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The '*?Xe nucleus is investigated using statistical theory for studying intrinsic properties as a
function of temperature and spin assuming the nucleus to move in a triaxially deformed Nilsson
potential. The single particle level density parameter is extracted as a function of temperature for
various spins and is found to reach a constant value at higher temperature. The excitation energy
is calculated as a function of angular momentum for different entropies and temperatures. The spin
cutoff parameter as a function of angular momentum is determined for various temperatures from
the rotational energy. The shell correction as a function of angular momentum is determined. The
variation of proton and neutron Fermi energies with temperature and angular momentum is studied.
The effect of the variation of nuclear level density with excitation energy on nuclear temperature is

verified for different spins.
PACS number(s): 24.60.—k, 21.10.Ma, 27.60.+j

The influence of rotation on nuclear structure [1-3]
and shape has opened up a large field for studying in-
trinsic properties of nuclei. The production of hot nuclei
has caused considerable interest in the study of nuclear
shapes and recently a study of such properties in the
A = 120 region was done by Ragnarsson et al. [4]. The
interplay of angular momentum generated by the align-
ment of single particle spins or by the increase of col-
lective rotational angular momentum due to deformation
with temperature is very important in understanding the
nuclear structure. The experimental searches [5-7] for a
high spin shape transition in the barium nuclei are incon-
clusive. In 1211 nuclei, oblate to prolate shape hindrance
has been studied and for Z = 53 iodine nuclei shape co-
existence has been reported [8,9]. A dynamical triaxial
deformation in the mass region A = 120-140, in particu-
lar, Xe and Ba nuclei, is observed [10]. In this work, an
attempt has been made to study the intrinsic properties
of the 22Xe nucleus as functions of temperature, spin,
and deformation.

The statistical theory given in Ref. [11] is used for this
purpose and the applicability of thermodynamical con-
cepts at very high temperature is known from Ref. [12].
The main assumption for statistical analysis is micro-
scopic equilibrium which means that all the states with
the same excitation energy E* are equally populated.
The single particle level density parameter is studied as
a function of temperature and spin [13] and is found
to reach a constant value at higher temperatures for all
spins.

The constant entropy lines are drawn in the excitation
energy E* versus the angular momentum plane. From
these lines it is evident that backbending and yrast traps
are absent in 122Xe.

By calculating the rotational energy as a function of
angular momentum, the spin cutoff parameter is deter-
mined for various spins at different temperatures. The
variation of proton and neutron Fermi energies with tem-
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perature and angular momentum is studied. The shell
correction [14] as a function of angular momentum is cal-
culated for this nucleus by extending the work of Rama-
murthy, Kapoor, and Kataria [15] from nonrotating to
rotating nuclei.

Since the inputs for the statistical theory are the mi-
croscopic single particle levels [16] corresponding to the
triaxially deformed Nilsson harmonic oscillator potential
[17], the results exhibit the effect of shell structure of the
system at different deformations. The deformed poten-
tial [18,19] used here is given by

V = —rhuwol2l, - S + u(iZ — (2], (1)

where wq is the harmonic oscillator parameter which in-
corporates the principle of volume conservation for nuclei
deformed from spherical shapes. The intrinsic nucleon
spin is represented by S while 1; represents the orbital
angular momentum in the stretched coordinate basis.

The k,u pair used for generating the single particle
levels are as given in Ref. [18] and differ for different
oscillator shells corresponding to N = 4, 5, and 6 for
protons. The parameters are appropriate since they re-
produce the experimental bandhead energies more accu-
rately than the standard parameter set given in Ref. [20].
However, for neutrons, the standard parameter set given
in Ref. [20] is used.

The deformation parameters § and 6 are varied [21] in
the range § = 0.0 to 0.6 with A§ = 0.1 and 6 = —180°
to —120° with A8 = 20°. The levels generated are up
to N = 8 which is found to be sufficient for the range of
temperatures used in this calculation. The necessity of
renormalizing the total energy is avoided here since only
the energy differences are involved and not the actual
magnitude of energies.

We start with the grand canonical partition function
for a system of N neutrons and Z protons in a state of
total angular momentum M along the direction of the
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rotation axis. The statistical properties of the system
are contained in the grand partition function

Q(a27an’,8’7) = Zexp(_ﬂEi + aZZi + a'n.Ni + ’YMz)

(2)

The Lagrangian multipliers az, a,, and 7 conserve
the proton number, neutron number, and total angular
momentum M along the Z axis for a given temperature
T=1/p.

In terms of single particle energies ¢; and the spin pro-
jections m; the conservation equations are

= anz = Z[l + exp(—az + BeZ + ymZ)| 1,
(N) =3 "nP = [l +exp(—an + Be} +ym})] Y,

®3)
(E) = Zn e +nZe?
<M>:Znimi +nfmf,

where n; is the occupation probability of the ith shell.
These equations fix the Lagrangian multipliers az, a,,
and 7. The Fermi energies for protons and neutrons are
given by the Lagrangian multipliers az and «,,, respec-
tively.

