constants in CPT in the meson sector
are well reproduced from a meson resonance Lagrangian ap-
plied at the tree level, with the vector mesons playing the
leading role [2]. Meson dominance is also the key principle
underlying phenomenological models of nuclei with had-
ronic degrees of freedom, which we consider here. But while
the correspondence in the vector channels is relatively

straightforward because of well-defined resonances, the dy-
namics in the scalar channel is more difficult to identify and
to model.

Within meson-exchange phenomenology, the midrange at-
traction between nucleons is generally believed to be a dy-
namical consequence of the strong interactions between two
pions exchanged with scalar, isoscalar quantum numbers [3].
No nearby underlying resonance at the relevant mass

(=500 MeV) is evident or, in principle, needed. (Note that in
CPT investigations, the scalar resonance is identified with
mesons around I GeV. ) Nevertheless, this physics is effi-
ciently, conveniently, and adequately represented at the one-
meson-exchange level by the exchange of a light scalar de-
gree of freedom [4]. This light scalar is also an essential
element of phenomenologically successful mean-field mod-
els of nuclei [5,6].

These mean-field models are significantly constrained by
the bulk properties of finite nuclei [7—9]. The question then
arises: How should QCD symmetry constraints be mani-
fested in these models? There is a long history of attempts to
generalize the linear sigma model to build models with chiral
symmetry; it is almost irresistible to identify the scalar me-
son mediating the midrange nucleon-nucleon (NN) attrac-
tion with the chiral partner of the pion. More recently, inter-
est in models realizing the broken scale invariance of QCD
has been revived. Scale invariance is particularly compelling
to consider because of its connection to the scalar channel.
The breaking of scale invariance by the trace anomaly im-
plies relations involving zero-momentum Green's functions
of the scalar trace of the energy-momentum tensor [see Eqs.
(2),(3)]; these are called low-energy theorems [10].If these
relations are assumed to be saturated by scalar particles at the
tree level, significant constraints arise on the associated sca-
lar potentials (in the chiral limit). We will exploit such con-
straints in this paper.

In Ref. [9], a broad class of models that attempt to unite
successful mean-field phenomenology with chiral symmetry
and the broken scale invariance of QCD was studied. Gen-
eralizations of the conventional linear sigma model that fea-
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ture a "Mexican hat" potential were found to fail generically,
even with modifications inspired by the realization of broken
scale invariance. A significant improvement was found by
the Minnesota group [11]when the "Mexican hat" potential
is abandoned, and a reasonable description of the properties
of closed-shell nuclei was obtained.

In this paper, we build a different effective model of nu-

clei by implementing a nonlinear realization of chiral sym-
metry together with the low-energy theorems of broken scale
invariance. The detailed construction of the full model will
be reported elsewhere [12]. Our focus here is primarily on
how vacuum dynamics might be treated in an effective field
theory of nuclei.

The role and manifestation of vacuum dynamics is an
important issue in any field-theoretic description of nuclear
matter and finite nuclei. Valence nucleons in the Fermi sea
interact with each other and also with the QCD vacuum. In
turn, the vacuum is modified by interactions with valence
nucleons. In nonrelativistic models, such effects are never
dealt with explicitly, but are absorbed implicitly into phe-
nomenological effective interactions involving only valence
nucleons. As a result, the interactions may acquire additional
density dependence and nonlocalities. In previous relativistic
models of nuclear matter involving a scalar field coupled to
the nucleon, vacuum modifications were incorporated in the
renormalized scalar effective potential [5,6]. This in turn af-
fects the density dependence.

In principle, the one-baryon-loop effective potential con-
tains an infinite number of undetermined coupling constants,
which are the coefficients in a polynomial of infinite order in
the scalar field. In conventional renormalizable models, the
nucleon vacuum one-loop correction is well defined [13]and
determines these coefficients, except for the terms of degree
4 and less, which are fixed by a renormalization prescription.
However, renormalizable models with one-loop corrections
do not achieve the phenomenological success of models
without vacuum terms for the bulk properties of finite nuclei
[14,15]. We interpret this failure as a phenomenological in-
dication that the vacuum is not treated adequately.

In previous studies involving nonrenormalizable models,
the effective potential is simply truncated, usually at degree
4, and mean-field theory is applied without considering
vacuum effects. In this paper, we begin to address the prob-
lem of constructing consistent calculations in effective field
theories of nuclear matter and finite nuclei that explicitly
address the role of the vacuum dynamics. In particular, we
show how vacuum loop contributions are absorbed in the
renormalization of coupling constants in the Lagrangian in a
model constrained to satisfy the low-energy theorems of
QCD.

In contrast to the situation in CPT, we cannot expand in
powers of the energy, since we are not limited to derivative
couplings and light meson masses. We observe, however,
that the meson fields develop nonzero expectation values
(mean fields) at finite density, and to begin, we assume that
these mean fields dominate the contributions to the energy.
Successful mean-field phenomenology shows that for densi-
ties not much higher than the nuclear matter equilibrium den-
sity, the corresponding mean fields (or nucleon self-energies)
are small compared to the free nucleon mass (roughly 4 to
—,
' the size); these ratios are therefore useful expansion param-

eters. Moreover, since the derivatives of the mean fields are
small for normal nuclei, a truncation of the Lagrangian at
some low order of derivatives is also appropriate. (We verify
this assertion explicitly later. ) The end result is an energy
functional for nuclear matter and nuclei that contains small
powers of the mean fields and their derivatives; nuclear phe-
nomenology implies that these fields are an efficient way to
incorporate the density dependence of nuclear observables.
Our objective here is to see how the low-energy behavior of
QCD constrains the coefficients in this energy functional,
particularly with regard to contributions from the quantum
vacuum.

