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Structural properties of hot deformed 122Xe at high spius
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The Xe nucleus is investigated using statistical theory for studying intrinsic properties as a
function of temperature and spin assuming the nucleus to move in a triaxially deformed Nilsson
potential. The single particle level density parameter is extracted as a function of temperature for
various spins and is found to reach a constant value at higher temperature. The excitation energy
is calculated as a function of angular momentum for different entropies and temperatures. The spin
cutoff parameter as a function of angular momentum is determined for various temperatures from
the rotational energy. The shell correction as a function of angular momentum is determined. The
variation of proton and neutron Fermi energies with temperature and angular momentum is studied.
The effect of the variation of nuclear level density with excitation energy on nuclear temperature is
verified for difFerent spins.

PACS number(s): 24.60.—k, 21.10.Ma, 27.60.+j

The inHuence of rotation on nuclear structure [1—3]
and shape has opened up a large Geld for studying in-
trinsic properties of nuclei. The production of hot nuclei
has caused considerable interest in the study of nuclear
shapes and recently a study of such properties in the
A = 120 region was done by Ragnarsson et aL [4]. The
interplay of angular momentum generated by the align-
ment of single particle spins or by the increase of col-
lective rotational angular momentum due to deformation
with temperature is very important in understanding the
nuclear structure. The experimental searches [5—7] for a
high spin shape transition in the barium nuclei are incon-
clusive. In I nuclei, oblate to prolate shape hindrance
has been studied and for Z = 53 iodine nuclei shape co-
existence has been reported [8,9]. A dynamical triaxial
deformation in the mass region A = 120—140, in particu-
lar, Xe and Ba nuclei, is observed [10]. In this work, an
attempt has been made to study the intrinsic properties
of the Xe nucleus as functions of temperature, spin)
and deformation.

The statistical theory given in Ref. [11] is used for this
purpose and the applicability of thermodynamical con-
cepts at very high temperature is known from Ref. [12].
The main assumption for statistical analysis is micro-
scopic equilibrium which means that all the states with
the same excitation energy E* are equally populated.
The single particle level density parameter is studied as
a function of temperature and spin [13] and is found
to reach a constant value at higher temperatures for all
spins.

The constant entropy lines are drawn in the excitation
energy E* versus the angular momentum plane. Prom
these lines it is evident that backbending and yrast traps
are absent in Xe.

By calculating the rotational energy as a function of
angular momentum, the spin cutoff parameter is deter-
mined for various spins at different temperatures. The
variation of proton and neutron Fermi energies with tem-

perature and angular momentum is studied. The shell
correction [14] as a function of angular momentum is cal-
culated for this nucleus by extending the work of Rama-
murthy, Kapoor, and Kataria [15] &om nonrotating to
rotating nuclei.

Since the inputs for the statistical theory are the mi-
croscopic single particle levels [16] corresponding to the
triaxially deformed Nilsson harmonic oscillator potential
[17], the results exhibit the effect of shell structure of the
system at diferent deformations. The deformed poten-
tial [18,19] used here is given by

where ~0 is the harmonic oscillator parameter which in-
corporates the principle of volume conservation for nuclei
deformed &om spherical shapes. The intrinsic nucleon
spin is represented by S while lq represents the orbital
angular momentum in the stretched coordinate basis.

The e, p pair used for generating the single particle
levels are as given in Ref. [18] and differ for different
oscillator shells corresponding to N = 4, 5, and 6 for
protons. The parameters are appropriate since they re-
produce the experimental bandhead energies more accu-
rately than the standard parameter set given in Ref. [20].
However, for neutrons, the standard parameter set given
in Ref. [20] is used.

The deformation parameters b and 8 are varied [21] in
the range b = 0.0 to 0.6 with. Lb = 0.1 and 0 = —180'
to —120' with LO = 20 . The levels generated are up
to N = 8 which is found to be sufficient for the range of
temperatures used in this calculation. The necessity of
renormalizing the total energy is avoided here since only
the energy differences are involved and not the actual
magnitude of energies.

We start with the grand canonical partition function
for a system of N neutrons and Z protons in a state of
total angular momentum M along the direction of the
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Q(oz, ~,P, p) = ) exp( —PE'+ uzi'+ n ~;+pM;)

(2)

The Lagrangian multipliers o.~, o, , and p conserve
the proton number, neutron number, and total angular
momentun~ M along the Z axis for a given temperature
T =1/P.

In terms of single particle energies c; and the spin pro-
jections m; the conservation equations are

(Z) = ) n, = ) [1+exp(—o.z+Pc, +pm, )]

(N) = ) n,"= ) [1 ~ exp( —n„+ Pe,"+pm,")]
(3)

(E) = ) YL~ E +'A- E~.

(M) = ) n,"~", +nzmz,

where n, is the occupation probability of the ith shell.
These equations fix the Lagrangian multiplieps o.z, o.
and p. The Fermi energies for protons and neutrons are
given by the Lagrangian multipliers az and n„, respec-
tively.

The entropy of the system is obtained as

S = S&+S„,
where

Sz ———) [n; inn; + (1 —n; ) ln(1 —n; )] (4)

with a similar equation for neutrons.
The excitation energy E (M, T, h, 0) is obtained using

the equation

E*(M,T, b, 0) = E(M, T, b, 0) —Eo,

rotation axis. The statistical properties of the system
are contained in the grand partition function

are equal to constant level density lines are drawn in the
plane of E* and M.