The entropy of the system is obtained as

S = SZ + S'rn
where
2=—3 nfImn? +(1-nf)ln(1-nf)]  (4)

with a similar equation for neutrons.
The excitation energy E*(M,T,4,0) is obtained using
the equation
E*(M,T,$,0) = E(M,T,6,0) — Ey, (5)
where Ey = E(0,0,9,0) is the ground state energy of the
nucleus. The level density [22] of the system p(M, E*) as
obtained in Ref. [23] is

p(M, E*,5,0) = exp S(M, E*,6,6)/Smax- (6)

The normalization factor S, depends on the dimen-
sionality of phase space which is the number of eigen-
states used, and the single particle level density param-
eter a(M,T,4,0) as a function of angular momentum M
and temperature T is extracted using the equation

a(M,T,$,0) = S*(M,T,$,0)/AE* (M, T,5,6). (7)

In our calculations the temperature is varied from 0.2
to 1 MeV and for each temperature the excitation en-
ergy and the entropy are computed as a function of the
deformation parameters § and 6 for various spins. The
free energy F' = E — T'S is then minimized with respect
to 6 and 0. For a given spin, the entropy is different
for different temperatures. Constant entropy lines which

are equal to constant level density lines are drawn in the
plane of E* and M.

The rotational energies are calculated using the rela-
tion

E.ot = E(M,T) - E(0,T) (8)

for minimized deformation parameters § and @ for dif-
ferent angular momenta at a particular temperature 7'.
The rotational energy is found to increase with angu-
lar momentum whereas its dependence on temperature
is small.

The spin cutoff parameter is estimated from the rota-
tional energy for various temperatures from the expres-
sion

2 =T(I/h%), 9)

where I is the moment of inertia and is given by the
equation

(I/A?) = M/(dE;ot/dM). (10)

The effect of the variation of nuclear level density [24]
with excitation energy on nuclear temperature is found
to be in accordance with the relation

1/T = d/dE*[In p(E*)) (11)

for different spins.

The occupation probabilities n; for protons and neu-
trons are displayed in Figs. 1 and 2 as function of the sin-
gle particle energies for various temperatures and spins.
In Fig. 1 the occupation probability of protons and neu-
trons is plotted for the spin M = 0 at different tem-
peratures. It is evident that at low temperatures the
occupation probability is unity up to the Fermi energy
and thereafter it becomes zero. As the temperature in-
creases, the occupation probabilities for the levels below
the Fermi energy decrease from unity and for the levels
above the Fermi energy increase from zero. However, this
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FIG. 1. Occupation probabilities for protons and neutrons
at two different temperatures as a function of single particle
energies corresponding to the spin M = 0 for '??Xe. The
continuous curves are for protons and the dashed curves are
for neutrons.
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FIG. 2. Asin Fig. 1 corresponding to the spin M = 36 for
122

happens only for a few levels around the Fermi energy.
The case for neutrons is similar. In Fig. 2 the same is
depicted for spin M = 36A. It is evident that for higher
spins at higher temperatures more fluctuations are seen
for both protons and neutrons.

These curves are helpful in comprehending the way
of generating the net spin of the system which can be
obtained from the graph as

M= /dnizmiz +/dn?m?. (12)

In Figs. 3 and 4, the change in Fermi energy Aey is
plotted against temperature for protons and neutrons,
respectively, for various spins. It is found from Fig. 3
that the proton Fermi energy decreases very much for
low temperatures and at higher temperatures it almost
reaches the original value. However, for very high spins
M = 36/ it increases with temperature.

The decrease in neutron Fermi energy with tempera-
ture for various spins is displayed in Fig. 4. At higher
spins this decrease is more and at higher temperatures
the Fermi energy reaches a constant value.
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FIG. 3. The variation of Fermi energy of protons in ??Xe
as a function of temperature and spin.
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FIG. 4. As in Fig. 3 for neutrons in '??Xe.

Figure 5 shows the variation of the Lagrangian multi-
plier v as a function of angular momentum for various
temperatures. At low temperatures the Lagrangian mul-
tiplier falls very rapidly with angular momentum whereas
at higher temperatures it remains almost constant. The
sensitiveness of the Lagrangian multiplier at low temper-
atures may be due to the pairing effects which we have
not considered.