In nonrelativistic calculations of nuclear properties, corre-
lations and three-body forces are found to make significant
quantitative contributions to certain observables [16].How-
ever, the mapping between relativistic and nonrelativistic de-
scriptions is not one to one; for example, two-body relativ-
istic interactions at finite density naturally lead to three-body
effects in the nonrelativistic formalism. The assumption of
mean-field dominance in the relativistic approach is sup-
ported by Dirac-Brueckner-Hartree-Fock (DBHF) calcula-
tions, which indicate that exchange terms and short-range
correlations do not significantly change the size of the
nucleon self-energies or introduce a strong momentum de-
pendence (at least for occupied states) [17,18,4]. Thus we
have the favorable situation that the mean fields are large
enough compared to nuclear energy scales to dominate the
bulk dynamics (on which we focus), but small enough com-
pared to the nucleon mass to provide useful expansion pa-
rameters. In addition, by fitting parameters to finite-density
bulk and single-particle observables instead of to NN scat-
tering, and by explicitly including meson nonlinearities that
generate many-nucleon forces, we automatically include the
most important effects of correlations [19]. Going beyond
one-loop order systematically is an essential issue, but we
will leave this as a topic for future study.

A nonlinear realization of chiral symmetry will be
adopted, in which the Goldstone bosons (pions) are deriva-
tively coupled to the nucleons. Historically, a linear repre-
sentation (as in the usual linear sigma model) has been fa-
vored by model builders, in part because the sigma model is
renormalizable. In this work, we wish to introduce a light
scalar degree of freedom, but we do not want to make the
restrictive dynamical assumption that this scalar is the chiral
partner of the pions in a linear representation. By realizing
chiral symmetry nonlinearly, we are not committed to such
assumptions about the scalar degree of freedom. In addition,
it will be easier to introduce vector mesons in a chirally
invariant way that manifests the vector-meson dominance of
Sakurai [20]. Finally, the nonlinear representation is more
efficient for preserving the consequences of chiral symmetry
at finite density when making approximations involving
pions, because sensitive cancellations are not needed [6].

As suggested above, the nonderivative terms of the light
scalar effective potential can be constrained by the low-
energy theorems of QCD, so that vacuum effects are "built

'We are unaware, however, of any proof of the independence of
finite-density observables with respect to nonlinear field transfor-

mations, analogous to the theorem that applies to S-matrix elements

[21].
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TABLE I. Parameter sets from fits to finite nuclei. The vector masses are I,= 783 MeV andI =770 MeV; the nucleon mass is M =939 MeV. Values for So, the scalar mass I, , and H are in MeV.
Note that m, =4H l(d Sp)

Set

T1
T2
T3

2
gs

99.3
96.3
109.5

509
529
508

154.5
138.0
178.6

2
gp

70.2
69.6
67.2

S()

90.6
95.6
89.8

0.0402
0.0342
0.0346

—0.496
—0.701
—0.160

2.70
2.20
3.50

H 1/4
q

250
236
283

In meson-exchange phenomenology there is a light scalar
degree of freedom that simulates two-pion-exchange physics
in the scalar channel [3,22]. Here we seek to describe this
physics by introducing a light scalar field S(x). We do not
associate the scalar with a bound state or resonance, and so
we allow S(x) to have anomalous behavior under a scale
transformation in the effective theory. In particular, when
x~)t 'x, S(x)—+)t."S(kx), where d can differ from unity
and is to be determined phenomenologically. A QCD-
inspired scenario that leads to such a scalar was proposed by
Miransky and Gusynin [23]. They introduced a light scalar
generated by dynamical chiral symmetry breaking in QCD,
which was consequently associated with the quark conden-
sate (qq) and referred to as quarkonium. We will take all
other fields to have canonical scale dimension.

While massless QCD is scale invariant at the classical
level, this symmetry is broken at the quantum level. This
breaking is manifested in a nonzero trace of the energy-
momentum tensor of QCD, which is referred to as the trace
anomaly. The QCD trace anomaly in the chiral limit [24] is
given by

~ (x)= H(x) = [P(g)l2g]G'—.G
a=1,2, . . . ,N, —1,

where 6", is the gluon field tensor and

P(g) = —(g l48vr )(11N,—2N&) is the one-loop beta func-
tion with N, colors and N& flavors. There are remnants of
scale invariance, which imply low-energy theorems that re-
late connected Green's functions involving the trace of the
energy-momentum tensor H(x) [10]:

P

d'x(o
I T[H(x)H(0) ] I o)c= 4Ho (2)

i d xd y(OIT[H(x)H(y)H(0)]IO)C=4 Hp)t
(3)

where Hp=(OIHIO) and the subscript C indicates the con-
nected Green's function.

in. " This, together with the truncation of our expansion in
derivatives and powers of fields, leaves us with relatively
few parameters, which can be determined by fitting to the
properties of finite nuclei.

The paper is organized as follows: In Sec. II, broken scale
invariance is discussed and the model is introduced and its
renormalization is considered. An approximation scheme for
nuclear rnatter and finite nuclei is proposed in Sec. III and
the energy functional is derived. Results are given in Sec. IV.
Section V contains some discussion of the results and Sec.
VI is a summary.

II. MODEL

S2)(1 d)/d

X 2
5() t

B„SB~S—V(g, S), (4)

where o.
&

is a real constant, d is the scale dimension of the
S(x) field, and the scale-breaking potential V is

(S')'"( 1 S'
V(g, S) =H —

4 i ln———+H
&o ( &o 4I (So) ( So

(5)

Here yo and So are the vacuum expectation values of y and
S, respectively. Notice that a& has been introduced so that
after expanding the terms in square brackets in Eq. (4), the
kinetic term for S is canonical. The mass of the light scalar S
is given by m, =4Hql(d Sp). The scale dimension of the

y field is assumed to be unity.
One can define the energy-momentum tensor so that the

Noether current for scale transformations is x,O~ . The trace
of this "improved" energy-momentum tensor [27] corre-
sponding to the Lagrangian in Eqs. (4) and (5) is

Effective Lagrangians for pure-glue QCD (no quarks) fea-
turing a scalar glueball field g(x) ("gluonium") that satu-
rates these low-energy theorems at tree level have been con-
sidered many times [25]. Lattice QCD calculations indicate
that the scalar glueball is quite heavy on hadronic mass
scales, with a mass of roughly 1.6—1.8 GeV [26]. Its fate in
the real world with light quarks is not entirely clear. Here we
will generalize the effective gluonium model to include the
ligh't scalar discussed earlier; this extension was proposed in
a different context in Ref. [23].We take the trace anomaly to
consist of two contributions, corresponding to a vacuum ex-
pectation value Ho =H +H . Here Hg is identified with the
heavy glueball contribution, while Hq is nonzero only when
chiral symmetry is dynamically broken in the presence of
light quarks. One can argue that Hg dominates Hp (which is
equal to the gluon condensate up to a factor) so that
H &&Hs [23]. How the QCD trace anomaly actually sepa-
rates into the two parts is not explored here, since we will
determine H by fitting to the properties of finite nuclei.
Nevertheless, we find that the value of Hq determined in our
fits satisfies H~(~Hp (see Table I).