The rotational energies are calculated using the rela-
tion

E, , = E(M, T) —E(o, T)

for minimized deformation parameters b and 0 for dif-
ferent angular momenta at a particular temperature T.
The rotational energy is found to increase with angu-
lar momentum whereas its dependence on temperature
is small.

The spin cutoff parameter is estimated from the rota-
tional energy for various temperatures &om the expres-
sion

o' = T(I/h, '),

where I is the moment of inertia and is given by the
equation

(I/h ) = M/(dE„, /dM)

The effect of the variation of nuclear level density [24]
with excitation energy on nuclear temperature is found
to be in accordance with the relation

1/T = d/dE*[ln p(E*)]

for different spins.
The occupation probabilities n, for protons and neu-

trons are displayed in Figs. 1 and 2 as function of the sin-
gle particle energies for various temperatures and spins.
In Fig. 1 the occupation probability of protons and neu-
trons is plotted for the spin M = 0 at different tem-
peratures. It is evident that at low temperatures the
occupation probability is unity up to the Fermi energy
and thereafter it becomes zero. As the temperature in-
creases, the occupation probabilities for the levels below
the Fermi energy decrease &om unity and for the levels
above the Fermi energy increase from zero. However, this

where Eo = E(0, 0, b, 0) is the ground state energy of the
nucleus. The level density [22) of the system p(M, E') as
obtained in Ref. [23] is

p(M, E', b, 8) = exp S(M, E*,8, 0)/S (6)

a(M, T, h, 0) = S (M, T, b, 0)/4E'(M, T, b, 0). (7)

The normalization factor S „depends on the dimen-
sionality of phase space which is the number of eigen-
states used, and the single particle level density param-
eter a(M, T, b, 0) as a function of angular momentum M
and temperature T is extracted using the equation
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In our calculations the temperature is varied &om 0.2
to 1 MeV and for each temperature the excitation en-
ergy and the entropy are computed as a function of the
deformation parameters 8 and 0 for various spins. The
kee energy E = E —TS is then minimized with respect
to b and 0. For a given spin, the entropy is different
for different temperatures. Constant entropy lines which
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FIG. 1. Occupation probabilities for protons and neutrons
at two difFerent temperatures as a function of single particle
energies corresponding to the spin M = 0 for Xe. The
continuous curves are for protons and the dashed curves are
for neutrons.
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FIG. 12. Shell correction as a function of angular momen-
tum for equilibrium deformation in Xe.

E,„,(M, T) = E(M, T) —E(M, O).

By plotting S2 versus E,„, for a particular angular mo-
mentum M and using the relation

S = 4a[E,„,(M, T) + EEgh, u], (14)

the shell correction LE,h, ~~ for a particular M is calcu-
lated. The shell correction LE,g, ~~ is the intercept on
the E,„, axis when large temperature values of S are
extrapolated. towards low temperatures. This extrapo-

gular momentum for difFerent temperatures. The spin
cutofI' parameter at T = 0.4 MeV shows a minimum at
M = 25k, and this may be suggestive of the state at
M = 25h being distorted by the noncollective states [29].

Assuming that all states with the excitation energy
E* are equally populated, the nuclear level density can
be expressed as a function of excitation energy. Figure
11 shows the nuclear level density as a function of E* for
various spins. It is found that the nuclear level density in-
creases with excitation energy for all spins. For building
up higher spins at a given nuclear level density a higher
excitation energy is needed. The nuclear temperature es-
timated using Eq. (11) is found to be in accordance with
the temperature used in this calculation.

The shell correction is calculated as a function of angu-
lar momentum for minimized &ee energy values. For this
purpose the thermodynamical method for nonrotating
nuclei suggested by Ramamurthy, Kapoor, and Kataria
[15] is extended to rotating nuclei. While calculating the
shell correction for rotating nuclei the rotational energy
has to be subtracted. &om the excitation energy given by
Eq. (5). The excitation energy without the rotational
energy is

lation is valid because at large temperatures the shell
correction vanishes. By repeating the procedure for dif-
ferent angular momenta the shell correction is calculated
as a function of angular momentum. The variations in
shell correction energy are shown in Fig. 12. It is found
that the shell correction shows fiuctuations with angular
momentum.

Since there is a conceptual difhculty in comprehending
the nuclear level density of a deformed excited nucleus be-
cause of the possibility of the excited. nucleus to have dif-
ferent deformations [30], the calculations are performed
by minimizing the &ee energy for various deformations b

and 0. It is observed that the &ee energy minimum for
the xenon nucleus occurs for the oblate deformed shape
corresponding to 8 = 0.2 and 0 = 180' at all tempera-
tures and spins. This means that the shape of Xe is
oblate and remains the same even at high spins.

These oblate states built &om the spin alignment of
speci6c single particle orbitals are observed to be spe-
cially favored states. However, a prolate collective to
oblate noncollective shape change around M = 20k has
been reported [29]. The value of the shell correction
at M = 205 may be supportive of this shape change
due to dynamical triaxial deformation. Similar shape
changes may be expected around M = 10' and M = 286.
Clearly more experimental and theoretical investigations
are needed to study the competition and interaction be-
tween these two difI'erent shapes.
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