The single particle level density parameter as a func-
tion of temperature and angular momentum is presented
in Figs. 6 and 7 for the nucleus 22Xe. These curves
are drawn by minimizing the free energy for triaxial de-
formation. From Fig. 6 it is evident that at low tem-
peratures the single particle level density parameter in-
creases steeply and at higher temperature of T = 3 MeV
it reaches almost the constant value a ~ A/10 predicted
experimentally [25,26]. The effect of rotation on the sin-
gle particle level density parameter is very pronounced
at low temperatures. The single particle level density
fluctuations are different for different angular momen-
tum states at low temperatures because the shell struc-
ture plays a major role at these temperatures. Figure
7 shows that for a given temperature the single particle
level density parameter decreases with increase in angu-
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FIG. 5. Spin conserving Lagrangian multiplier v as a func-
tion of angular momentum for various temperatures in *>?Xe.
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FIG. 6. Single particle level density parameter as a function
of temperature for various spins of the nucleus *?Xe. The
numbers on the curves refer to the angular momentum of the
system.

lar momentum. However, at a very high temperature of
T = 3 MeV it is almost constant for all spins.

Figures 8 and 9 show the constant temperature and
constant entropy lines, respectively, in the excitation en-
ergy versus angular momentum plane drawn by minimiz-
ing the free energy for various deformations. It is to be
noted that the excitation energy calculated includes the
rotational energy. No yrast trap is seen in these and
there is no possibility of the system being trapped in the
pocket of a yrast trap in the process of deexcitation along
the constant entropy lines. Both the constant tempera-
ture and constant entropy lines exhibit similar behavior.
As the temperature increases the entropy as well as the
excitation energy increases and these constant entropy
lines are useful in determining the phase space available
for the system. These lines are found to be roughly at
constant energy above the yrast line as stated in Refs.
[27,28].

The spin cutoff parameter determined from the rota-
tional energy is plotted in Fig. 10 as a function of an-
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FIG. 7. Single particle level density parameter as a function
of angular momentum for various temperatures in ??Xe.
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FIG. 8. Excitation energy as a function of angular momen-
tum for different temperatures in 22Xe.
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FIG. 9. Constant entropy lines for ?2Xe.
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FIG. 10. Spin cutoff parameter as a function of angular
momentum for different temperatures in *??Xe.
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FIG. 11. The dependence of nuclear level density on ex-
citation energy for various angular momenta of the nucleus
122

Xe.

gular momentum for different temperatures. The spin
cutoff parameter at ' = 0.4 MeV shows a minimum at
M = 25k and this may be suggestive of the state at
M = 25k being distorted by the noncollective states [29].

Assuming that all states with the excitation energy
E* are equally populated, the nuclear level density can
be expressed as a function of excitation energy. Figure
11 shows the nuclear level density as a function of E* for
various spins. It is found that the nuclear level density in-
creases with excitation energy for all spins. For building
up higher spins at a given nuclear level density a higher
excitation energy is needed. The nuclear temperature es-
timated using Eq. (11) is found to be in accordance with
the temperature used in this calculation.

The shell correction is calculated as a function of angu-
lar momentum for minimized free energy values. For this
purpose the thermodynamical method for nonrotating
nuclei suggested by Ramamurthy, Kapoor, and Kataria
[15] is extended to rotating nuclei. While calculating the
shell correction for rotating nuclei the rotational energy
has to be subtracted from the excitation energy given by
Eq. (5). The excitation energy without the rotational
energy is

Eex(M,T) = E(M,T) — E(M,0). (13)

By plotting S? versus Eey. for a particular angular mo-
mentum M and using the relation

S% = 4a[Eexe(M,T) + AEqpen), (14)

the shell correction AFEgpey for a particular M is calcu-
lated. The shell correction AFEgpen is the intercept on
the E.y. axis when large temperature values of S? are
extrapolated towards low temperatures. This extrapo-
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FIG. 12. Shell correction as a function of angular momen-
tum for equilibrium deformation in **?Xe.

lation is valid because at large temperatures the shell
correction vanishes. By repeating the procedure for dif-
ferent angular momenta the shell correction is calculated
as a function of angular momentum. The variations in
shell correction energy are shown in Fig. 12. It is found
that the shell correction shows fluctuations with angular
momentum.

Since there is a conceptual difficulty in comprehending
the nuclear level density of a deformed excited nucleus be-
cause of the possibility of the excited nucleus to have dif-
ferent deformations [30], the calculations are performed
by minimizing the free energy for various deformations ¢
and 6. It is observed that the free energy minimum for
the xenon nucleus occurs for the oblate deformed shape
corresponding to § = 0.2 and 6 = 180° at all tempera-
tures and spins. This means that the shape of 122Xe is
oblate and remains the same even at high spins.

These oblate states built from the spin alignment of
specific single particle orbitals are observed to be spe-
cially favored states. However, a prolate collective to
oblate noncollective shape change around M = 20% has
been reported [29]. The value of the shell correction
at M = 20A may be supportive of this shape change
due to dynamical triaxial deformation. Similar shape
changes may be expected around M = 10k and M = 28h.
Clearly more experimental and theoretical investigations
are needed to study the competition and interaction be-
tween these two different shapes.
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