The low-energy theorems involving the trace 8~(x) of the
energy-momentum tensor are assumed to be saturated by the
scalar gluonium y(x) [25] and the light scalar S(x). For
simplicity we adopt a model with no mixing between the
scalars. A candidate effective Lagrangian of the scalars that
satisfies the low-energy theorems at tree level in the chiral
limit is [25,23]

l 1 (

~,(x) = —~,Xd"X+ —~i —
2 +(1—~i)2 %go
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BV BV
e~(x) =So +~

~A'

4 (52I 2/d

—4V(x.5') = —H, —4
—0& —

2

(6)

2 I+Pi S +P2 2+ ~,4~'0+P3(~, 0~'4')'+

With the dynamics of the scalar field fluctuations governed
by the Lagrangian in Eqs. (4) and (5), the preceding trace
satisfies the low-energy theorems at the tree level. The usual
direct demonstration [25], in which the gluonium alone is
assumed to saturate the Green's functions, involves param-
etrizing the fiuctuations y(x) in the exponential form

y =goexp[y(x)/go] and substituting this into the low-energy
theorems and into the potential, V(y, 0) of Eq. (5), to deter-
mine vertices. Keeping only tree level diagrams (no loops),
the theorems then follow.

To extend the demonstration to the present case, one first
notes that the low-energy theorems should not depend on
how the gluonium field fluctuation y is parametrized. One
then observes that if y is defined through
y—=yo(1 —y/yo)", the resulting form for the gluonium
parts of the trace and the potential in Eqs. (5) and (6) be-
come the same as for the light scalar, when the fluctuation of
the latter is parametrized simply as S=SO —P. Since there
are no couplings between the y and the 5 fields, the low-
energy theorems follow directly.

We can now add to M, a scale-invariant Lagrangian with
these scalars coupled to pion, nucleon, and vector degrees of
freedom. (We neglect pion mass terms at this point. ) The
resulting model would be a candidate model for nuclei that
satisfies the low-energy theorems. On the other hand, there
are many other possible terms allowed, and even Eq. (4) is
not the most general form involving two scalars. We choose
to take advantage of the heaviness of the gluonium and the
usefulness of an expansion in powers and derivatives of the
other fields to both simplify and generalize the effective La-
grangian. We expect the expansion to be valid and useful
when applied near normal nuclear matter densities.

Since the mass scale of the heavy gluonium field (roughly
1.6—1.8 GeV) is significantly higher than the scales involved
in the nuclear matter problem, the heavy gluonium field fluc-
tuations y can be integrated out as in Ref. [2]. In particular,
we can eliminate y by iteratively solving its equation of
motion, exploiting the dominance of the mass term over
powers and derivatives of g. This results in complicated
terms involving powers and derivatives of the other fields,
but we can expand these terms. For example, the second
term in Eq. (4) would become

present discussion of uniform nuclear matter and closed-shell
nuclei in the Hartree approximation. Nevertheless, we wish
to stress the connection to pion physics and the underlying
constraints of chiral symmetry. Thus, we give an overview of
the full model in order to motivate the form of the Lagrang-
ian and to set the stage for future work.

We restrict consideration to a low-energy representation
of massless, two-fiavor QCD. The Goldstone pion fields are
represented by a chiral phase angle that corresponds to a pure
chiral rotation of the identity matrix

(I(=—U(x)=exp[in(x) v/f ], (8)

where ((x)=exp[i'(x) v'/2f ], r" (a=1, 2, and 3) are the
Pauli matrices, m'(x) are the Goldstone pion fields, and

f =93 MeV is the pion-decay constant. This parametriza-
tion and the nucleon representation that follows is conven-
tional; see, for example, Ref. [28].The nucleon field is writ-
ten as

ip( )~
N(x) = (9)

with p(x) and n(x) being the proton and neutron fields.
Under chiral transformations of SU(2)r SSU(2) ii,

U(x) transforms globally, U(x) ~LU(x)R~, where
L = e px(ig ig) and R = e px(ig i~+) are x-independent ele-
ments of SU(2)r and SU(2)~, respectively. In general, the
transformation of g is local since it depends on the pion field
[28-30):

((x)—+$'(x) =L((x)ht(x) =h(x)((x)Rt, (10)

where the second equation defines the SU(2)-valued function
h(x) as a nonlinear function of L, R, and U(x) Note that.
h=L when L=R, i.e., in the case of a pure isospin rotation.
The nucleon field also transforms locally:
N(x)~h(x)N(x), which implies that nucleons mix with
pions under chiral transformations. (See Ref. [30] for alter-
native representations of the nucleon field. )

We wi11 incorporate the physics of vector dominance in
our Lagrangian by introducing vector mesons as gauge
bosons [21]. For simplicity, since we concentrate on the
properties of nearly symmetric (N Z) nuclear matter in this

paper, we will not explicitly write down the rho and the
electromagnetic fields. Thus only the ~ meson field V~ ap-
pears explicitly here. We will present a full discussion of the
Lagrangian elsewhere [12], including how the vector mesons
are gauged and how vector dominance results. To build
chirally invariant terms, it is useful to define the vector and
axial vector fields

where the P; are functions of the constants yo, ni, and d.
The Lagrangian will be much simpler if we can truncate this
expansion at leading order in derivatives and neglect high
powers of the meson fields.

We can follow this prescription to write a general chirally
invariant effective Lagrangian for nuclear matter and nuclei.
The ground states of even-even nuclei and nuclear matter
will be assumed to have good parity, and so there is no pion
mean field. Thus the pion will not play an explicit role in the

a (x) = ——(gt8~$ —(&~$t),

which transform as v~ +hv~h~ —ihB~h~ and
a ~ha h~. The coupling of the pion to the nucleon is real-
ized through a~ and the covariant derivative
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W =8 +iu +ig, V (13) that contributes to the meson action as an additive term given
by

Now we can write the complete chirally invariant Lagrang-
ian; all terms not contained in M, are scale invariant. After
integrating out y and expanding about So, the Lagrangian
takes the form

M(x) =N(i y~&„+gAy" yea M—+ g, @+ )N

1 1——F,F~'+ —1+ y —+
2 So

SFo[@,V~]=— d x Kpo= —iTr InK(0), (15)

& l&(u)ly)=[iy'~~ g.y'—V (x)+ pyo —M+g, 4(x)l
&& 8 (x —y).

where "Tr" indicates a trace over spacetime, spin, and iso-
spin, and the kernel K(p, ) is defined in coordinate space by

—f tr(B„UB~Ut)+m, V V~ + —,j(g, V V~)~

1 S2) 2/d( 1 S2
+ —8 @8~@ H ——

~ ln—2
——'+

p So] I 2d So 4i

(14)

where gA = 1.23 is the axial coupling constant, g, (g, ) is the
light scalar (vector co) coupling to the nucleon, the ai field
strength tensor is F~,= B„V„—B,V„, and i7 and ( are real
constants.

Several features of this Lagrangian are of interest.
(i) We have combined terms after expanding and have

rewritten the coefficients, where appropriate, in terms of
physical masses. Note that the nucleon mass M has contri-
butions from the vacuum expectation values of both scalars;
we do not assume that it comes entirely from the light scalar
(although this possibility is not excluded).

(ii) In the most general case, the co mass term and the pion
kinetic term in Eq. (14) could be multiplied by different
polynomials in P.

(iii) The original separation of the Lagrangian into a
scale-invariant piece and a scale-breaking piece, in which the
latter involved only the scalar fields, is now largely hidden
because the y dependence is not explicit and we have ex-
panded about So. Nevertheless, there is a remnant for our
purposes here: the scale-breaking potential of the light scalar
[the last term in Eq. (14)],which is not changed by the elimi-
nation of y. (Recall that the y and S do not mix. ) Thus the
low-energy theorems still protect the form of this potential,
which places constraints on vacuum loop renormalizations,
as discussed below.

(iv) We have omitted many higher-order terms, as indi-
cated by the ellipses, which represent higher powers of fields
and their derivatives. Only Yukawa couplings to the nucleon
fields are kept, based on the phenomenological dominance of
one-meson exchange and the implicit elimination of heavier
fields. (So NNP terms, etc. , are omitted. ) Higher-order
terms with meson fields should give numerically small con-
tributions (in nuclei) or can be absorbed into slight adjust-
ments of the other parameters. Some explicit justification for
these claims is given in the results below.

The Lagrangian in Eq. (14) is written with renormalized
coefficients. Counterterms are not written explicitly, but are
implied. In particular, these counterterms include all powers
of the scalar field, not just terms up to O($ ), as in a renor-
malizable model. To understand how these counterterms are
fixed, we start by integrating out the baryon fields at zero
density and temperature. The result is a fermion determinant

The introduction of the chemical potential p, is for later con-
venience, and baryon counterterms, which are needed be-
yond one loop, are suppressed. Note that no approximation
has been made at this point; SFD is a functional of the dy-
namical fields @ and V~ that still must be integrated over in
a path integral, for example. The techniques for expanding a
determinant in powers of derivatives can be found in Ref.
[31]; see also the heat-kernel method in Ref. [28]. The ex-
pansion of Eq. (15) in a renormalizable model has been dis-
cussed in Ref. [32].

We first focus on the nonderivative terms, which can be
obtained from Eq. (15) by treating the fields as constants and
by expanding the logarithm in a power series in the fields.
Baryon number conservation implies that for the vector field,
only its derivatives can appear in the expansion. Thus the
nonderivative part of M„D is an infinite polynomial in P; for
example, at the one-loop level,

d'I
M FD[p]=i 4 tr lnG (k)

J 27r

( —1)" ~ d'k+iz [g.@(x)]"
2 4 «[G (k)]".

n J 2m

(17)

Here we have regularized dimensionally to maintain Lorentz
covariance and baryon number conservation, "tr" denotes a
trace over spin and isospin only, and

1
G (k)=

k —M+ie

is the free baryon propagator. Beyond one loop there are
additional terms in the coefficients, including baryon coun-
terterm contributions.

The polynomial in P of Eq. (17) must be combined with
the corresponding counterterms; in this way the vacuum con-
tributions are absorbed into the renormalization of the scalar
polynomial. If one insists that the low-energy theorems be
satisfied at the tree level in the meson fields, the end result
for the scalar potential should be of the form in Eq. (14),
where the couplings are renormalized. (Note that this poten-
tial can be expanded as a polynomial in P, with all coeffi-
cients determined by H, So, and d. ) One never has to
explicitly calculate any counterterms or evaluate Eq. (17);
when we write down the scalar potential, the nucleon-loop
effects have already been taken into account. Furthermore,
although we have illustrated the renormalization by evaluat-
ing nucleon loops only, any additional baryonic degrees of
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Here the effective action of M' is associated with the ther-
modynamic potential A of the system, instead of the energy.
The energy follows from

E=A, +pB, (2o)

where

freedom in the Lagrangian would be treated analogously and
the final result will be the same. Thus the phenomenological
fitting of parameters accommodates a general characteriza-
tion of the vacuum response.

The renormalization of the derivative terms is analogous
except that we do not have low-energy theorems to reduce
the number of renormalized coupling constants. We note,
however, that each additional derivative is accompanied by
an inverse power of a typical scale in the problem, which is
the nucleon mass here. Experience with mean-field models
of nuclei also suggests that the derivatives of the mean fields
are small [for example, lVg, Pl /M ~(0.2) ]. Thus if we
assume mean-field dominance, such that fluctuations around
the mean fields are small, and the naturalness of the coeffi-
cients in the derivative expansion (see the discussion in Sec.
V), we can truncate the derivative terms at some tractable
order. In this work, we will stop at the lowest order for the
derivatives. Thus we have only a few unknown renormalized
constants (parameters), which are determined by fitting to
experiment; in our case, we will use finite-density observ-
able s.

At finite density, we work in the grand canonical en-
semble through the introduction of a chemical potential p,
[33].We consider only zero temperature in this work, which
allows a simplified discussion. The relevant Lagrangian den-
sity is now

M'(x, p, ) =M(x)+ pNyoN

III. FINITE NUCLEI AND NUCLEAR MATTER

To perform a realistic calculation, we need a good starting
approximation. Since our focus here is on bulk nuclear prop-
erties and on single-particle spectra, we assume that the
mean meson fields dominate the dynamics, and we expand
the finite-density thermodynamic potential around the mean
fields. The lowest-order result (Hartree approximation) is ob-
tained by replacing all the meson fields by their mean values,
and this will be the starting point of any systematic approxi-
mation for treating the fluctuations.

The thermodynamic potential for nuclei in the Hartree
approximation is given by

dxo A=i Tr ln K(p, ) —i Tr ln K(0) — d xU (x),
(23)

where the baryon kernel in coordinate space is now

(xl&(p) IY) = so[i &o+ p - h(x) l &"(x—Y) (24)

The single-particle Hamiltonian h is

h(x) = —i u V+g, v'o(x)+ P[M —g, yo(x)], (25)

with p = yo and u= yo y, and the static scalar and vector
mean fields are denoted by @o(x) and Vo(x). The contribu-
tion from the meson fields is

eo)
X —ln 1—

d ( Soj

( )4(d
2$2d2
s o

oi

1 1——+—

is that the scalar field now acquires a different expectation
value due to the presence of valence nucleons at finite den-
sity.

(21)

is the baryon number of the system.
Now we integrate out the baryon field as at zero density.

The result is the fermion determinant at finite density (or
chemical potential), —iTr lnE'(p, ), to which we can add and
subtract the fermion determinant at p, = 0, —i Tr in@(0). The
added term —i Tr 1nK(0) combines with the counterterms ex-
actly as described above so that the renormalization goes
through as before. Note that it contains the same dynamical
scalar and vector fields as the fermion determinant at p, . The
remaining combination

—i Tr lnE( p, ) + i Tr lnK( 0) (22)

is an explicitly density-dependent piece (it vanishes for
p =0), which is finite if baryon counterterms are included in

E(p). (This combination is evaluated in the Hartree ap-
proximation in the next section, for which the baryon coun-
terterms are not needed. ) Once again the scalar potential in
the form shown in Eq. (14) is left intact; the only difference

+ —(V'Vo) + — 1+ y m„Vo+ —
)

g(g, Vo) .

(26)

Note that K(p, ) is diagonal in the single-particle basis

P (x)e'"'o, where P (x) are the normalized eigenfunctions
of the Dirac equation with eigenvalues E [34,6]:

hg (x)=E P (x), d xPt(x)P (x)=1. (27)

f
dxU

I'

= —X (p E.)[/i(p E.) ~( —E.)]——
&

d'»— —

From a path integral formulation, one can see that the appro-
priate boundary condition or ie prescription for evaluating
the baryon kernel is co~(1+i e)a&

From Eq. (23) one can now obtain, after a Wick rotation,

~ dO)
[ln( —iso+ p, E)—ln( —ice——E )]

u

We assume that p, =O still separates the positive-energy levels
from the Dirac sea. This wi11 be the case if the density is not too
high.

OCC
t

= —g(p, E)— dxU— (28)
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Here we have used

(29)

which is valid when p, = 0 separates the nucleon levels from
the antinucleon levels. The summation superscript "occ"
means that the sum runs only over occupied states in the
Fermi sea. Moreover, using Eqs. (20) and (21), we find

OCC

&=X [~(/ E.) —~( —E—.)]=X 1, (30)

OCC

E=g E d—xU (31)

Bh 6= t('.(x) P.(x)+E.g
d'y t(".(y) P.(y)

We emphasize that the final sum over only occupied (va-
lence) states is not the result of a vacuum subtraction, as the
term with p, =o still contains the background fields, which
must be determined self-consistently. The true vacuum sub-
traction was performed earlier when we derived the renor-
malized U

The equations for the mean fields are obtained from ex-
tremizing the energy functional with respect to Po(x) and

Vp(x). From Eqs. (25) and (27) one finds8E'
(

E(k) =g, Vo+ vk +M*, (37)

where M*=M —g, @o, and Po and Vp are now constant
mean fields. The energy density F becomes

Ã[M*,p~]= —m, Sod 1 — —ln 1—
4 ' So( d So( 4

1 1
+

4 +g,P&Vo
t

((g, Vo)

Wo1+ rg m„Vp2 I Spy

solved with conventional numerical techniques [34]. The
vector mean-field equation is actually a constraint since the
time component of the vector field is not a dynamical degree
of freedom. (See below for further comments in the case of
nuclear matter. ) This lowest-order result (Hartree approxima-
tion) is similar to that obtained from conventional deriva-
tions of relativistic mean-field models in which one-loop
vacuum corrections are simply neglected. %e emphasize,
however, that we are not merely presenting another mean-
field model; the vacuum effects are incorporated and system-
atic improvement is possible (in principle). Rather, we con-
sider our procedure a justification for the phenomeno-
logically successful mean-field approach.

The energy density for uniform nuclear matter in the Har-
tree approximation can be obtained from the preceding re-
sults by observing that the single-particle energy eigenvalue
becomes

Bh=P"(x) P (x),
0

(32) I" kp
+ s d kitk+M

(27r) J

and a similar expression for the variation with respect to
Up,

. evaluating the derivatives yields
OCC OCC

„XE.= —g,X W.(x) 0.(x) (33)

OCC OCC

( )X E =g X 0 (x)0 (x). (34)

Upon applying these results to Eq. (31), one obtains the
mean-field equations

OCC

~'4p+m, '0o= g,X W.(x) t(.(x)+m,'4o

( @ ) (4/d) —1 ( y l,

+m, Sp 1 — ln 1—
So) So)

+ ~ 2V2
p

OCC

—V Vo+ m, Vo =g, g t(/t (x) t(/ (x) —r/ m, Vp

(35)

——fg, Vo. (36)

Note that we have added an explicit mass term to each side
of the scalar field equation to put it in a form that can be

where kF is the Fermi momentum defined by
p, =g, Vo+ gkF+M*, and pB= ykF/(6m ) is the baryon
density. The spin-isospin degeneracy y= 4 for nuclear matter
and y=2 for neutron matter.

The equation that determines Vp can be obtained either
from the Euler-Lagrange equations or by using Dirac's pro-
cedure [35], with the result

(

g„p~= ~ 1+ r/ m, Vp+ —jg, Vp. (39)
So/

This equation can also be obtained from Eq. (38) by set-
ting (c/F/c/Vp)~ Ms:0. Note, however, that this is not a

minimization condition for F. In fact, the Vp obtained from
Eq. (39) corresponds to a local maximum of the energy den-
sity. Equation (39), like Eq. (36), is a constraint equation for
Vp, which is not a dynamical variable.

The energy density at a given baryon density is found by
using Eq. (39) to eliminate Vp from 8' in Eq. (38) and then
by minimizing the resulting finite-density effective potential
with respect to M*. The effective potential at fixed baryon
density is shown in Fig. 1. Notice that in contrast to the
conventional one-loop approximation [relativistic Hartree
approximation (RHA) [5,6]] in renormalizable models, the
finite-density effective potential of our truncated model is
meaningful only when

~ g, Pp ~

is sufficiently small that
higher-order terms can be neglected. Similar considerations
apply to the solutions of Eq. (39). (See Sec. V for further
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discussion. ) Parameters can be chosen so that nuclear matter
exhibits saturation at the empirical point; one approach to
determining the parameters is discussed in the next section.

220

IV. RESULTS

To test the utility of the model, we must see if it can
successfully describe finite nuclei [9].The basic features we
seek to reproduce are the nuclear charge densities (including
the observed fiatness in heavy nuclei), the characteristics of
the single-particle spectrum, and the bulk binding-energy
systematics. Relativistic mean-field models unconstrained by
QCD symmetries have been successful in reproducing these
properties for nuclei across the periodic table.

The Hartree equations for finite nuclei in our model were
given in Sec. III, but only isoscalar mesons were discussed.
To make realistic comparisons to experiment, we must in-
clude the p and the Coulomb interactions. Here we simply
introduce the p and the photon as in Ref. [9], except that we
also include a coupling between the p and the scalar @,
exactly as for the cu [see Eq. (38)]. A more complete treat-
ment of the isovector mesons will be presented elsewhere
[12].

We take the nucleon, ~, and p masses as given by their
experimental values: M =939 MeV, m, = 783 MeV, andI =770 MeV. We then fit the rest of the parameters (g, ,

g, , g, y, g, m, , So, and d) to the binding energies, the
charge radii, and the spin-orbit splittings of the least-bound
proton and neutron in ' 0, Ca, and Pb, as well as to the
charge density of ' 0 at r=1 fm. An optimization process
similar to that of Ref. [36] is used. Here we are principally
interested in showing that a good fit to properties of finite
nuclei can be achieved; Table I lists three such parameter
sets (Tl, T2, and T3). In set Tl, d is an optimization param-
eter, while it is fixed (arbitrarily) in sets T2 and T3 to illus-
trate the range of possible d. In a future paper, we will study
in more detail the regions of the parameter space that pro-
duce a reasonable fit and examine which conditions are im-

portant in determining individual parameters.
We have calculated ' 0, OCa, and 8Pb for these param-

eter sets and for a representative mean-field model (set B
from Ref. [9]).Bulk binding-energy systematics are summa-
rized in Table II and rms charge radii are summarized in
Table III. For comparison, we also include results from the
point-coupling model of Ref. [36].The binding energies in-
clude center-of-mass corrections as in Ref. [7]. We show
charge densities and single-particle levels for Pb in Figs. 2
and 3, and charge densities for ' 0 and Ca in Figs. 4 and 5.
The charge densities are determined from point-proton den-
sities following the conventional procedure [34], which folds
them with a phenomenological proton form factor. Form fac-
tors generated within the model itself, originating from vec-
tor dominance physics, will be considered elsewhere.

The fits to nuclear charge radii, binding energies, and
spin-orbit splittings are quite good. The only deficiencies in
the sets illustrated here are some small deviations from ex-
periment in the charge densities. Changes in the optimization
procedure can improve the agreement of the charge densities
at the cost of worsening slightly the agreement with empiri-
cal binding energies.

A good reproduction of the spin-orbit force in finite nuclei

190

P 180 .

170 .

160

140

130

120
0.2 0.6 0.8 1.0

. .-" RHA

1.2 1.4

FIG. 1. Finite-density effective potential F from Eq. (38), plot-
ted as a function of M* (solid line). Vo is eliminated for each
M* using Eq. (39). Parameter set Tl is used and kF= 1.30 fm
Results for other parameter sets and other densities are qualitatively
similar. Also shown are the analogous potentials for the %'alecka
model RHA [5] (dotted line) and the nonlinear parameter set B from
Ref. [9] (dashed line).

necessarily leads to large scalar and vector mean fields in the
interiors of the nuclei or in nuclear matter. In particular, as
discussed many times (recently by Bodmer [8]), vector and
scalar fields of roughly 250—350 MeV are needed to repro-
duce the observed spin-orbit splittings in the least-bound lev-
els (and also the deformations in light, axially symmetric
nuclei [15]).While these fields are large on the scale of the
nuclear binding energies, ~g, Vo~/M and (g, go~/M and their
gradients in finite nuclei are relatively small; thus, these re-
main useful expansion parameters. This justifies our trunca-
tion of the energy density at small powers of the meson
fields. While it is possible in principle to add additional mo-
nomials in the fields (with undetermined parameters), the
quality of the present fit makes it unlikely that there is much
to be gained by this.

The scale dimension d of the light scalar field was found
to be about 2.7 when d was included in the optimization.
Note that the canonical dimension would have d = 1.
Changes in the optimization procedure or a relaxation in the
goals of the fit allow for a considerable range in d (sets T2
and T3 are examples), but it does not seem possible to find a
reasonable parameter set with d(2. Thus the introduction of
an anomalous dimension for the light scalar degree offree
dom is an essential feature for the phenomenological success
of our model.

Experience with a broad class of relativistic mean-field
models shows that models that successfully reproduce bulk
properties of finite nuclei share characteristic properties in
infinite nuclear matter [9].These properties are the equilib-
rium binding energy and density, the compressibility K, and
the value of M*/M at equilibrium. One further condition,
that the light scalar mass m, =500 MeV, is needed to ensure
reasonably smooth charge densities and good surface-energy
systematics. If we calculate nuclear matter with the param-
eter sets in Table I, we find good agreement with values
found in investigations with unconstrained mean-field mod-
els (see Table IV). In particular, the saturation density corre-
sponds to a Fermi momentum of about 1.3 fm ', and the
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TABLE II. Binding-energy systematics for the model proposed
here (sets Tl, T2, and T3), for model B from Ref. [9], and for the

point-coupling (PC) model of Ref. [36]. Binding energies per
nucleon are given in MeV.
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0.06-
208

Model
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T2
T3
B
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Expt.

16O
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7.94
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"Ca

8.61
8.55
8.53
8.35
8.58
8.55

208Pb
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7.89
7.91
7.62
7.87
7.87

0.05

E
0.04

0.03

0.02

0.01

0.0
0 1 2 3 4 5 6 7 8 9 10

binding energy per nucleon at saturation is about 16 MeV.
The compressibility is less well determined (190—250 MeV).
The nucleon effective mass M*/M=0. 60 and the scalar
mass I, is just over 500 MeV. We emphasize that these
values are obtained after a fit to finite nuclei only.

V. DISCUSSION

We can relate the phenomenological success of the model
proposed here to the characteristics of successful relativistic
mean-field models of finite nuclei. A key feature is the loga-
rithmic potential for the scalar field, which allows for rela-
tively weak nonlinearities and the dominance of the cubic
and quartic scalar terms, with the values of the scaling di-
mension d used here. In contrast, chiral models with a Mexi-
can hat potential have large cubic and quartic terms, which
preclude a good fit to bulk nuclear properties [9].Bodmer [8]
has shown that nuclear matter properties that lead to good
predictions for finite nuclei can be achieved if one adds to
(small) cubic and quartic scalar terms a term that is quartic in
the vector field (here with coupling j). Thus our model has
all of the ingredients needed to allow a good fit through
optimization. In addition, adjustments can be made through
the scalar-vector coupling g.

Note that the scalar-vector coupling and the quartic vector
self-coupling can be used to define an effective, density-
dependent mass of the vector meson at the mean-field level.
For example, one can use the second derivative of the La-
grangian with respect to the vector field. For the model pa-
rameters in Table I, the two contributions largely cancel, so
that the vector effective mass I,* is essentially independent
of density. This is in contrast to the universal scaling hypoth-
esis of Brown and Rho [37], which predicts

I,*/I, =M*/M.

TABLE III. Rms charge radii (in fm) for the model proposed here
(sets Tl, T2, and T3), for model B from Ref. [9], and for the
point-coupling (PC) model of Ref. [36].

FIG. 2. Charge density of Pb. The solid line is taken from
experiment [38].Charge densities are shown for a successful mean-
field model (model B from Ref. [9])and for the three parameter sets
from Table I.

We have excluded many terms from our model: higher-
order polynomials in the vector fields and mixed scalar-
vector terms, non-Yukawa couplings to the nucleon, deriva-
tive terms, and so on. In retrospect, were we justified in
neglecting them? An analysis of mean-field models [8,12]
implies that one can identify dimensionless ratios that can be
used to set the scale of individual contributions to the energy.
For example, one can rewrite the scaled energy density of
nuclear matter, F/M, in terms of the dimensionless ratios

0-

3$
tD 2d3~ —-.."

lhan
bQ 2dsrz —.----

~ g 10-

1g
12-

14-

16-

Model

T1
T2
T3
B
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Expt.

16O
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2.72
2.72
2.74
2.73
2.74

4'Ca

3.47
3.47
3.48
3.48
3.45
3.47

208Pb
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5.57
5.56
5.51
5.50

EXP'T B

FIG. 3. Predicted proton single-particle spectra for Pb using
the parameter sets from Table I. Only the least-bound major shell is
shown. The leftmost values are from experiment, model B is a
successful mean-field model from Ref. [9], and model PC is the
point-coupling model of Ref. [36]. Note that the Ih9/2 level is an

unoccupied state.
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FIG. 4. Charge density of ' O. The solid line is taken from
experiment [38].Charge densities are shown for a successful mean-

field model (model B from Ref. [9]) and for the three parameter sets
from Table I.
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FIG. 5. Charge density of Ca. The solid line is taken from
experiment [38].Charge densities are shown for a successful mean-
field model (model 8 from Ref. [9]}and for the three parameter sets
from Table I.

g, Vo /M and g, @o/M, which then become our finite-density
expansion parameters.

Moreover, an important assumption in applying effective
field theories, such as chiral perturbation theory, is that the
coefficients of terms in the Lagrangian are "natural, " i.e., of
order unity, when written in appropriate dimensionless units.
This assumption makes the organization of terms through a
power-counting scheme useful, because one can systemati-
cally truncate the expansion when working to a desired ac-
curacy. We have proposed an analogous concept of natural-
ness for the finite-density problem, which will justify the
neglect of higher derivatives and powers of the fields when

applying Eq. (14) to nuclei. For example, if one expresses
the nuclear rnatter energy density in terms of the scaled field
variables written above, one finds that the ratios

2g, M '
2g, M ' 2 '

2g,g,SOM
(40)

should all be of roughly equal size for our expansion to be
"natural. " One can verify that the values in sets T1, T2, and
T3 satisfy this condition.

To examine the size of the scalar self-interactions, one
expands the logarithmic potential in Eq. (38) with the result

o/ ~ o

1 1——+—
4 4

I
(p2 +2!g,'M' 3 IMg,'

(3d —8)m, 1 ( 1 ld —48d+ 48)m,
dSo 4!g4 (dSo)2

(j)3 +

M 2(25d —140d +240d —128)m,
5 (dSo)

M 2(137d —900d + 2040d —1920d+ 640) m,

dS 4 4'+, (41)6)g 0

where 4=g, Po/M. The coefficients in square brackets give
the combinations that should be compared to those in Eq.
(40), and one can verify that these are also natural for pa-
rameter sets T1, T2, and T3. It is interesting that for set T1,
in which d is an optimized parameter, the scaled coefficients
are extremely small due to nearly complete cancellations
among terms in the polynomials in d. (Further discussion of
these issues is given in Ref. [12].)

Further support for the naturalness assumption comes
from extending the model to include P V~ V~ and
(V~V~) terms and then repeating the optimization. The new
fit is very close to the fit obtained without these terms. Fur-
thermore, contributions to the energy from the new terms are
less than 10% of those from the old terms at nuclear matter

density, and the old coefficients change only slightly in the
new fit [12].Thus contributions from the higher-order terms
can be absorbed into slight adjustments of the coefficients in

Eq. (14).
The astute reader will note that if our naturalness assump-

tion is justified, we could construct a variation of our model
without the constraints of the low-energy theorems of broken
scale invariance. Indeed, at nuclear matter density, numerics
alone would let us truncate the scalar potential, and the same
arguments about renormalization apply, so that vacuum ef-
fects are still built in. This explains the success of previous
relativistic mean-field models of nuclear structure and illus-
trates the power of the assumption of naturalness. Here we
note that the scalar potential constrained by the low-energy
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TABLE IV. Nuclear matter saturation properties for the model proposed here (sets Tl, T2, and T3), for
model B from Ref. [9], and for the point-coupling (PC) model of Ref. [36].Values are given for the binding

energy per nucleon (in MeV), the Fermi momentum kF (in fm ), the compressibility K (in MeV), the bulk

symmetry energy coefficient a„(in MeV), M /M, and g, Vp (in MeV) at equilibrium.

Model

T1
T2
T3
B
PC

EIB—M

—16.2
—16,3
—16.1
—15.8
—16.1

1.30
1.29
1.29
1.30
1.30

194
240
244
220
264

a4

39
40
34
35
37

0.60
0.61
0.61
0.63
0.58

302
298
297
277
322

theorems actually provides some justification for naturalness,
which we simply assume is valid for higher-order and de-
rivative terms. Thus one should be cautious in drawing
strong conclusions about the role of broken scale invariance
when applied in models that are restricted to moderate
nuclear density.

How widely can our model be applied? A prime motiva-
tion for developing relativistic models of nuclei and nuclear
matter is to extrapolate to extremes of density and tempera-
ture [5]. Such conditions can be reached experimentally in
relativistic heavy-ion collisions. One hopes that the calibra-
tion of such models to observables at ordinary nuclear den-
sities and zero temperature, in conjunction with constraints
from QCD symmetries, will permit reliable extrapolations.

Unfortunately, our framework of mean-held dominance,
naturalness, and the truncation at small powers of the fields
and their derivatives, which limits the number of parameters
at ordinary nuclear densities, is bound to break down as the
density increases. With increasing density, we will find in-
creasing mean fields and expansion parameters that are no
longer small. Thus we become increasingly less justified in
ignoring the effects of higher-order terms, and the calibration
at nuclear matter density becomes less and less of a con-
straint. The limits of reliable extrapolation are not clear, but
one should certainly be cautious in applying models like ours
much above nuclear matter density. Nevertheless, the utility
of an accurate relativistic mean-field model for nuclear struc-
ture and reactions, which is compatible with the low-energy
behavior of QCD, should be obvious.

We close our discussion with some interesting observa-
tions. From Table I, one sees that So, the vacuum expecta-
tion value of the light scalar field S, is close to the experi-
mental value of f (93 MeV). Furthermore, the scalar
coupling constant g, is close to g /gA. If we forget for the
moment complications from requiring terms to be scale in-
variant, it is tempting to say that the model has a preference
for the nucleon mass to be generated entirely from the
vacuum expectation value of S. That is, if the only nucleon
coupling to scalar fields is g,AVS, then we recover the em-
pirical nucleon mass and the Goldberger-Treiman relation
from the fit values of the other parameters. This scenario is
also consistent with Miransky's model, in which the light
scalar (quarkonium) is associated with the quark condensate,
and with QCD sum rules, which associate the nucleon mass
predominantly with the quark condensate. It is premature to
do more than to point out these results, but the coincidence
of numbers certainly merits further investigation.

VI. SUMMARY

In summary, we have introduced a new model for nuclear
matter and finite nuclei that realizes QCD symmetries at the
hadronic level. In particular, the model incorporates chiral
symmetry, broken scale invariance, and the phenomenology
of vector dominance. An important feature is the light scalar
degree of freedom, which is given an anomalous scale di-
mension. The renormalized scalar potential is constrained by
the low-energy theorems of broken scale invariance. Vacuum
loop effects are absorbed into the renormalized parameters,
which are determined by fits to hadron masses and finite-
density observables.

The truncation of the model Lagrangian is based on
mean-field dominance and the identification of expansion pa-
rameters that are reasonably small at nuclear matter densi-
ties. Because of the characteristics of the constrained scalar
potential, we adopt a "naturalness" assumption, which justi-
fies the truncation. The parameters of the truncated model are
identified by an optimization procedure designed to repro-
duce bulk properties of finite nuclei. Good fits are obtained,
which also lead to very reasonable nuclear matter properties.
The scale dimension of the scalar field comes out greater
than 2, but is not tightly constrained by the ht.

It is important to emphasize what we have learned about
the relationship between effective (hadronic) theories of
QCD and successful relativistic mean-field phenomenology.
The vacuum dynamics of QCD is constrained by the trace
anomaly and the consequent low-energy theorems of QCD.
At the level of hadronic fields, this physics manifests itself in
the scalar-isoscalar sector of the theory. We have proposed
that this sector can be divided into a low-mass part that is
adequately described by a scalar meson with anomalous di-
mension and a high-mass part that is "integrated out, " lead-
ing to various couplings among the remaining fields. We be-
lieve this latter characterization is quite general and
independent of the details of the high-mass part of the scalar
sector. Nevertheless, whereas the realization of the Gold-
stone boson dynamics is well known (i.e., chiral perturbation
theory), as is the dynamics of the vector sector (i.e., vector-
meson dominance), little is known about the precise form
and magnitudes of the nonlinear couplings originating from
the scalar degrees of freedom. We find that our primary
source of information on this dynamics comes from nuclear
structure physics, which provides strong constraints on this
sector of the theory.
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In subsequent work, we will further explore the parameter
space that leads to good fits to nuclear properties and identify
the observables that constrain individual terms. We will also
investigate the chiral properties of the model and study the
implications of vector dominance for nuclear observables.
Work to extend the model beyond the one-baryon-loop level
in a manner consistent with conservation laws and Ward
identities is in progress. Finally, we will continue the devel-
opment of the naturalness concept for finite-density systems.
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